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ABSTRACT Combining imaging with correlation spectroscopy, as in raster image correlation spectroscopy (RICS), makes it
possible to extract molecular translational diffusion constants and absolute concentrations, and determine intermolecular inter-
actions from single-channel or multicolor confocal laser-scanning microscopy (CLSM) images. Region-specific RICS analysis
remains very challenging because correlations are always calculated in a square region-of-interest (ROI). In this study, we
describe a generalized image correlation spectroscopy algorithm that accepts arbitrarily shaped ROIs. We show that an image
series can be cleaned up before arbitrary-region RICS (ARICS) analysis. We demonstrate the power of ARICS by simulta-
neously measuring molecular mobility in the cell membrane and the cytosol. Mobility near dynamic subcellular structures can
be investigated with ARICS by generating a dynamic ROI. Finally, we derive diffusion and concentration pseudo-maps using
the ARICS method. ARICS is a powerful expansion of image correlation spectroscopy with the potential of becoming the
new standard for extracting biophysical parameters from confocal fluorescence images.
INTRODUCTION
Fluorescence fluctuation spectroscopy (FFS) methods probe
molecular parameters of diffusive fluorescent substances,
classically by analyzing the temporal correlation function
of fluorescence signals (1–3). FFS methods have seen
a tremendous increase in popularity since the 1990s with
the improvement and commercialization of confocal
microscopes, which brought correlation analyses from the
physics field to a broad scientific community. Combining
FFS methods with fluorescence imaging, as originally done
in image correlation spectroscopy (ICS) (4), allows
quantitative molecular properties to be extracted from micro-
scopy images. Many variations on the original ICS method
have appeared over the years. For example, two-color image
cross-correlation spectroscopy (ICCS) allows quantifying
clustering of two types of fluorescently labeledmolecules (5).
Temporal ICS (TICS) can be used for measuring the
dynamics of slowly diffusing complexes (6). Spatiotemporal
ICS (STICS) is a method that can be used for quantifying the
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directionality and velocity of flow phenomena (7). Imaging
mean squared displacement (iMSD) can be used to study
diffusion mechanisms (8). The k-space ICS method (kICS)
is used to efficiently deal with fluorophores that exhibit a
significant blinking (9). Finally, the raster image correlation
spectroscopy (RICS) method can be used to study the molec-
ular translational diffusion constant (D), absolute concentra-
tion (c), and intermolecular binding constants of diffusive
molecules in single or multicolor confocal laser scanning
microscopy (CLSM) images (10–12).

ICS provides a popular powerful quantification and charac-
terization tool for microscopy images. With RICS in parti-
cular, molecular parameters can be quantified in a (bio-)
chemically interesting and exceptionally large dynamic range
(D z 0.1–500 mm2/s, c z 10�6–10�9 M). RICS analyses
suffer much less from photobleaching- and blinking-related
artifacts than their single-point confocal counterparts, since
fluorescence is probed over a large area (13). This larger
probed area also increases experimental robustness against
location-specific artifacts. Measurement times reduced to a
few or even a single image frame suffice, in turn opening
the door toward robust kinetic analysis. Most importantly,
RICS can be carried out on almost any CLSM;mostmanufac-
turers nowadays offer plug-and-play RICS extensions, and
different groups worldwide provide well-documented more-
advanced RICS analysis software (10,13,14).
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The RICS method, however, also has limitations that have
prevented its widespread usage. For example, the classical
algorithm used in RICS analysis only accepts n2 ROIs,
where n is the number of pixels in each direction of the
ROI (4). Placing a squared ROI inside an imaged sample,
such as a cell or cell organelle, can be difficult. Decreasing
n reduces this problem and even allows mapping of molec-
ular parameters in a complex sample (15,16), but limited
statistics prevent an accurate spatial correlation analysis
below n z 64. A static square ROI is also disadvantageous
when dealing with organelles such as the endoplasmic retic-
ulum (ER) or mitochondria that have complex shapes and
are dynamic in a live-cell imaging experiment.

Another limitation of FFS is that fluctuation analyses
perform well only on relatively homogenous samples. For
example, as little as a single contamination that is signifi-
cantly brighter than the average fluorescent species is detri-
mental for the correlation function when not removed a
priori from the data. A commonly used trick to deal with
this during FCS analysis is to monitor the moving average
count rate over time; when it temporarily exceeds a certain
relative or absolute threshold, all photons detected during
this period are omitted from the correlation analysis. To
our knowledge, a similar approach has not yet been incorpo-
rated for spatial correlations.

Lastly, because molecular information is averaged over
space, the RICS method has not been used for generating
pixel-resolution diffusion or concentration maps, unlike im-
aging-based FFS methods such as scanning FCS (SFCS)
(17,18), TICS (5), imaging total internal reflection (ITIR)-
FCS (19), and single-plane illumination microscopy
(SPIM)-FCS (20). In these methods, however, diffusion
maps are mostly obtained only for relatively slowly
diffusing molecules, such as, e.g., membrane proteins.
Finally, when imaging using a CLSM for methods based
on correlation between consecutive frames, the maximal
scanning speed of the laser determines the highest mobility
of molecules that can be quantified, which in our experience
was around D ¼ 0.01 mm2/s (21). In addition to diffusion
maps, concentration maps of slowly diffusing molecules
can also be generated using imaging-based FFS methods.
For fast diffusing molecules, concentration maps can also
be generated using the number and brightness method
(22), which derives concentration info from the photon dis-
tribution per pixel. However, being an obligate single-pixel
analysis method such as TICS, a fair number of images are
needed to obtain a map of sufficient quality.

In this work, we describe an adapted version of the orig-
inal ICS algorithm that now accepts ROIs of any shape. We
implemented our algorithm in an all-graphical ICS analysis
program that utilizes ROIs that can be generated freehand or
automatically. Hence, any arbitrarily shaped region from an
image series can be selected before correlation analysis.
Using different proof-of-principle experiments, we illustrate
some of the possibilities of arbitrary-region RICS (ARICS):
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removing artifacts from images before a correlation anal-
ysis, simultaneous analysis of diffusion and concentration
in the membrane and cytosol, quantifying diffusion near
complex and dynamic organelles such as the ER, and finally,
generating pseudo-maps of diffusion and concentration.
Considering all the advantages of ARICS analysis, we
expect this approach to be beneficial to a number of spatial
correlation methods and to replace the classical RICS
algorithm.
THEORY

Classical ICS algorithm

For comparison, we first briefly summarize the classical ICS
algorithm (4), in which correlations are typically calculated
using the following fluctuation image dI(x,y):

dIðx; yÞ ¼ Iðx; yÞ � hIiXY ; (1)

where I is the original fluorescence intensity image of size
X � Y, I(x,y) is the intensity of pixel (x,y) (Fig. 1 A), and
hIiXY is the mean image intensity. The unnormalized
spatial autocorrelation function (SACF) over a selected
ROI (Fig. 1 B) is typically defined as follows:

Gðx;jÞ ¼ hdIðx; yÞ � dIðx þ x; yþ jÞiXY
ðX � jx j ÞðY � jj j Þ ; (2)

where h iXY denotes two-dimensional (2D) cross-correla-

tion, i.e.,
PY

y¼1

PX
x¼1ð Þ, (X-jxj)(Y-jjj) is the number of times

a particular spatial lag (x,j) can be sampled, and j j denotes
the absolute value. As illustrated in Fig. 1 C, the correlation
is averaged over fewer elements as the spatial lag increases.
Analogously to fluorescence correlation spectroscopy,

G(x,j) is typically normalized by hIi2XY so that the amplitude
of the SACF scales inversely with the number concentration
N (the reader is referred to Eq. 14 for the fitting model used
for the RICS analysis). In ICS, the correlation is calculated
for each frame individually and the resulting SACFs are
averaged over all frames to increase signal-to-noise.
ICS algorithm generalized for an arbitrary ROI

To generalize Eq. 2, we first define an arbitrarily shaped bi-
nary ROI mask R(x,y) with size equal to the image size, and
with intensity one inside and zero outside the included re-
gion of interest (Fig. 1 D):

Rðx; yÞ ¼ 1ðinsideÞ or 0ðoutsideÞ: (3)

The image can then be masked by an elementwise multipli-
cation with R:

IRðx; yÞ ¼ Rðx; yÞIðx; yÞ; (4)



FIGURE 1 Comparison of the ROI and ICS

normalization in normal and generalized ICS.

