The cytochrome *bd*-I respiratory oxidase augments survival of multidrug-resistant *Escherichia coli* during infection

Mark Shepherd^{1*}, Maud E. S. Achard^{2,3}, Adi Idris^{2,3†}, Makrina Totsika^{2,3#}, Minh-Duy Phan^{2,3}, Kate M. Peters^{2,3}, Sohinee Sarkar^{2,3#}, Claudia A. Ribeiro¹, Louise V. Holyoake¹, Dimitrios Ladakis¹, Glen C. Ulett⁴, Matthew J. Sweet⁵, Robert K. Poole⁶, Alastair G. McEwan^{2,3}, Mark A. Schembri^{2,3*}

¹School of Biosciences, University of Kent, Canterbury, CT2 7NJ, United Kingdom

²School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia

³Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, Queensland 4072, Australia

⁴School of Medical Science, and Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4222, Australia

⁵Institute for Molecular Bioscience (IMB) and IMB Centre for Inflammation and Disease Research, University of Queensland, Brisbane, Queensland 4072, Australia

⁶Department of Molecular Biology and Biotechnology, The University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, United Kingdom

*<u>M.Shepherd@kent.ac.uk;</u> m.schembri@uq.edu.au

#Current address: Institute of Health and Biomedical Innovation, and School of Biomedical Sciences, Queensland University of Technology, Kelvin Grove, Queensland 4059, Australia. *Current address: PAPRSB Institute of Health Science, Universiti Brunei Darussalam, Brunei Darussalam, BE1410

SUPPLEMENTARY INFORMATION

Figure S1. Complementation of the *cydAB* mutant restores the *bd*-type spectroscopic signal

Wild type, cydAB, and cydAB+ (complemented mutant – see Tables S2 and S3 for strains and plasmids) strains were grown in 250 mL conical flasks in 100 mL LB medium overnight at 37°C and 150 rpm. Cells (from 30 mL of culture) were harvested and CO difference spectra were recorded as previously described (Kalnenieks, *et al.* FEMS Microbiol. Lett. 1998;168(1):91-97). The expected spectral features for cytochrome *bd*-I are troughs at 430 nm, 442 nm, and 622 nm, and a peak at 642 nm (Kita *et al.* J. Biol. Chem. 259:3375-3381 (1984)).

SUPPLEMENTARY INFORMATION

Figure S2. Loss of *cydAB, hmp, norVW* or *ytfE* does not decrease bacterial load in the urine or kidney A minimum of eight C57BL/6 mice were transurethrally inoculated with $\sim 5x10^8$ CFU of each strain. After 48 h, bladder homogenate samples were plated on Maconkey agar in triplicate for determination of bacterial loads. After 2 days, urine (panel A) and homogenated kidney samples (panel B) were processed for bacterial loads by viable CFU counts performed in triplicate. Data are Log of the fitness index, which is defined as: Fitness index = (ratio of mutant:wild type after 2 days)/(initial mutant:wild type ratio). A minimum of 8 mice were included in each strain group. Equality of group medians was tested using the Wilcoxon matched pairs signed rank test.

