Supplementary Table S1 | Effectors of the Salmonella spp. T3SSs.

* limited data on biological significance.** not all may be physiologically relevant. Please refer to references cited.

SPI-1					
Effector	Biochemical activity	Host post- translational modification	Host binding partners**	Host subcellular localization and effects	References
AvrA	Acetyltransferase	Phosphorylation	MAP kinase kinases, p53	Inhibits NF-KB signalling and IL-8 production; acetylates p53	1-4
GtgE	Cysteine protease	Unknown	Rab29, Rab32, Rab38	Cleaves Rab29, Rab32 and Rab38 at regulatory switch regions to prevent their localization to the SCV	5, 6
SipA (SspA)	Stabilizes F-actin	Cleavage by caspase-3	F-actin, T-plastin; PERP	Inhibits depolymerization and increases actin bundling to facilitate invasion; Decreases the critical concentration of G-actin and increases the stability of F-actin, remains localized on the SCV, contributes to intestinal inflammation, promotes PMN migration across the intestinal epithelium; protects F-actin from villin-directed severing	7-12
SipB (SspB)	Translocon	Unknown	Unknown	Translocon, can activate caspase-1 and promote IL-1β and IL-18 release from macrophages*	13-16
SipC (SspC)	Translocon	Unknown	Actin, syntaxin6, vimentin	Translocon, can bundle and nucleate actin on insertion; can bind to intermediate filaments, contributes to intestinal inflammation	16-21
SopA	HECT E3 ubiquitin ligase	Ubiquitylation Cleavage by caspase-3	Unknown	Contributes to intestinal inflammation	10, 22-24
SopB (SigD)	GDI; phosphoinositide phosphatase	Ubiquitylation	Cdc42, inositol phosphates	Modulates actin by altering inositol phosphate levels; alters surface charge on the SCV. Implicated in membrane ruffling, initiation of M-cell development, and inhibition of SCV–lysosome fusion during infection, contributes to intestinal inflammation	25-31
SopD	Unknown	Unknown	Unknown	Activates fluid secretion in bovine ligated ileal loops and contributes to diarrhoea in calves and systemic disease in mice	32
SopE	GEF	Inactivated by proteasomal degradation	Rac1, Cdc42	With host factors regulates actin polymerization to promote invasion; activates caspase-1 to elicit gut inflammation	27, 33-36
SopE2	GEF	Unknown	Rac1, Cdc42	Activates Cdc42 and Rac1 to regulate actin; disrupts tight junctions; stimulates innate immune response in epithelial cells, contributes to intestinal inflammation	27, 30, 37, 38

SptP	GAP; tyrosine phosphatase	Ubiquitylation	Rac1, Cdc42, VCP	Inhibits Cdc42 and Rac1 to restore epithelial cell morphology after invasion; inhibits IL-8 production by epithelial cells; inhibits MAPK pathway by inhibiting Raf; dephosphorylates VCP to promote intracellular replication and ET formation; inhibits villin phosphorylation early in infection	11, 39-44
SPI-1 and SPI-2					
Effector	Biochemical activity	Host post- translational modification	Host binding partners**	Host subcellular localization and effects	References
SlrP	E3 ubiquitin ligase	Unknown	Unknown	Reduces redox-related signalling activity and triggers cell death; inhibits dendritic cell migration; inhibits antigen presentation	45-48
SspH1	E3 ubiquitin ligase	Unknown	PKN1	Inhibits NF-kB dependent gene expression and IL-8 secretion, nuclear localization	40, 49
SteA	Unknown	Unknown	Unknown	Localizes to the Golgi network, unknown function	50
SteB	Unknown	Unknown	Unknown	Unknown function	50
SPI-2					
Effector	Biochemical activity	Host post- translational modification	Host binding partners**	Host subcellular localization and effects	References
GogB	Unknown	Unknown	Unknown	Unknown function	51
PipB	Unknown	Unknown	Unknown	Unknown function	52
PipB2	Unknown	Unknown	Kinesin-1	Recruits kinesin to SCV; important for peripheral movement of SCV; inhibits dendritic cell migration; inhibits antigen presentation	47, 48, 53-55
SifA	Unknown	Prenylated; S-acylated	SKIP, RhoA, Rab7, Rab9, PLEKHM1	Links SKIP and kinesin to the SCV and microtubule network to promote endosomal tubulation; role in fission of LAMP-1-positive vesicles from the SCV; inhibits dendritic cell migration; inhibits antigen presentation; interaction with PLEKHM1 promotes recruitment of the Rab7–HOPS complex to mediate phagolysosomal membrane delivery to the SCV	47, 48, 56-68
SifB	Unknown	Unknown	Unknown	Unknown function	69
SopD2	Unknown	Unknown	Unknown	Contributes to ET formation; inhibits antigen presentation	32, 48, 70
SpvB	ADP-ribosyltransferase	Unknown	Actin	Limits actin polymerization around the vacuole	71-74
SpvC	Phosphothreonine lyase	Unknown	pErk	Inhibits MAP kinase-mediated inflammatory responses	75, 76
SrgE	Unknown	Unknown	Unknown	Unknown function	77
SseF	Unknown	Unknown	Unknown	Important for microtubule bundling and perinuclear positioning of the SCV; inhibits dendritic cell migration	47, 78-80
SseG	Unknown	Unknown	Unknown	Important for microtubule bundling and perinuclear positioning of the SCV	78-80
SseI	Unknown	S-palmitoylated	IQGAP1, TRIP6, Filamin*	Inhibits macrophage and dendritic cell migration	47, 73, 81, 82