(A) Schematic representation of a 20 � 20 pixel2

image of a cell exhibiting fluorescence in the

cytosol and, to a lesser extent, in the nucleus, is

shown. (B) Normal ROI, encompassing the whole

image including the cell and extracellular space

is provided. (C) Graphical representation of the

number of times a particular spatial lag is sampled,

i.e., (X-jxj)(Y-jjj) in Eq. 2 or the denominator in

Eq. 6. Spatial lags larger than half the ROI size

are not used. (D) Arbitrary ROI mask, generated

by intensity thresholding, encompassing only the

cytosolic interior of the cell is shown. White pixels

in the binary mask are unity; dark gray pixels are

zero. (E) Spatial autocorrelation of the mask, dis-

playing the number of times a particular spatial

lag is sampled. For example, the lag (0,0) is

sampled 81 times, which is equal to the number

of unity pixels in the arbitrary ROI. To see this

figure in color, go online.
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and the fluctuation image dIR(x,y) can again be defined as
follows:

dIRðx; yÞ ¼ Rðx; yÞðIRðx; yÞ � hIRiXYÞ; (5)

where hIRiXY is now the mean intensity of all pixels included

in the ROI. Then, similar to what has previously been done
(23), we define the unnormalized SACF as follows:

Gðx;jÞ ¼ hdIRðx; yÞ � dIRðx þ x; yþ jÞiXY
hRðx; yÞ � Rðx þ x; yþ jÞiXY

; (6)

where the correlation in the denominator again dictates the

number of times a particular spatial lag (x,j) is sampled
(Fig. 1 E). Hence, we average each shift in the correlation
function by the number of times this shift is observable in
the ROI. Finally, G(x,j) is normalized by the average in-
tensity of the selected pixels, hIRi2XY , and averaged over
all frames. For both numerator and denominator, the
same fast Fourier transform algorithm used for classical
ICS can be applied to speed up the calculations. An addi-
tional change we made to the algorithm is to explicitly
zero-pad images to avoid aliasing effects. The associated
MATLAB (The MathWorks, Natick, MA) code and anal-
ysis software is available on request. Taken together, to
generalize the ICS calculation algorithm for any ROI
shape, we apply a ROI mask during image correlation, ex-
ploiting the fact that pixels with zero intensity cancel from
the calculation, and normalizing the correlation at each
spatial lag accordingly.
Generating the ROI

A ROI is classically defined in ICS as a square or rect-
angle positioned somewhere on an image in the image
series. Here, we use three alternative ways for gener-
ating an ROI: 1) Many programming languages have
built-in functions for manually drawing an arbitrarily
shaped ROI, which can be useful for masking, e.g., an
intracellular region. In MATLAB, we use the imfreehand
command for this purpose. 2) Certain pixel characteris-
tics can be used for defining the ROI, e.g., its absolute
intensity:

Rðx; yÞ¼ 0 if hIia� b<or> Ithreshold; (7)
Biophysical Journal 111, 1785–1796, October 18, 2016 1787
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where hIia�b is the average intensity in an a� b area around
pixel (x,y) and Ithreshold is an absolute intensity threshold
above or below which pixel intensities should lie. Empiri-
cally, we found that a 5 � 5-pixel2 area worked well. For
methods such as RICS where the correlation function is
calculated on each image individually, the threshold selec-
tion criteria can be dynamic and the ROI variable for each
frame. In this way, corrections can be made in movies where
large aggregates or dark vesicles diffusing through the im-
age series. Importantly, since thresholding is done using a
spatial averaging filter, the pixels in the arbitrary ROI still
constitute a complete intensity distribution histogram. This
is important for spatial correlation methods such as RICS,
as illustrated experimentally in this work, but also for
methods in which the actual distribution is analyzed, e.g.,
photon counting histogram (24) or number and brightness
analysis (22). Absolute or relative intensity or intensity vari-
ance thresholds can also be used, for which the reader is
referred to the Supporting Material. 3) The ROI can be
defined in another imaging channel, where a particular
structure is specifically labeled.

Multiple ROIs can also be combined in various ways to
obtain the final ROI. For example, if a freehand ROI (R1)
is drawn on an image of a cell to roughly select the nuclear
region, and an intensity thresholding is additionally carried
out to select densely staining regions (R2), the final ROI R,
used during correlation analysis, is obtained by an element-
wise multiplication of the two ROIs, or in general for n ROIs
as follows:

Rðx; yÞ ¼
Yn
i¼ 1

Riðx; yÞ; (8)

where n is the total number of ROIs.
Image preprocessing

For RICS analyses in live cells, slow fluctuations and spatial
inhomogeneities are removed when necessary from the raw
image data with a high-pass filter as follows:

IRICSðx; y; f Þ ¼ Iðx; y; f Þ � hIðx; y; f ÞiDF þ hIiXYF; (9)

where I(x,y,f) is the photon count of pixel (x,y) in frame f,
�1PDF
hIðx; y; f ÞiDF ¼ ð2DFþ 1Þ f¼�DFIðx; y; f Þ is the moving

average series from frames (f-DF) to frame (fþDF), and
hIiXYF is the mean intensity over all frames F with size
X � Y. For live-cell experiments, a moving average of
DF ¼ 1 was used. Importantly, when performing temporal
averages, pixels that were excluded from the ROI anywhere
in the time window f 5 DF also need to be excluded from
the arbitrary ROI of frame f as follows:

RRICSðx; y; f Þ ¼
YfþDF

i¼ f�DF

Rðx; y; iÞ: (10)
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IRICS and RRICS are subsequently used for correlation with
Eq. 6. When performing a moving average, the image
with the fluctuation of interest is included in the average
and subtracted from the image. Hence, the amplitude of
the fluctuation is decreased and the amplitude of the
SACF in Eqs. 2 and 6 is also decreased. We correct for
this artifact by rescaling the ACF:

Gcorrðx;cÞ ¼ 2DFþ 1

2DF
Gðx;cÞ: (11)

Diffusion and concentration pseudo-maps

Since RICS is normally performed in large square image
regions (typically > 642 pixel2) (Eq. 2), the spatial resolu-
tion is considerably lowered when molecular parameters
(diffusion, concentration, brightness, stoichiometry, and in-
teractions) are mapped. Although ARICS allows analysis
in ROIs that do not need to be square (Eq. 6), enough
pixels still need to be sampled to create a single correla-
tion function. This leads to a similar resolution limit
when mapping with ARICS. By exploiting particular
image features, the ARICS method can also be used
for creating pseudo higher-resolution maps of molecular
parameters.

An example of such a feature is the average pixel
intensity: most features that affect the local concentra-
tion of a molecule (interactions, exclusion zones, compart-
mentalization, etc.) also affect its apparent diffusion
coefficient. Whereas mere changes in the mobility (e.g.,
because of different viscosities) create an inverse concen-
tration and consequently intensity gradient in the sample
(Fig. S4), interactions with cellular structures are much
more complex and do not necessarily follow this relation-
ship. Therefore, the different signal intensities in an image
indicate local variations, and dividing an image into
different ROIs depending on local intensity might reveal
hidden interactions with or exclusions from the local
environment.

Additionally, the ROIs do not necessarily have to be
generated from the channel that is used for the actual corre-
lation. By labeling an interaction partner or antagonist with
a second color, or by imaging certain cellular markers (e.g.,
chromatin or organelles), the signal intensity in the second
channel can then be used to create ROIs.