Primer	Sequence (5′ – 3′)	Description	Reference or source
<i>cydA</i> CmF	ATGATGTTAGATATAGTC GAACTGTCGCGCCTTACAG TTTGCCTTGACCGCGTGT AGGCTGGAGCTGCTTC	Forward mutagenesis primer comprising 50 bases complementary to the start of <i>cydA</i> followed by 20 bases complementary to the Cm cassette of pKD3.	This work
<i>cydB</i> CmR	TTAGTACAGAGAGTGGGT GTTACGTTCAATATCTTC TTTGGTGATACGACCATA TGAATATCCTCCTTAG	Reverse mutagenesis primer comprising 50 bases complementary to the end of $cydB$ followed by 20 bases complementary to the Cm cassette of pKD3.	This work
<i>hmp</i> CmF	ATGCTTGACGCTCAAACC ATCGCTACAGTAAAAGCC ACCATCCCTTTACTGTGTA GGCTGGAGCTGCTTC	Forward mutagenesis primer comprising 50 bases complementary to the start of <i>hmp</i> followed by 20 bases complementary to the Cm cassette of pKD3.	This work
hmp CmR	TCACAGCACCTTATGCGG GCCAAAGCATTCGTAATG AATGTTTTCCTGTTCATAT GAATATCCTCCTTAG	Reverse mutagenesis primer comprising 50 bases complementary to the end of <i>hmp</i> followed by 20 bases complementary to the Cm cassette of pKD3.	This work
<i>nrfA</i> CmF	ATGACAAGGATAAAAATA AACGCACGCCGTATCTTC AGCTTATTGATTCCGTGTA GGCTGGAGCTGCTTC	Forward mutagenesis primer comprising 50 bases complementary to the start of <i>nrfA</i> followed by 20 bases complementary to the Cm cassette of pKD3	This work
<i>nrfA</i> CmR	TTATTGGCTTAACAGACC GTTTTTACGTGCCTGCTC TTCCCACTGCGGGACATA TGAATATCCTCCTTAG	Reverse mutagenesis primer comprising 50 bases complementary to the end of <i>nrfA</i> followed by 20 bases complementary to the Cm cassette of pKD3.	This work
<i>norV</i> CmF	ATGTCTATTGTGGTGAAA AATAACATTCATTGGGTT GGTCAACGTGACTGGTGT AGGCTGGAGCTGCTTC	Forward mutagenesis primer comprising 50 bases complementary to the start of <i>norV</i> followed by 20 bases complementary to the Cm cassette of pKD3.	This work
<i>norW</i> CmR	GTTTTCAACAATCCAAAT GCCTCTTTCATCCGATCC TCACTGACCACAAACATA TGAATATCCTCCTTAG	Reverse mutagenesis primer comprising 50 bases complementary to the end of <i>norW</i> followed by 20 bases complementary to the Cm cassette of pKD3.	This work
<i>ytfE</i> CmF	ATGGCTTATCGCGACCAA CCTTTAGGTGAACTGGCG CTCTCTATCCCTCGGTGTA GGCTGGAGCTGCTTC	Forward mutagenesis primer comprising 50 bases complementary to the start of <i>ytfE</i> followed by 20 bases complementary to the Cm cassette of pKD3.	This work
<i>ytfE</i> CmR	TTACTCACCCGCCAGCGC GCGTGGGAACAGTACATT GTTTTCCAGGCTGACATA TGAATATCCTCCTTAG	Reverse mutagenesis primer comprising 50 bases complementary to the end of $ytfE$ followed by 20 bases complementary to the Cm cassette of pKD3.	This work

Table S1. Mutagenesis primers

Strain	Sequence (5′ – 3′)	Description	Reference or source
cyd F	ACTCTC <u>GGATCC</u> TTAAAGAGGAGAAAGGTACCGC ATGTTAGATATAGTCGAACTGTCGC	Forward cloning primer for <i>cydABX</i> and <i>ygbE</i> , contains BamHI site (underlined)	This work
cyd R	AGGGAG <u>TCTAGA</u> AATTTATGGGCC TGACTCGG	Reverse cloning primer for <i>cydABX</i> and <i>ygbE</i> , contains XbaI site (underlined)	This work
hmp F	CGCGC <u>GGATCC</u> ATTTTTCACTTCAT CACATTCTTTCTGAAA	Forward cloning primer for <i>hmp</i> , contains BamHI site (underlined)	This work
hmp R	CGCGC <u>TGCGCA</u> TGCCGGATGTGTCC ATCCGGCAACATCAAA	Reverse cloning primer for <i>hmp</i> , contains FspI site (underlined)	This work

Plasmid	Description	Reference or source
pSU2718 -G	A gentamycin resistance cassette was cloned into the chloramphenicol resistance cassette of vector pSU2718. For use in complementation studies in multidrug-resistant strains.	This work
pSU2718 G- <i>cydABX</i>	The $cydABX$ operon (with ribosome binding site) and the downstream $ygbE$ gene were cloned into the BamHI/XbaI sites of vector pSU2718-G.	This work
pSU2718 -G- <i>hmp</i>	The <i>hmp</i> gene, including 120 bp of native promoter, was cloned into the BamHI/FspI sites of vector pSU2718-G.	This work

Strain	Description	Reference or source
EC958	O25:H4-ST131. Multidrug- resistant (referred to as wild type)	Lau <i>et al.</i> J. Antimicrob. Chemother. 62: 1241-1244 (2008).
cydAB	As EC958, except $cydAB$:: ΩCm^{R}	This work
hmp	As EC958, except <i>hmp</i> ::ΩCm ^R	This work
norVW	As EC958, except <i>norVW</i> ::ΩCm ^R	This work
nrfA	As EC958, except <i>nrfA</i> ::ΩCm ^R	This work
ytfE	As EC958, except $ytfE::\Omega Cm^R$	This work
EC958lac	As EC958, except <i>lacZ</i> ::Ω <i>gfp</i>	This work
CFT073	Pyelonephritis isolate	Mobley, H.L. et al. Infect. Immun. 58: 1281-1289 (1990).
83972	Asymptomatic bacteriuria isolate	Andersson, P. et al. Infect. Immun. 59: 2915-2921 (1991).
MG1655	Nonpathogenic K12 strain	Blattner, F.R. <i>et al. Science</i> 277 , 1453-1462 (1997).

Table S3. E. coli strains