SseJ	Glycerophospholipid:	Unknown	Cholesterol,	Esterifies cholesterol on the SCV	57, 63, 83-86
	cholesterol		phospholipids,		
	acyltransferase		RhoA		
SseK1	Unknown	Unknown	Unknown	Unknown function	87
SseK2	Unknown	Unknown	Unknown	Unknown function	87
SseL	Deubiquitinase	Unknown	Unknown	Prevents accumulation of lipid droplets	88, 89
SspH2	E3 ubiquitin ligase	S-palmitoylated	Profilin, Filamin,	Localizes to apical surface; enhances Nod1-mediated IL-8 secretion; slows rate	47, 48, 73, 90-93
			SGT1	of actin polymerization; inhibits antigen presentation; inhibits dendritic cell	
				migration	
SteC	Kinase	Unknown	MAPK, MEK	Regulates host cytoskeleton; forms mesh network of F-actin; restricts	50, 94, 95
				intracellular replication	

- 1. Wu, S. et al. Salmonella typhimurium infection increases p53 acetylation in intestinal epithelial cells. *American Journal of Physiology-Gastrointestinal and Liver Physiology* **298**, G784 (2010).
- 2. Du, F. & Galán, J.E. Selective Inhibition of Type III Secretion Activated Signaling by the *Salmonella* Effector AvrA. *PLoS Pathog* **5**, e1000595 (2009).
- 3. Collier-Hyams, L.S. et al. Cutting Edge: Salmonella AvrA Effector Inhibits the Key Proinflammatory, Anti-Apoptotic NF- *κ* B Pathway. *The Journal of Immunology* **169**, 2846-2850 (2002).
- 4. Jones, R.M. et al. Salmonella AvrA Coordinates Suppression of Host Immune and Apoptotic Defenses via JNK Pathway Blockade. *Cell Host & Microbe* **3**, 233-244 (2008).
- 5. Spano, S., Liu, X. & Galan, J.E. Proteolytic targeting of Rab29 by an effector protein distinguishes the intracellular compartments of human-adapted and broad-host Salmonella. *Proceedings of the National Academy of Sciences* **108**, 18418-18423 (2011).
- 6. Spano, S. & Galan, J.E. A Rab32-Dependent Pathway Contributes to Salmonella Typhi Host Restriction. *Science* **338**, 960-963 (2012).
- 7. Zhou, D., Mooseker, M.S. & Galán, J.E. Role of the S. typhimurium actin-binding protein SipA in bacterial internalization. *Science* **283**, 2092-2095 (1999).
- 8. Zhou, D., Mooseker, M.S. & Galán, J.E. An invasion-associated Salmonella protein modulates the actin-bundling activity of plastin. *Proceedings of the National Academy of Sciences* **96**, 10176-10181 (1999).
- 9. Brawn, L.C., Hayward, R.D. & Koronakis, V. Salmonella SPI1 Effector SipA Persists after Entry and Cooperates with a SPI2 Effector to Regulate Phagosome Maturation and Intracellular Replication. *Cell Host & Microbe* **1**, 63-75 (2007).
- 10. Srikanth, C.V. et al. Salmonella Pathogenesis and Processing of Secreted Effectors by Caspase-3. *Science* **330**, 390-393 (2010).
- 11. Lhocine, N. et al. Apical Invasion of Intestinal Epithelial Cells by Salmonella typhimurium Requires Villin to Remodel the Brush Border Actin Cytoskeleton. *Cell Host & Microbe* **11**, 164-77 (2015).