Practically, when the intensity of the images in a movie
is broadly distributed, each image frame can easily be
divided into m arbitrary ROIs Rm (e.g., m ¼ 5), each
encompassing pixels in a particular range of intensities
(e.g., 0–200, 200–400, ... kHz). For every frame in the se-
ries, m SACFs are calculated (Eq. 6) and each SACF is
averaged over all frames. The m SACFs are then fitted
using Eq. 14 to extract D and N parameters for each of the
m ROIs, termed Di and Ni, respectively. These parameters
are subsequently assigned to every pixel in an image to



Arbitrary-Region RICS
create pseudo-maps of ‘‘single-frame’’ diffusion and con-
centration as follows:

Dðx; y; f Þ ¼
Xm
i¼ 1

ðRiðx; y; f Þ � DiÞ and

Nðx; y; f Þ ¼
Xm
i¼ 1

ðRiðx; y; f Þ � NiÞ;
(12)

respectively, where � denotes an elementwise multiplica-

tion. Although Eq. 12 assumes the m ROIs are completely
nonoverlapping, only a small adaptation is needed to allow
also overlapping ROIs. Finally, and as will also be shown
experimentally, the m ROIs may move from one frame to
the next. Therefore, an average over the single-frame
pseudo-maps is performed as follows to generate a
representative calculation of the diffusion and concentration
pseudo-maps:

Dðx; yÞ ¼ 1

F

XF
f ¼ 1

Dðx; y; f Þ and

resp: Nðx; yÞ ¼ 1

F

XF
f ¼ 1

Nðx; y; f Þ;
(13)

where F is the total number of frames minus any frames

where, due to preprocessing stipulations (Eq. 10), the pixel
was not assigned to a ROI.
MATERIALS AND METHODS

Plasmids, cell culture, and transfection

pKHIVVenus encoding Gag.Venus was obtained from Barbara M€uller (Uni-

versity of Heidelberg) and cloned as described previously (21). eGFP-

LEDGF/p75 was cloned as described previously (25). pMyrPalm.mYFP

was provided by Prof. R. Tsien (University of California San Diego, La

Jolla, CA). PcsVenus and calreticulin-mRFP-KDEL/pcDNA3 plasmids

were a gift of Prof. A. Miyawaki (26). HeLa cells (NIH Reagent program)

were cultivated without antibiotics in low-glucose DMEM (Life Technolo-

gies, Darmstadt, Germany) supplemented with 10% heat-inactivated fetal

bovine serum (complete medium) at 5% CO2 and 37�C in a humidified at-

mosphere. For transfection, 3 � 104 cells per well were plated in complete

medium in eight-well cover slips (Lab-Tek II Chambered Coverglass,

Thermo Scientific, Langenselbold, Germany). Plasmid DNA (500 ng in

total) was mixed with 1.5 mL XtremeGene 9 transfection reagent (Roche

Applied Science, Mannheim, Germany) in 50 mL OptiMEM and incubated

for 15–20 min at room temperature, before addition of 100 ng pKHIVFP

plasmid 6–8 h after cell seeding. For cotransfections a 1:1 plasmid

weight ratio was used. All imaging experiments were performed at room

temperature.
Venus FP imaging experiment

Previously described imaging data of the Venus fluorescent protein freely

diffusing in a 10-cP viscosity buffer, acquired on a home-built confocal

laser-scanning microscope (2 mW of 475-nm excitation at the sample)

(13), was reanalyzed in this work. Imaging parameters were 200 frames,

12.5 � 12.5 mm2, 300 � 300 pixel2, line time tl ¼ 3.33 ms, pixel dwell

time tp ¼ 11.11 ms, and pixel size dr ¼ 41.7 nm.
Membrane diffusion experiment

Previously described imaging data of cells coexpressing cytosolic Venus

and mCherry fluorescent proteins and membrane-targeted MyrPalm-

mYFP, acquired on a home-built confocal laser-scanning microscope

(0.8 mW of 475-nm excitation at the sample) (21), was reanalyzed in this

work. Imaging parameters were 100 frames, 300 � 300 pixel2, line time

tl ¼ 3.33 ms, pixel dwell time tp ¼ 11.11 ms, and pixel size dr ¼
41.7 nm. Before per-frame intensity thresholding (Eq. 7), a rough ROI

covering the cell was manually drawn on the first image of the image series

and kept constant for all frames.
Other imaging experiments

The Gag and LEDGF/p75 imaging experiments were carried out on a com-

mercial Olympus Fluoview FV1000 confocal microscope. Raster-scanning

was performed in the center of the scan range during 200 frames with the

following settings: 256 � 256 pixel2, line time tl ¼ 4.325 ms, pixel dwell

time tp ¼ 12.5 ms, and pixel size dr ¼ 50 nm (i.e., zoom 16.4). Excitation

light from a 488 nm Ar-ion laser (2% transmissivity, ~2 mW in the sample)

was reflected into a UPLSAPO-60XW objective (NA ¼ 1.2) using a

DM405/488/559/635 polychroic mirror. The optimal position of the objec-

tive cover slip correction collar was determined by maximizing the molec-

ular brightness as measured by RICS of freely diffusing ATTO488-CA

(ATTO-TEC, Siegen, Germany) at nM concentration in water. Emission

was detected through a 130 mm pinhole (automatic setting) and a BA505-

540 emission filter onto a photomultiplier tube operating in pseudo-photon

counting mode. To convert pseudo-counts to real counts, an image intensity

rescaling parameter S ¼ 6 was used (27,28). In the second imaging channel

used for generating the ROI, 559-nm excitation (1% transmissivity) from a

DPSS laser was used. Emission was separated from the other imaging chan-

nel using an SDM560 dichroic mirror and a BA575-675 emission filter.

Before per-frame intensity thresholding (Eq. 7), a rough ROI covering

the cytosol (Gag experiment) or nucleus (LEDGF/p75 experiment) was

manually drawn on the first image of the image series and kept constant

for all frames.
RICS fitting

The mean of the SACF series was analyzed as before (21) by nonlinear least

squares fitting with a two-component (one mobile and one immobile)

model for Brownian diffusion in a three-dimensional (3D) Gaussian PSF

as follows:

Gfitðx;jÞ ¼ AmobGfit;mobðx;jÞ
þ Aimmexp

�� dr2u�2
imm

�
x2 þ j2

��þ GðNÞ;

where

Gfit;mobðx;jÞ ¼
�
1þ 4D

�
tpxþ tlj

�
u2

r

��1

�
�
1þ 4D

�
tpxþ tlj

�
u2

z

��1
2

� exp

 
� dr2

�
x2 þ j2

�
u2

r þ 4D
�
tpxþ tlj

�
!

(14)

is the time-dependent component of the correlation function ascribed to fast

diffusing molecules. Amob and Aimm are the amplitudes of the mobile and

immobile component in the correlation function, respectively and GðNÞ
is a baseline correction term. The lateral and axial focus radii are denoted
Biophysical Journal 111, 1785–1796, October 18, 2016 1789
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by ur and uz, respectively, defined as the distance from the focus center

where the signal intensity decreases to 1/e2 of its initial value. The fraction

of immobile molecules (on the RICS timescale) was described with a sym-

metrical 2D Gaussian function where uimm represents the half-width of the

function at 1/e2 of the maximal intensity of the immobilized objects. When

the objects are smaller than the diffraction limit, uimm becomes equal to ur.

Nmob ¼ g Amob

ðAmobþAimmÞ2 is the average number of molecules in the point spread

function (PSF) that are mobile on the RICS timescale, with g ¼ 2–3/2 the

shape factor for a 3D Gaussian. Goodness-of-fit parameters were the

weighted residuals parameter rw and reduced c2 parameter. Because of

the strong autocorrelation of the shot noise at (x ¼ 0,j ¼ 0), G(0,0) was

not considered during fitting, and autocorrelation amplitudes were approx-

imated by the average of G(1,0) and G(–1,0) for graphical representations.
Diffusion and concentration pseudo-maps

A freehand ROI was drawn around the nucleus of the cells, to exclude the

cytosolic region a priori. Arbitrary ROIs were calculated using the H2B im-

aging channel and mapped onto the LEDGF/p75 channel. Moreover, in the

H2B imaging channel, pixel intensities in each frame were rescaled such

that the average image intensity in all frames was equal to that of the first

frame. This procedure, which corrected the data for photobleaching, was

important to render the threshold intensities applicable to all image frames.
RESULTS

