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Simulation details 

The atomic interactions between amorphous silica atoms were described by 
Tersoff potential with parameters published by Munetoh et al.1. The a-SiO2 structure 
was generated by the melting-quenching method. The detailed procedures for 
generating a-SiO2 from crystalline silica have been described by Ong et al.2 using the 
Tersoff potential. After quenching, the structure was annealed at 1100 K for 10 ns to 
avoid the meta-stability reported by Larkin et al.3. After generating the a-SiO2 
structure, we calculated the density of states (DOS), and compared with experiments4. 
The agreement is overall reasonable, although there is significant discrepancy at 
lower frequencies. Nonetheless, Fig. s1 shows that even though there is some 
discrepancy at low frequencies the specific heat as a function of temperature is still 
well reproduced.  

After we obtained the a-SiO2 structure, we applied lattice dynamics (LD) at 
gamma point (   k = 0 ) for the supercell (4608 atoms) with periodic boundary 
conditions to obtain the normal mode eigen values and eigen vectors which allow one 
to visualize the normal mode shapes. The LD calculations were performed using the 
General Utility Lattice Program (GULP)5. Before LD calculation, one needs the 
relaxed structure, which is computed at 0K with zero pressure. The supercell is 
approximately cubic has 4608 atoms, with a length of ~ 40.44 A. The density for the 
relaxed structure is 2317 Kg/m3, which is 4% larger than the experimental value 2220 
kg/m36. The eigenvectors and harmonic frequencies are then obtained using GULP. 

Once all the eigen-vectors have been calculated, we read them into the molecular 
dynamics (MD) simulation in order to calculate the mode level thermal conductivity 
contributions using GKMA. All MD simulations were performed using the Large 
Atomic/Molecular Massively Parallel Simulator (LAMMPS) with a time step of 0.1 fs. 
After equilibrated for 100 ps at 300K using NVT (constant number of atoms, volume, 
temperature), the heat flux, and mode heat flux were captured for another 2 ns (2 x 
107 time steps) using NVE (constant number of atoms, constant volume, constant 
energy). After supplying the eigenvectors once at the beginning of the MD simulation, 
one is able to obtain the heat flux and kinetic energy of each mode. The integral of the 
heat flux autocorrelation function is cut off at 30 ps7 since the largest relaxation time 
in the supercell is less than 10 ps. After the modal heat flux is computed, the modal 
thermal conductivity is determined by calculating the correlation between modal heat 
flux and the total heat flux. 	



There are a few schemes to reduce the computational cost of GKMA. The first 
way is to combine a group of modes together. Without calculating individual mode 
heat fluxes separately, one can combine a group of mode’s contributions to the 
velocity of a given atom together and then substitute it into the heat flux operator. 
Next, one can sum of a group of  n modes’ heat flux once instead of as  n  separate 
individual contributions. Mathematically, the correlation between combined mode 
heat fluxes and the total heat flux is exactly equal to the sum of all of the correlations 
between individual heat fluxes and the total heat flux. The only difference this 
combination scheme will make is on the specific heat correction. We have to take the 
averaged frequency of the combined modes in one interval to calculate the specific 
heat suppression. Here, the frequency interval we used is ~ 0.15 THz, which is small 
enough to have negligible effect to the final system TC. We have also tested that 
when using smaller frequency interval, the GKMA results do not change.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure s1.	 Heat capacity of a-SiO2 from the Tersoff potential, as compared to 

experimental results 8. 
 
Another scheme is to reduce the frequency of the mode heat flux calculations. 

Although the simulation time step is 0.1 fs for amorphous silica (a-SiO2), we do not 
need to calculate mode heat flux at every time step. When the heat flux is calculated 
every 5 fs, we observed no difference in thermal conductivity as compared to when a 
smaller time step was used. In order to efficiently conduct the calculation, we 
parallelized the algorithm of calculating the heat flux, mode heat flux and mode 
kinetic energy by implementing the algorithm in the force-routine of the Tersoff 
potential in LAMMPS9. 
	
Heat flux pair-correlation map  
 The mode-mode correlations as shown in Fig. s1 were computed from,  
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where  n 	and  ′n 	represent two modes,	 is Boltzmann constant,  T  is the temperature 
and  V  is volume, Q  is heat flux for a mode,  

CQ is quantum specific heat from Bose-
kB



Einstein statistics10, and  Cc is classic specific heat, and ω  is frequency of the mode. 
Using the summation of all correlation functions between pairs of modes 
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simulated temperature, which represents the total integrated volume of the 3D map in 
Fig. s1.   	

	
Figure s2.	 (a) Cross-correlation map of thermal conductivity contributions including the 
quantum specific heat correction. The values are determined from the mode-mode cross-
correlations for a-SiO2 at 100K, (b) at 200K, (c) at 400K and (d) at 800K.  
 
Total Heat flux Autocorrelation Function 
      Figure S3 shows total heat flux auto–correlation function and its integral with time 
separation. The auto-correlations decay very fast. The integral, which is proportional to the 
thermal conductivity, converges in less than 30 picoseconds.     
 



	
	
Figure s3.	 (a) Total heat flux autocorrelation functions (10 ensembles) and (b) integrations 
with time (in units of thermal conductivity) at 400K. The blue curve in (b) represents the 
averaged thermal conductivity from ten ensembles. The individual ensemble results are 
plotted as the grey curves, the shaded region represents the confidence intervals for the 
ensemble averaging. The width of the interval indicates the degree of certainty (12%). 
 
 
Locons correlation 3D mapping plot and accumulation plot 
 

 
	

Figure s4.  The 3D correlation plot for locons only at 800K.  
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Averaged Thermal Conductivity @ 400K
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Figure s5. Thermal conductivity contributions from locons that are composed of less 
than 1% of the system’s participation, showing the respective contributions from 
autocorrelations and cross-correlations. 
	
Locon harmonic energy distribution  
      The harmonic energy attributed to each atom for each mode is proportional to the 
magnitude of the eigenvector for each mode on each atom. The detailed derivation 
and formula are discussed in a recent paper by Gordiz and Henry11.  

 
Figure s6. The percentage of number of atoms with different normalized locon 
harmonic energy contributions. The system has total 4608 atoms; 80% of these atoms 
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have more than 10% of their energy attributed to locons; 35% of the atoms have more 
than 20% of their energy attributed to locons; 8% of the atoms have more than 30% of 
their energy attributed to locons; 2% of the atoms have more than 40% of their energy 
attributed to locons; and 5 atoms in the system have more than 50% energy attributed 
to locons.  
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