- 12. Hallstrom, K.N. et al. PERP, a host tetraspanning membrane protein, is required for Salmonella induced inflammation. *Cellular microbiology* (2015).
- 13. Hayward, R.D. et al. Cholesterol binding by the bacterial type III translocon is essential for virulence effector delivery into mammalian cells. *Molecular Microbiology* **56**, 590-603 (2005).
- 14. Hersh, D. et al. The Salmonella invasin SipB induces macrophage apoptosis by binding to caspase-1. *Proceedings of the National Academy of Sciences* **96**, 2396-2401 (1999).
- 15. Hernandez, L.D., Pypaert, M., Flavell, R.A. & Galán, J.E. A Salmonella protein causes macrophage cell death by inducing autophagy. *The Journal of Cell Biology* **163**, 1123-1131 (2003).
- 16. Lara-Tejero, M. & Galán, J.E. Salmonella enterica Serovar Typhimurium Pathogenicity Island 1-Encoded Type III Secretion System Translocases Mediate Intimate Attachment to Nonphagocytic Cells. *Infection and Immunity* **77**, 2635-2642 (2009).
- 17. Hayward, R.D. & Koronakis, V. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. *EMBO J* **18**, 4926-4934 (1999).
- 18. Myeni, S.K. & Zhou, D. The C Terminus of SipC Binds and Bundles F-actin to Promote Salmonella Invasion. *Journal of Biological Chemistry* **285**, 13357-13363 (2010).
- 19. Madan, R., Rastogi, R., Parashuraman, S. & Mukhopadhyay, A. Salmonella Acquires Lysosome-associated Membrane Protein 1 (LAMP1) on Phagosomes from Golgi via SipC Protein-mediated Recruitment of Host Syntaxin6. *Journal of Biological Chemistry* **287**, 5574-5587 (2012).
- 20. Scherer, C.A., Cooper, E. & Miller, S.I. The Salmonella type III secretion translocon protein SspC is inserted into the epithelial cell plasma membrane upon infection. *Molecular Microbiology* **37**, 1133-1145 (2000).
- 21. Carlson, S.A., Omary, M.B. & Jones, B.D. Identification of cytokeratins as accessory mediators of Salmonella entry into eukaryotic cells. *Life Sciences* **70**, 1415-1426 (2002).
- 22. Zhang, Y., Higashide, W.M., McCormick, B.A., Chen, J. & Zhou, D. The inflammation-associated Salmonella SopA is a HECT-like E3 ubiquitin ligase. *Molecular Microbiology* **62**, 786-793 (2006).
- 23. Diao, J., Zhang, Y., Huibregtse, J.M., Zhou, D. & Chen, J. Crystal structure of SopA, a Salmonella effector protein mimicking a eukaryotic ubiquitin ligase. *Nature structural & molecular biology* **15**, 65-70 (2008).
- 24. Zhang, Y., Higashide, W., Dai, S., Sherman, D.M. & Zhou, D. Recognition and ubiquitination of Salmonella type III effector SopA by a ubiquitin E3 ligase, HsRMA1. *Journal of Biological Chemistry* **280**, 38682-38688 (2005).
- 25. Burkinshaw, B.J., Prehna, G., Worrall, L.J. & Strynadka, N.C.J. Structure of Salmonella Effector Protein SopB N-terminal Domain in Complex with Host Rho GTPase Cdc42. *Journal of Biological Chemistry* **287**, 13348-13355 (2012).
- 26. Bakowski, M.A. et al. The Phosphoinositide Phosphatase SopB Manipulates Membrane Surface Charge and Trafficking of the Salmonella-Containing Vacuole. *Cell Host & Microbe* **7**, 453-462 (2010).
- 27. Boyle, E.C., Brown, N.F. & Finlay, B.B. Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. *Cellular Microbiology* **8**, 1946-1957 (2006).
- 28. Terebiznik, M.R. et al. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. *Nat Cell Biol* **4**, 766-773 (2002).