Outlier-free fluctuation imaging

Many unwanted phenomena can give rise to confocal im-
ages with inhomogenously distributed fluorescence inten-
FIGURE 2 Cleaning up image series before RICS analysis. (A) Two image fra

rescent protein are shown. In the right image frame, a protein aggregate was in f

were calculated from the frames in (A). The aggregate dictates the shape of the se

which a 5 � 5 pixel2 area exhibited an average intensity exceeding 150 kHz de

image were also omitted from the ROI. The scale bar represents 1 mm. (D) Int

containing the aggregate and (red) all pixels included in the arbitrary ROI of the

rate per pixel are displayed. (E) The amplitudes of the individual SACFs were c

included in the arbitrary ROI with Eq. 6. Amplitudes were approximated by the c

the y-axis. (F) The averaged arbitrary-ROI SACF was fitted using Eq. 14 and col

contains further details on the fitting, as well as a comparison with the raw-dat
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sities: aspecific aggregation of molecules of interest,
sticking of fluorophores to organelles, diffusing organelles
lacking the molecule of interest, just to name a few.
Although intrinsically part of the sample, when bright or
dark artifacts move significantly from one frame to the
next, they will adversely affect any quantitative (fluctuation)
image analyses. A first application of the generalized ICS
algorithm is cleaning up imaging data by removing fluores-
cent outliers before correlation and RICS analyses. As a
proof-of-principle, we used a confocal image series of the
freely diffusing Venus fluorescent protein at nM concentra-
tion in a buffer of roughly 10 times the viscosity of water.
Fig. 2 A shows two frames: a clean frame and a frame in
which a Venus aggregate coincidently diffused through the
focal plane while the laser was scanning over it. We calcu-
lated the SACF of each frame (Fig. 2 B). Strikingly,
although in the second frame, the aggregate was only de-
tected in ~1% of all pixels, its SACF looks completely
different than that of the clean frame. To mask out the
aggregate, we employed an absolute intensity threshold
hIi5�5 < 150 kHz (Eq. 7). This selectively removed the
aggregate from the image while leaving the rest of the image
untouched (Fig. 2 C). Consequently, the threshold removed
the high-count tail from the overall pixel intensity distribu-
tion histogram, while leaving the shape of the low-count
part unchanged (Fig. 2 D). To check whether the threshold
held for all frames in the image series, we calculated all
mes from a 200-frame confocal image series of freely diffusing Venus fluo-

ocus while the laser scanned over it. Scale bars represent 1 mm. (B) SACFs

cond SACF. (C) The frame containing the aggregate, with the pixels around

picted in red. To avoid edge effects during thresholding, the borders of the

ensity distribution histogram is provided of (black) all pixels in the frame

same frame. For comparison, both the absolute photon counts and the count

alculated (black) using all image pixels with Eq. 2 or (red) using all pixels

orrelation value at x ¼ 1. For clarity, a break at 0.11–0.2 was introduced on

or-coded using the weighted residuals goodness-of-fit parameter rw. Fig. S1

a average SACF fitting. To see this figure in color, go online.
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corresponding SACFs and plotted their amplitudes, approx-
imated by the correlation value at x ¼ 1, j ¼ 0, as a
function of frame number (Fig. 2 E). Clearly, when an
arbitrary ROI was used, the variation on the SACF
amplitude decreased tremendously. Finally, when the indi-
vidual, artifact-free SACFs were averaged and the average
SACF was fitted using Eq. 14, a single diffusing species
(D ¼ 7.7 5 0.3 mm2/s) was observed with the fit model
yielding 100% amplitude of the mobile fraction and 0%
for an immobile species (reduced c2 ¼ 1.02) (Fig. 2 F).
For comparison, Fig. S1 displays a RICS analysis of the
raw imaging data, which is not described at all by Eq. 14
due to the presence of Venus aggregates. This proof-of-prin-
ciple experiment clearly shows the generalized ICS algo-
rithm can be used to specifically remove outliers from
imaging data of freely diffusing Venus, resulting in RICS
data that could be perfectly described by a single-compo-
nent fit model.
Simultaneously measuring diffusion in the
cytosol and membrane

In a next experiment, we used absolute intensity threshold-
ing in live cells to discern between species diffusing in the
cell membrane and the cytosol. We coexpressed cytosolic
FIGURE 3 Absolute intensity thresholding for region-specific RICS analysis.

coexpressing cytosolic Venus fluorescent protein and membrane-targeted MyrPa

togram is provided of (black) all pixels in the frame, (red) an arbitrary ROI with

comparison, both the absolute photon count and the count rate per pixel are disp

thresholded to select (top image) the membrane or (bottom image) the cytosol. (

top view of the SACFs. (E) The average arbitrary-ROI SACF was fitted using Eq

rw. Fig. S2 contains further details on the experiment. Results for a representative

relative to the SACF amplitude) was 3–4%, the error on D was 10–25%, and th

go online.
Venus together with a membrane targeted MyrPalm-mYFP
in HeLa cells (Fig. 3 A). We avoided imaging near the bot-
tom and top cell membrane by an mCherry coexpression
control and z-stacking (Fig. S2). We defined two arbitrary
ROIs using Eq. 7 for selecting the membrane (hIi5�5 >
300 kHz) and cytosol (hIi5�5 < 300 kHz). By doing this,
two complete pixel intensity distribution histograms were
obtained, each one representing the molecules in the respec-
tive ROIs (Fig. 3 B). After preprocessing the image series
using Eq. 9 (Fig. 3 C) and calculating the SACF of each
image frame, the average SACF was obtained for the
membrane and cytosolic ROI (Fig. 3 D, top and bottom
graphs, respectively). In the membrane ROI, a circular
SACF shape was observed, indicative of slower mobility.
After fitting, a diffusion constant of D ¼ 0.3 5 0.1 mm2/s
was obtained in the membrane ROI (Fig. 3 E, top graph),
which is what is expected for the membrane-bound
MyrPalm-mYFP protein (29). In the cytosol ROI, on the
other hand, a line-shaped SACF was observed, with a corre-
sponding diffusion constant of D¼ 305 7 mm2/s (Fig. 3, D
and E, bottom graphs), which in turn agrees with the
expected value for fluorescent proteins diffusing freely in
the cytosol (21,25). Together, this experiment shows that
arbitrary-region RICS can be used to simultaneously quan-
tify diffusion in different compartments of the cell, as long
(A) One image frame from a 100-frame confocal image series of a HeLa cell

lm-YFP is shown. Scale bar represents 1 mm. (B) Intensity distribution his-

hIi5�5 > 300 kHz, and (green) an arbitrary ROI with hIi5�5 < 300 kHz. For

layed. (C) The data from (A), were preprocessed using Eq. 9, and intensity-

D) SACFs were calculated from the preprocessed ROI in (C). The inset is a

. 14 and color-coded using the weighted residuals goodness-of-fit parameter

cell are shown. The average error on the SACF data (% error on a data point

e reduced c2 fit quality parameter was 1.9–2.4. To see this figure in color,

Biophysical Journal 111, 1785–1796, October 18, 2016 1791



Hendrix et al.
as the ROIs can be discerned on the basis of the absolute
fluorescence intensity.
Mobility near complex subcellular structures

It would be of great interest to be able to measure the diffu-
sion of proteins in different subcellular structures or organ-
elles within a living cell. With the exception of the nucleus,
this has not possible with RICS as the organelles are limited
in size and are poorly described by rectangular ROIs. With
ARICS, this becomes possible. When subcellular regions
cannot be easily distinguished via the absolute fluorescence
intensity as described above, a second channel can be used
to image the subcellular structures or organelles. The ROI
can then be generated from the fluorescence channel of
the marker and then mapped back onto the image series of
the molecule of interest. We used dual-color ARICS to study
diffusion of the HIV-1 Gag, the protein that constitutes the
protein shell of HIV-1 virions, near the ER. Previously, it
had been shown that, under some conditions, the incorrect
assembly of Gag can occur in the ER (30). Also, bridging
conduits between macrophage cells that allow for cell-to-
cell transfer of HIV consists of ER membranes (31). For
the dual-color ARICS experiments, HIV-1 Gag was labeled
with Venus and the ER membrane was labeled by fusing
mRFP to an ER-targeting peptide (calreticulin-mRFP-
KDEL). A typical confocal image of HeLa cells expressing
Gag (as part of the MA-Venus-CA-NC-p6 construct) is
shown in Fig. 4 A. The Gag protein is present in the cytosol
but not in the nucleus. In the cytosol, regions with less Gag
staining are visible (top left region in Fig. 4 A), which might
correspond to the ER, but a reference image series of the ER
was needed to confirm this. The image in Fig. 4 B corre-
sponds to the image in Fig. 4 A, and shows the typical struc-
ture of the ER surrounding the nucleus, and staining densely
in some cytosolic regions, but not in others. Based on inten-
sity thresholding in the red imaging channel, we could
define two ROIs: one staining only dimly in the ER imaging
channel (Fig. 4 C, left) and one staining very intensely in the
ER imaging channel (Fig. 4 C, right). These regions were
consequently mapped onto the Gag imaging channel
(Fig. 4 D) and a RICS analysis was performed (Fig. 4, E
and F). Visually, the SACFs in cytosolic regions mostly
devoid of ER membranes (Fig. 4 E, left) and enriched in
ER membranes (Fig. 4 E, right) looked similar. After
analyzing 10 cells, average diffusion coefficients of D ¼
3.5 5 0.3 mm2/s (Fmob ¼ 74 5 1%) and D ¼ 3.7 5
0.3 mm2/s (Fmob ¼ 72 5 3%) were obtained respectively
(Fig. 4 F). This can be interpreted in different ways: 1)
the mobility of Gag in the cytosol and in the ER is similar,
2) the mobility of Gag near the ER as observed with ARICS
is not decreased by interactions with the ER, or 3) diffusion
in or interaction with the ER is not picked up at all by
ARICS. To investigate whether ARICS is principally sensi-
tive for diffusion inside confined areas, we performed sim-
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ulations (Fig. S3). In brief, ARICS provided qualitative
information on diffusion for confinements of similar size
as the PSF, in that the SACFs got distorted from the freely
diffusing species. For compartments that were significantly
larger than the PSF, the algorithm could even extract correct
diffusion constants. Although interpretations 1) and 2)
cannot be ruled out, a complete absence of experimental
SACF distortion suggests that Gag does not interact with
or localize in the ER lumen at all, and the latter is likely
also too small to affect the SACFs.

Taken together, molecular mobility can, in principle, be
studied in or at particular subcellular structures using
RICS by generating a dynamic arbitrary ROI of the structure
in a second imaging channel and mapping this ROI onto the
image series of the molecule of interest. For the mobility of
Gag in or close to ER membranes, a significant difference
could not be observed relative to regions with low/no ER
staining.
Concentration and diffusion pseudo-maps

We exploited the generalized ICS algorithm to segment the
image into several ROIs and map the mobility and concen-
trations of the different segments. As outlined in the Intro-
duction, the ROIs are selected depending on a particular
image characteristic. A RICS analysis is performed on
each of the AROIs in each image and an average over the
time series of the obtained RICS parameters is determined
for each pixel in the image. We validated this approach us-
ing simulations (see the Supporting Material) where the
diffusion coefficient varied depending on the position of
the particle in the image. Slower diffusion leads to a higher
concentration of particles and hence to higher intensity. Us-
ing fluorescence intensity for segmentation of the image, we
could reconstruct the diffusion map (Fig. S4).

To test this method experimentally, we performed a RICS
experiment on cells coexpressing the transcriptional coacti-
vator LEDGF/p75 fused to eGFP (Fig. 5 A) as well as the
core histone H2B fused to mRFP as a marker of chromatin
density (Fig. 5 B) (25). We calculated the whole-series cu-
mulative pixel intensity histogram of the H2B image series
(Fig. 5 C), from which we defined five threshold intensities
(725 kHz, 959 kHz, 1075 kHz, 1209 kHz, and 1792 kHz)
that divided each image in the image series into five ROIs,
as illustrated in Fig. 5 D. In each frame, we then calculated
five SACFs and averaged these over the whole image series.
After fitting, it was clear that the G(x,0) amplitude scaled
inversely with the average fluorescence intensity of the
mRFP-H2B protein. In other words, the eGFP-LEDGF/
p75 density followed the mRFP-H2B density (Fig. 5 E).
From the G(0,j) shape, on the other hand, it was clear
that at least the lowest-intensity ROI seemed to contain mol-
ecules of overall lower mobility (Fig. 5 F). Using Eqs. 12
and 13, we then used the diffusion coefficients and number
concentrations obtained from the five SACFs to create



FIGURE 4 Molecular mobility near complex cell organelles. (A and B)

One image frame from a 200-frame two-color confocal image series of a

HeLa cell coexpressing (A) Gag.Venus and (B) the endoplasmic reticulum

marker calr-mRFP-KDEL are shown. Scale bars represent 1 mm. (C) The

data from (B) was intensity-thresholded (Ithreshold ¼ 500 kHz) to select

(left image) regions devoid of ER membranes or (right image) regions

with dense ER staining. (D) Selected pixels from (C) were used to create

region-specific ROIs in the Gag.Venus imaging channel. (E) SACFs were

calculated from the ROIs in (D); y-axes are �10�3. (F) The average arbi-

trary-ROI SACF was fitted using Eq. 14 and color-coded using the weighted

residuals goodness-of-fit parameter rw; y-axes are �10�3. Results for a

representative cell are shown, but a total of 10 cells were analyzed, using

values for Ithreshold that visually separated the cytosol from the ER. Errors

on fit parameters are the mean plus SE. The average error on the SACF

Arbitrary-Region RICS
pseudo-maps of diffusion (Fig. 5 G) and concentration
(Fig. 5 H). Several interesting features become obvious
from this analysis: 1) The N map of LEDGF/p75 correlated
with both the LEDGF/p75 and H2B intensity maps, suggest-
ing that the intensity distribution in the intensity images is
due to difference in concentration and not due to changes
in the intrinsic fluorophore brightness. In addition, the con-
centration of LEDGF/p75 follows the chromatin density.
This experiment can be viewed as a single-cell titration
experiment as the segmentation leads to separate analyses
for regions of different LEDGF/p75 concentrations. 2) Re-
gions of low concentration, corresponding to the nucleoli
as seen from the mRFP-H2B staining, correlated with re-
gions of low mobility. 3) Other regions of low mobility
correlated with regions of high eGFP-LEDGF/p75 concen-
tration. As it is believed that LEDGF/p75 transiently inter-
acts with DNA, slowing down its diffusion (25), the
regions of lower mobility, corresponding to high chromatin
densities, suggest that the affinity of eGFP-LEDGF/p75 for
chromatin increases with concentration. 4) Lastly, the
nucleoli are surrounded by regions of high mobility, sug-
gesting a lower local viscosity in these regions. Since mol-
ecules naturally accumulate in regions of low mobility (the
reader is referred to the simulation in Fig. S4), the absence
of an excess LEDGF/p75 in the nucleolar regions suggests
the protein has a hard time entering, or, is actively exported
from these regions.

To compare the results from the ARICS analysis with
other FFS methods, we calculated the concentration map us-
ing an number and brightness (N&B) analysis (Fig. S5). The
overall distribution and magnitude of number concentra-
tions obtained with N&B and ARICS is similar, but because
no spatial averaging was used for the N&B analysis, the
noise in the number concentration image is higher. In sum-
mary, by categorizing image pixels in different intensity re-
gions of another imaging channel, pseudo-maps of diffusion
and concentration could be obtained for the transcription
factor LEDGF/p75, which revealed an interesting correla-
tion between diffusion and concentration, information that
would otherwise be completely hidden in the SACF.
DISCUSSION

The ability of RICS to extract biophysical information from
fluorescence images makes it an exciting method for the
biological and biophysical communities. Numerous studies
of cytosolic or nuclear dynamics in cell types, such as HeLa
cells, have been shown to be possible using RICS. However,
accurate cellular RICS experiments are often difficult
because of aggregates of high intensity or dark vesicles
diffusing through the field of view. In addition, RICS is
data (% error on a data point relative to the SACF amplitude) was 1–4%,

and the reduced c2 fit quality parameter was 1.7–3.5. To see this figure in

color, go online.
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FIGURE 5 Diffusion and concentration pseudo-maps with ARICS. (A and B) One-frame images from a 200-frame two-color confocal image series of a

HeLa cell coexpressing (A) eGFP-LEDGF/p75 and (B) a chromatin density marker mRFP-H2B are shown. Scale bars represent 1 mm. (C) The cumulative

pixel intensity histogram is provided of the complete mRFP-H2B image series for all pixels inside the nucleus. (D) Using intensity thresholding, each image

can then be divided in five approximately equally sized ROIs, as displayed for the image frame from (B). The legend indicates the upper intensity threshold

per ROI. Black regions correspond to pixels that switched between different ROIs within the moving average and are excluded by the preprocessing algorithm

(Eq. 9). (E and F) The five averaged arbitrary-ROI SACFs (symbols and error bars) were fitted using Eq. 14 (solid line) and the (E) G(x,0) and (F) G(0,j)

values and fits are displayed. Top panels show the weighted residuals goodness-of-fit parameter. (G) From the ARICS analysis, a pseudo-diffusion map and

(H) pseudo-concentration map of eGFP-LEDGF/p75 averaged over all frames are shown. Results for a representative cell are shown. The average error on the

SACF data (% error on a data point relative to the SACF amplitude) was 1–4%, the error on parameters in the pseudo-maps were 5–15% for D and 1–3% for

N, and the reduced c2 fit quality parameter was 1–2.5. To see this figure in color, go online.
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difficult with smaller cell types (for example T-cells or even
bacteria or yeast cells) and nearly impossible when trying to
measure diffusion in small organelles as the ROI is too small
or ill-shaped for classical RICS. ARICS can circumvent
many of these difficulties. As for any fluctuation experi-
ment, enough (adjacent) pixels need to be sampled for the
SACF to have meaningful statistics. As a rule-of-thumb,
the statistics are generally sufficient for fitting the SACF
to simple models when the standard deviation is smaller
than 5% and the SACF does not contain a significant nega-
tive offset.