- 29. Raffatellu, M. et al. SipA, SopA, SopB, SopD, and SopE2 contribute to Salmonella enterica serotype typhimurium invasion of epithelial cells. *Infection and Immunity* **73**, 146-154 (2005).
- 30. Bruno, V.M. et al. *Salmonella* Typhimurium Type III Secretion Effectors Stimulate Innate Immune Responses in Cultured Epithelial Cells. *PLoS Pathog* **5**, e1000538 (2009).
- 31. Knodler, L.A., Winfree, S., Drecktrah, D., Ireland, R. & Steele-Mortimer, O. Ubiquitination of the bacterial inositol phosphatase, SopB, regulates its biological activity at the plasma membrane. *Cellular Microbiology* **11**, 1652-1670 (2009).
- 32. Jiang, X. et al. The related effector proteins SopD and SopD2 from Salmonella enterica serovar Typhimurium contribute to virulence during systemic infection of mice. *Molecular Microbiology* **54**, 1186-1198 (2004).
- 33. Hardt, W.D., Chen, L.M., Schuebel, K.E., Bustelo, X.R. & Galán, J.E. *S. typhimurium* encodes an activator of Rho GTPases that induces membrane ruffling and nuclear responses in host cells. *Cell* **93**, 815-826 (1998).
- 34. Muller, A.J. et al. The S. Typhimurium Effector SopE Induces Caspase-1 Activation in Stromal Cells to Initiate Gut Inflammation. *Cell Host & Microbe* **6**, 125-136 (2009).
- 35. Lopez, C.A. et al. Phage-Mediated Acquisition of a Type III Secreted Effector Protein Boosts Growth of Salmonella by Nitrate Respiration. *mBio* **3** (2012).
- 36. Humphreys, D., Davidson, A., Hume, P.J. & Koronakis, V. Salmonella Virulence Effector SopE and Host GEF ARNO Cooperate to Recruit and Activate WAVE to Trigger Bacterial Invasion. *Cell Host & Microbe* **11**, 129-139 (2012).
- 37. Friebel, A. et al. SopE and SopE2 from *Salmonella typhimurium* Activate Different Sets of RhoGTPases of the Host Cell. *Journal of Biological Chemistry* **276**, 34035-34040 (2001).
- 38. Stender, S. et al. Identification of SopE2 from *Salmonella typhimurium*, a conserved guanine nucleotide exchange factor for Cdc42 of the host cell. *Molecular Microbiology* **36**, 1206-1221 (2000).
- 39. Fu, Y. & Galán, J.E. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. *Nature* **401**, 293-297 (1999).
- 40. Haraga, A. & Miller, S.I. A Salmonella enterica Serovar Typhimurium Translocated Leucine-Rich Repeat Effector Protein Inhibits NF-KB-Dependent Gene Expression. *Infection and Immunity* **71**, 4052-4058 (2003).
- 41. Lin, S.L., Le, T.X. & Cowen, D.S. SptP, a Salmonella typhimurium type III-secreted protein, inhibits the mitogen-activated protein kinase pathway by inhibiting Raf activation. *Cellular Microbiology* **5**, 267-275 (2003).
- 42. Humphreys, D., Hume, P.J. & Koronakis, V. The Salmonella Effector SptP Dephosphorylates Host AAA+ ATPase VCP to Promote Development of its Intracellular Replicative Niche. *Cell Host & Microbe* **5**, 225-233 (2009).
- 43. Murli, S., Watson, R.O. & Galán, J.E. Role of tyrosine kinases and the tyrosine phosphatase SptP in the interaction of Salmonella with host cells. *Cellular Microbiology* **3**, 795-810 (2001).
- 44. Kubori, T. & Galán, J.E. Temporal Regulation of *Salmonella* Virulence Effector Function by Proteasome-Dependent Protein Degradation. *Cell* **115**, 333-342 (2003).
- 45. Bernal-Bayard, J. & Ramos-Morales, F. Salmonella Type III Secretion Effector SIrP Is an E3 Ubiquitin Ligase for Mammalian Thioredoxin. *Journal of Biological Chemistry* **284**, 27587-27595 (2009).
- 46. Bernal-Bayard, J., Cardenal-Munoz, E. & Ramos-Morales, F. The Salmonella Type III Secretion Effector, Salmonella Leucinerich Repeat Protein (SIrP), Targets the Human Chaperone ERdj3. *Journal of Biological Chemistry* **285**, 16360-16368 (2010).