The freedom to correlate virtually any shape of ROI
using ARICS opens up a number of possibilities. One
possibility is the automatic detection and removal of unde-
sired spatial fluctuations within images. For example, in
live-cell measurements at 37�C, cell components (organ-
elles, vesicles, membranes) move significantly from frame
to frame, leading to the situation where many frame con-
tains artifacts from moving dim or bright objects. As the
SACF is calculated on each frame separately, one could
delete each frame where such an artifact is observed. How-
ever, this can be time consuming and throws out data un-
necessarily. By including predetermined criteria (e.g.,
minimum and maximum acceptable pixel intensity,
maximum acceptable fluctuation from the pixel average,
etc.), these artifacts can be detected and removed from
the analysis as we demonstrated in our proof-of-principle
Venus imaging experiment.
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The strength of ARICS is that ROIs can be selected using
a myriad of conditions, making it very powerful, not just to
clean up artifacts but to perform biophysical characteriza-
tion of biomolecules in cells with subcellular resolution.
For example, we exploited the difference in absolute fluo-
rescence intensity to discern between diffusion in the mem-
brane and from the cytosol. Another alternative is to use a
second imaging channel to perform the segmentation, as
we demonstrated for labeling of the ER membrane. Hence,
one can consider a wide range of parameters that could be
used to select the ROIs for the ARICS analysis.

An additional advantage of ARICS is the ability to auto-
mate the analysis and to perform batch analyses. How well
the process can be automated depends on how well one can
automate the selection criteria for the different ROIs.
Thus, we implemented a relative thresholding of a small
(e.g., 5 � 5) versus a larger (e.g., 10 � 10) subregion in
the image (as outlined in the Supporting Materials). In gen-
eral, relative thresholds can be interesting for automated
analysis, since they do not require a user-defined input of
absolute intensities. Shape-sensitive ROI-generating algo-
rithms for automatically detecting cells, nuclear membranes
or cellular components (32) can also be implemented. Thus,
ARICS holds promise for automated whole-cell and subcel-
lular analysis by fluctuation methods.

We have also demonstrated the possibility of pseudo-
mapping parameters using the ARICS method. To our
knowledge, this is a versatile new way of looking at spatial
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correlation data. We deliberately termed it a pseudo-map,
since it is based on the a priori definition of a number of
ROIs between which the average properties are investi-
gated. The quality of the pseudo-map depends on how
well the ROIs are defined. When a particular parameter,
such as D, varies largely within a single ROI, the pseudo-
map will still provide a single averaged value. Any image
feature (intensity, intensity variance, but possibly also
higher moments) in any imaging channel can be used as
input for generating the different ROIs. For example, a
molecular brightness map can be made by dividing the
average intensity image by the N pseudo-map. In this way,
molecular stoichiometries can be imaged using ARICS
just as with the N&B method. Conversely, the stoichiometry
from an N&B analysis can also be used to generate ROIs
and the dynamics of molecules having a particular stoichi-
ometry investigated using ARICS.

Pseudo-mapping can principally also be used for
creating D or N maps from TICS or imaging FCS (light
sheet or total internal reflection fluorescence (TIRF)-based)
data, where similar image features can be used as we pro-
posed above, recorded in the same or another imaging
channel. In general, the values for D that have to be
quantified determine which fluctuation imaging methods
are best suited. In terms of excitation power, a higher den-
sity is typically used in the RICS method, but regions are
illuminated only briefly (ms pixel dwell times) in each
frame, whereas a lower, but continuous density is typically
used in TIRF and light sheet experiments. Finally, whereas
the excitation light in confocal microscopy and light sheet
microscopy travels throughout the cell (~10 mm thickness
and ~20 mm length, respectively), in TIRF microscopy
only a thin (< 200 nm) region is exposed to the excitation
light.

In this work, we have described the principle of the
ARICS approach and demonstrated some of its capabilities.
However, there are a number of possibilities for extending
the ARICS approach. ARICS can be extrapolated to a
cross-correlation analysis of two or more channels or to
other fluctuation analysis methods such as ICS, STICS,
iMSD that analyze spatial fluctuations. The other spatial
correlation methods will benefit from the same advantages
as ARICS. The method can also be applied to other
measuring modalities such as RICS combined with stimu-
lated emission depletion microscopy (STED), which allows
imaging dynamics on smaller spatial scales (33). Another
extension of ARICS that we envision would be to give a sta-
tistical weight to the pixels within the ROIs. Fluorescence
lifetime correlation spectroscopy (34), raster lifetime image
correlation spectroscopy (13), and fluorescence spectral cor-
relation spectroscopy (35) employ statistical filtering of
fluorescence data during the correlation analysis. In a
similar approach, the R(x,y) filter does not have to be binary
but can be used as a statistical filter for weighting the
ARICS data.
RICS and FCS both have particular advantages. FCS has
the advantage of higher temporal resolution and, as the exci-
tation volume is typically diffraction-limited, site-specific
dynamics can be probed such as inside cell organelles
or on the membrane. RICS has the advantage that the
excitation energy is distributed over a much larger region
in the sample. Hence, RICS and other imaging methods
typically suffer much less from photobleaching-related arti-
facts (13). Secondly, because spatial correlation methods are
carried out on a whole region in a sample, rather than a
single point, much shorter measurement times are needed
for obtaining adequate statistics. With ARICS, it is now
possible to also probe dynamics inside cell compartments
or membranes with RICS. In addition, nondesired heteroge-
neities within the sample, such as bright aggregates or dark
organelles diffusing through the image, can be easily
removed, making reliable RICS measurements much easier
to perform. Lastly, since the ROI mask can move along
with the imaged region-of-interest, ARICS makes it
possible to probing molecular properties in dynamic sub-
image regions.
CONCLUSIONS

In this work, we present the ARICS method, which employs
a generalized algorithm for spatial correlation analyses and
can be applied to arbitrary regions-of-interest of a fluores-
cence image series. The way we have implemented ARICS
is compatible with the fast Fourier transfer algorithms used
typically in ICS and is not computationally cumbersome.
ARICS sprouted from the many challenges we encountered
in performing high-quality RICS data at 37�C in living cells.
To illustrate the power of ARICS, we employed ARICS
to clean up image series during correlation analysis, to
perform cell organelle-specific correlation analysis, and
to generate diffusion and concentration pseudo-maps.
ARICS can be combined with any spatial correlation
method and can be easily expanded to provide new modal-
ities of analyzing RICS data. Hence, ARICS is a powerful
successor of the classical RICS method with new function-
alities and offers many exciting possibilities for further
development.
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Supporting Materials and Methods 

Intensity or intensity variance thresholding 
Besides manually drawing the ROI or using an organelle-based ROI, the R mask can 

also be generated by thresholding images on the basis of intensity or the variance in 

intensity. Below, we discuss a few approaches to image thresholding. 

Frame-averaged intensity: When structural heterogeneities in the imaged sample 

remain localized (static) over the course of the experiment, the frame-averaged 

intensity can be used as a threshold. The image of the average intensity over all 

frames, , is then compared at each pixel with given thresholds, Imin and Imax, the 

minimal and maximal allowed pixel intensities, respectively, to generate R: 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉𝐹 < 𝐼𝑚𝑚𝑚       𝑓𝑓        〈𝐼(𝑥,𝑦)〉𝐹 > 𝐼𝑚𝑚𝑚,    𝑅(𝑥,𝑦) = 0 

 𝑓𝑓𝑓    𝐼𝑚𝑚𝑚 ≤ 〈𝐼(𝑥,𝑦)〉𝐹 ≤ 𝐼𝑚𝑚𝑚 ,     𝑅(𝑥,𝑦) = 1                     Eq.S1 

Frame-averaged intensity thresholding performs well for separating regions in the 

sample with clear differences in intensity, for example between intra- and 

extracellular regions or between the cytosol and the nucleus.   

Rolling-window frame-averaged intensity: When structural heterogeneities in the 

imaged sample move slowly but remain localized (static) over at least 2ΔF+1 frames, 

averaging over a sliding window of 2ΔF+1 frames can be performed. In this case, the  

average intensity image is calculated between frames (f-ΔF) and (f+ΔF), , and 

the intensity at every pixel compared with the threshold intensities, Imin and Imax, to 

generate a frame-specific ROI mask of size X×Y×(F-2ΔF): 

𝑓𝑓𝑓      〈𝐼(𝑥,𝑦)〉∆𝐹 < 𝐼𝑚𝑚𝑚        𝑓𝑓       〈𝐼(𝑥,𝑦)〉∆𝐹 > 𝐼𝑚𝑚𝑚 ,     𝑅(𝑥,𝑦) = 0 

 𝑓𝑓𝑓      𝐼𝑚𝑚𝑚 ≤ 〈𝐼(𝑥,𝑦)〉∆𝐹 ≤ 𝐼𝑚𝑚𝑚,      𝑅(𝑥,𝑦) = 1                      Eq.S2 

Due to the window necessary for performing the rolling average, the first and last ΔF 

frames in the image are ignored for calculation of the SACF. The total Imin and Imax 

can be (i) absolute numbers, (ii) defined relatively to : 

𝑓𝑓𝑓    〈𝐼(𝑥,𝑦)〉∆𝐹 < 〈𝐼(𝑥, 𝑦)〉𝐹/𝑐      𝑓𝑓      〈𝐼(𝑥,𝑦)〉∆𝐹 > 𝑐〈𝐼(𝑥,𝑦)〉𝐹 ,       𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓    〈𝐼〉(𝑥,𝑦)𝐹/𝑐 ≤ 〈𝐼(𝑥, 𝑦)〉∆𝐹 ≤ 𝑐〈𝐼(𝑥,𝑦)〉𝐹,       𝑅(𝑥, 𝑦) = 1              Eq.S3 
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where c defines the strictness of the threshold, (iii) defined relatively to , the 

average intensity image between frames (f-ΔF2) and (f+ΔF2) with ΔF2 > ΔF: 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝐹 < 〈𝐼(𝑥, 𝑦)〉∆𝐹2/𝑐    𝑓𝑓  〈𝐼(𝑥,𝑦)〉∆𝐹 > 𝑐〈𝐼(𝑥,𝑦)〉∆𝐹2,    𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝐹2/𝑐 ≤ 〈𝐼(𝑥,𝑦)〉∆𝐹 ≤ 𝑐〈𝐼(𝑥,𝑦)〉∆𝐹2,     𝑅(𝑥,𝑦) = 1               Eq.S4 

or (iv) defined relatively to the mean intensity in any other region surrounding the 

pixel. A rolling window-averaged intensity thresholding performs well for excluding 

slowly moving bright (e.g. aggregates or oligomers) or dim (e.g. non-fluorescent cell 

organelles) regions from ICS analysis.  

Spatial-averaged intensity: When structural heterogeneities in the imaged sample are 

dynamic from one frame to the next, the spatially averaged intensity image, , 

where ΔL is the size of the spatial averaging window in each dimension in pixels, is 

useful. Again, every pixel is compared with Imin and Imax, to generate R with size (X-

ΔL)×(Y-ΔL)×F: 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝐿 < 𝐼𝑚𝑚𝑚       𝑓𝑓        〈𝐼(𝑥,𝑦)〉∆𝐿 > 𝐼𝑚𝑚𝑚,    𝑅(𝑥,𝑦) = 0 

 𝑓𝑓𝑓    𝐼𝑚𝑚𝑚 ≤ 〈𝐼(𝑥,𝑦)〉∆𝐿 ≤ 𝐼𝑚𝑚𝑚,     𝑅(𝑥,𝑦) = 1                     Eq.S5 

We found it best to define Imin and Imax relatively to a larger spatially average image, 

, where ΔL2 > ΔL is the averaging window size per dimension.  

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝐿 < 〈𝐼(𝑥, 𝑦)〉∆𝐿2/𝑐    𝑓𝑓  〈𝐼(𝑥,𝑦)〉∆𝐿 > 𝑐〈𝐼(𝑥, 𝑦)〉∆𝑙2,    𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓     〈𝐼(𝑥,𝑦)〉∆𝑙2/𝑐 ≤ 〈𝐼(𝑥,𝑦)〉∆𝑙 ≤ 𝑐〈𝐼(𝑥,𝑦)〉∆𝐿2,     𝑅(𝑥,𝑦) = 1              Eq.S6 

Typical values were ΔL2 = 30, ΔL = 10 and c = 1.5. 

Space-averaged intensity variance: Lastly, the spatial variance image, , where ΔL 

is the side length of the square in which the variance is calculated, can be compared 

with, the minimal and maximal allowed variance, σ2
min and σ2

max respectively, to 

generate R with a size of (X-ΔL)×(Y-ΔL)×F: 

𝑓𝑓𝑓        𝜎∆𝐿2 < 𝜎𝑚𝑚𝑚2        𝑓𝑓        𝜎∆𝐿2 > 𝜎𝑚𝑚𝑚2 ,           𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓        𝜎𝑚𝑚𝑚2 ≤  𝜎∆𝐿2 ≤ 𝜎𝑚𝑚𝑚2 ,        𝑅(𝑥,𝑦) = 1                     Eq.S7 

We found it best to define σ2
min and σ2

max relatively to , where ΔL2 > ΔL: 
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𝑓𝑓𝑓        𝜎∆𝐿2 < 𝜎∆𝐿22 /𝑐       𝑓𝑓        𝜎∆𝐿2 > 𝑐𝜎∆𝐿22 ,           𝑅(𝑥,𝑦) = 0 

𝑓𝑓𝑓        𝜎∆𝐿22 /𝑐 ≤  𝜎∆𝐿2 ≤ 𝑐𝜎∆𝐿22 ,           𝑅(𝑥,𝑦) = 1                     Eq.S8 

Typical values were ΔL2 = 30, ΔL = 10 and c = 1.5. Since the  ratio is 

typically larger than the ratio, variance-based thresholding can be 

slightly more sensitive. Intensity and variance thresholding allow removal of dynamic 

bright (e.g. fluorescent aggregates or oligomers) or dim (e.g. non-fluorescent vesicles) 

regions from ICS analysis.  

Simulations for confined diffusion 
Random motion of particles was simulated using a pseudo-random number generator 

based on the commonly used Mersenne Twister algorithm (1). The smallest 

simulation interval was set to 1 µs. Random photon emission was also ensured by the 

pseudo-random number generator, based on the particle’s brightness and its position 

relative to the focus. The focus shape was approximated by a 2D Gaussian with a 

focal size ωr of 200 nm. The restriction to 2D movement was done to increase the 

local concentration and thus reduce the total calculation time of the simulation. The 

molecular brightness was 100 kHz. During the simulation, the focus position was 

moved to emulate the raster scanning. The total area scanned was 250×250 pixels or 

12.5 µm × 12.5 µm, with pixel, line and frame times of 12 µs, 3 ms and 750 ms, 

respectively. Consequently, the pixel size was 50 nm.  In total, 2000 particles per 

condition were simulated for a total of 100 frames. Upon exiting the simulation box, 

particles were reentered on the opposite side. Since this might lead to artifacts in the 

correlation function, the simulation box was increased to 15 µm per dimension, thus 

limiting the border effects. For each simulation two different particle types were 

simulated. The first type of particles was confined to small round compartments and 

moved with a diffusion coefficient of 2 µm2/s. The rest of the particles diffused freely 

around these confinements with D = 10 µm2/s.  

Simulations for diffusion pseudo-maps 
The same algorithms as in the previous section were employed, with the exception 

that the diffusion coefficient or, more precisely, the step sizes of the particles 

depended on their spatial position, defined by an input diffusion map. This spatial 
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diffusion distribution was generated using a map of random numbers that was 

smoothed with a Gaussian blur and rescaled to an appropriate diffusion range (Fig. 

S4A). The resolution of the map was 5 nm. The molecular brightness of the particles 

was 10 kHz for the channel used for correlation analysis and 100 kHz for the one used 

for generating the ROIs. 
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Supporting Results 

Diffusion in confinements 
In order to test the minimal size of compartments in/around which diffusion can still 

be accurately quantified with ARICS, simulations with known parameters were 

employed. Four different diameters of circular confinements were simulated: 200 nm, 

400 nm, 800 nm, and 1600 nm (Fig. S3A, from top to bottom), corresponding to 1, 2 

4, and 8 times the focus size. The confinements covered approximately 10% of the 

total image area. Concentration inside and outside were chosen such that the 

brightness inside the confinements was 4-5 times higher than in the surrounding 

space. The average count rate of all simulations was in the range of 75-80 kHz. Pixels 

with an average count rate of 70 kHz and less were attributed to the free component 

(Fig. S3A, red regions), while all pixels with more than 100 kHz were assumed to 

belong to the confinements (Fig. S3A, blue regions). The intermediate border regions 

with 70-100 kHz were omitted from further analysis.  

SACFs for diffusion outside the confinements showed a similar shape for all 

conditions (Fig. S3B). Quantitatively, a deviation of D from the simulated value was 

more pronounced at smaller confinement sizes, but always less than 10% (Fig. S3D). 

Additionally, the reflective nature of the confinements might further contribute to the 

decreased diffusion. 

SACFs for confined diffusion, on the other hand, were more affected by the 

confinement size (Fig. S3C). The SACFs exhibited a 300-500-nm dip along the fast 

scanning axis, with the depth decreasing for larger sizes and almost vanishing at 

confinement diameters that were 8 times the focus size. This dip is most likely caused 

by the confinement and the reflective borders and not by the ARICS algorithm itself. 

Quantitatively, for confinement sizes up to 400 nm, D was larger than the set value 

(Fig S3D). This is again caused by problems in correctly assigning the pixels so that 

the correlation functions still contain contributions from the freely diffusion 

component. Interestingly, in the simulations with confinements that were four time 

larger than the focus (800 nm), the individual compartments were large enough that 

miss-assignment no longer contributed to the correlation function, but small enough 

such that the confinement still significantly affected the mobility. This lead to an 

apparent D that was even lower than expected. For the largest sizes (1600 nm), the 

diffusion coefficient can be recovered to within less than 5% of the expected value. 
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Together, these results show that ARICS can reliably probe diffusion in 

compartments down to a factor of 4-8 times the focus size, which in practice means 

600-1200 nm for a realistic focus size of 150 nm. This limit can be further decreased 

by decreasing the focus size, e.g. by using STED-RICS (2). However, another limit to 

the quantitative analysis, not specific to the ARICS algorithm, is the actual influence 

of confinements of the diffusion itself. 

Diffusion pseudo-maps 
In order to test the validity of the diffusion pseudo-map generation procedure, 

simulations with known parameters were employed. The differences in the diffusion 

coefficients in the different parts of the simulated image resulted in corresponding 

differences in concentration and, therefore, also in count rate (Fig. S4A). Just as 

described in the Results part of the main text, these differences in signal intensity 

were used to sort the pixels into five ROIs. A separate channel with higher brightness 

was used for this segmentation, to limit crosstalk between the selection procedure and 

the correlations. The segmentation was based on the count rate in a 5×5 pixel and 

5-frame moving average (Fig. S4B). The additional averaging over multiple frames 

was needed due to the low concentrations and strong concentration fluctuations. The 

original diffusion map and the pseudo diffusion map generated using ARICS are 

shown in Fig. S4C and D. There is excellent agreement between the two images. 

However, as the map has gradual diffusion coefficients but the algorithm only divides 

the images into only five ROIs, the complete gradient was not recovered. Especially 

for the highest and the lowest intensity regions, the gradient was flattened by this 

undersampling. This shows that for each system the number and threshold of the 

ROIs need to be adjusted individually to ensure a good recovery of the underlying 

features, while at the same time limit the change of miss-assignment of the individual 

pixels (especially important when the diffusion and the signal intensity are not strictly 

correlated). 
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Supporting Figures 

 
Fig. S1 | Further analysis of the data from Fig 2. (A) The average raw-data SACF, 

color-coded according to the correlation value. (B) Best fit of the data from panel A to 

Eq. 14, color-coded using the weighted residuals goodness-of-fit parameter rw. The 

best fit does not provide reliable results (see red data panels E and F) because the 

error on the average SACF is very large. Hence, rw and the reduced χ2 = 1.39 are still 

relatively small. (C) The average arbitrary-ROI SACF, color-coded according to the 

correlation value. (D) Best fit of the data from panel C to Eq. 14, color-coded using 

the weighted residuals goodness-of-fit parameter rw (reduced χ2 = 1.02). (E and F) 

Experimental G(ξ,0) (symbols in panel E) and G(0,ψ) (symbols in panel F), standard 

deviation (error bars) and Gfit(ξ,0) (solid lines in panel E) and Gfit(0,ψ) (solid lines in 

panel F) corresponding to the data in panels A and B (red) and panels C and D (blue). 

The average arbitrary-ROI SACF has a much lower error and is described excellently 

by the fit model. (Plot on the upper panel) Weighted residuals rw. 
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Fig. S2 | Further information on Fig. 3. (A) Dual-color confocal image of the HeLa 

cell co-expressing Venus, MyrPalm-mYFP and mCherry. The pink arrow points 

towards the location where the z-scan shown in panel B was performed. The pink 

square marks the region shown in panel C used for the RICS analysis. The scale bar is 

5 µm. (B) Axial z-scan, clearly illustrating the enrichment of MyrPalm-mYFP at the 

bottom and top cell membrane. The black arrow points to the middle of the cell, 

where imaging for RICS was performed. (C) Zoom-in of the pink square in panel A. 

Scale bar is 1 µm. 

  



 9 

Fig. S3 | Simulations for different confinement sizes. (A) Images of samples 

containing confinements of varying diameter: (from top to bottom) 200 nm, 400 nm, 

800 nm and 1600 nm, corresponding to 1, 2, 4 and 8 times the focus size, 

respectively. Blue regions contain the pixels in the confinements, red regions 

encompass the surrounding area. Gray pixels at the borders were omitted from further 

analysis. Scale bars are 2 µm. (B) SACFs calculated only using pixels from the 

surrounding area. (C) SACFs calculated with pixels in the confinements. In panels B 

and C, the fast scanning axis is shown in on the left, the slow scanning axis on the 

right. Points show the data, including the s.e.m., solid lines depict the fit. (D) 

Extracted D values for different confinement sizes for the free (red squares) and 

confined (blue circles) components. Error bars indicate the s.d. of five measurements. 

Dashed lines show the values used for the simulation. 
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Fig. S4 | Simulations for diffusion pseudo-map analysis. (A) Average fluorescence 

intensity image of the simulated experiment with 5000 particles with a molecular 

brightness of 10 kHz. (B) Single frame segmented into 5 ROIs. Maximum intensities 

for selection of the respective ROIs are given in the legend. (C) Diffusion map used 

for the simulations. (D) A pseudo-diffusion map reconstructed from the ROI 

segmentation procedure. The scale bar corresponds to 2 µm. The color table used for 

panels C and D is shown to the right. 
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Fig. S5 | Comparative analysis of the eGFP-LEDGF/p75 imaging data in Fig. 5 with 

the Number & Brightness method. (A) pixel intensity image averaged over all frames.  

(B) Epsilon (brightness) image. (C) The pixel intensity distribution histogram. (D) 

Number image, illustrating similar concentrations as with the ROI segmentation 

method (E). The pointillism-like appearance of the n image is because of low 

statistics. For the N&B analysis, pixel intensities were pre-processed using a space-

time moving average (3-pixel radius and ΔF = 3) as reported before (3). n and epsilon 

images were median-filtered (3-by-3). 
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