- 47. McLaughlin, L.M. et al. A microfluidic-based genetic screen to identify microbial virulence factors that inhibit dendritic cell migration. *Integrative Biology* **6**, 438-449 (2014).
- 48. Halici, S., Zenk, S.F., Jantsch, J. & Hensel, M. Functional Analysis of the Salmonella Pathogenicity Island 2-Mediated Inhibition of Antigen Presentation in Dendritic Cells. *Infection and Immunity* **76**, 4924-4933 (2008).
- 49. Haraga, A. & Miller, S.I. A Salmonella type III secretion effector interacts with the mammalian serine/threonine protein kinase PKN1. *Cellular Microbiology* **8**, 837-846 (2006).
- 50. Geddes, K., Worley, M., Niemann, G. & Heffron, F. Identification of New Secreted Effectors in Salmonella enterica Serovar Typhimurium. *Infection and Immunity* **73**, 6260-6271 (2005).
- 51. Pilar, A.V., Reid-Yu, S.A., Cooper, C.A., Mulder, D.T. & Coombes, B.K. GogB is an anti-inflammatory effector that limits tissue damage during Salmonella infection through interaction with human FBXO22 and Skp1. *PLoS Pathog* **8**, e1002773 (2012).
- 52. Knodler, L. et al. *Salmonella* type III effectors PipB and PipB2 are targeted to detergent-resistant microdomains on internal host cell membranes. *Molecular Microbiology* **49**, 685-704 (2003).
- 53. Szeto, J., Namolovan, A., Osborne, S.E., Coombes, B.K. & Brumell, J.H. Salmonella-Containing Vacuoles Display Centrifugal Movement Associated with Cell-to-Cell Transfer in Epithelial Cells. *Infection and Immunity* **77**, 996-1007 (2009).
- 54. Henry, T. et al. The Salmonella effector protein PipB2 is a linker for kinesin-1. *Proceedings of the National Academy of Sciences* **103**, 13497-13502 (2006).
- 55. Knodler, L.A. & Steele-Mortimer, O. The Salmonella Effector PipB2 Affects Late Endosome/Lysosome Distribution to Mediate Sif Extension. *Molecular Biology of the Cell* **16**, 4108-4123 (2005).
- 56. Beuzón, C.R. et al. *Salmonella* maintains the integrity of its intracellular vacuole through the action of SifA. *EMBO J* **19**, 3235-3249 (2000).
- 57. Ruíz-Albert, J. et al. Complementary activities of SseJ and SifA regulate dynamics of the *Salmonella typhimurium* vacuolar membrane. *Molecular Microbiology* **44**, 645-661 (2002).
- 58. Brumell, J., Goosney, D. & Finlay, B. SifA, a Type III Secreted Effector of *Salmonella typhimurium*, Directs *Salmonella*-Induced Filament (Sif) Formation Along Microtubules. *Traffic* **3**, 407-415 (2002).
- 59. Harrison, R.E. et al. Salmonella Impairs RILP Recruitment to Rab7 during Maturation of Invasion Vacuoles. *Molecular Biology of the Cell* **15**, 3146-3154 (2004).
- 60. Boucrot, E., Henry, T., Borg, J.-P., Gorvel, J.-P. & Méresse, S. The Intracellular Fate of Salmonella Depends on the Recruitment of Kinesin. *Science* **308**, 1174-1178 (2005).
- 61. Diacovich, L. et al. Interaction between the SifA Virulence Factor and Its Host Target SKIP Is Essential for Salmonella Pathogenesis. *Journal of Biological Chemistry* **284**, 33151-33160 (2009).
- 62. Dumont, A. et al. SKIP, the Host Target of the Salmonella Virulence Factor SifA, Promotes Kinesin-1-Dependent Vacuolar Membrane Exchanges. *Traffic* **11**, 899-911 (2010).
- 63. Ohlson, M.B. et al. Structure and Function of Salmonella SifA Indicate that Its Interactions with SKIP, SseJ, and RhoA Family GTPases Induce Endosomal Tubulation. *Cell Host & Microbe* **4**, 434-446 (2008).
- 64. Arbeloa, A. et al. EspM2 is a RhoA guanine nucleotide exchange factor. *Cellular Microbiology* **12**, 654-664 (2010).

- 65. McGourty, K. et al. Salmonella Inhibits Retrograde Trafficking of Mannose-6-Phosphate Receptors and Lysosome Function. *Science* **338**, 963-967 (2012).
- 66. Boucrot, E., Beuzón, C.R., Holden, D.W., Gorvel, J.-P. & Méresse, S. Salmonella typhimurium SifA Effector Protein Requires Its Membrane-anchoring C-terminal Hexapeptide for Its Biological Function. *Journal of Biological Chemistry* **278**, 14196-14202 (2003).
- 67. Reinicke, A.T. et al. A Salmonella typhimurium Effector Protein SifA Is Modified by Host Cell Prenylation and S-Acylation Machinery. *Journal of Biological Chemistry* **280**, 14620-14627 (2005).
- 68. McEwan, David G. et al. PLEKHM1 Regulates Salmonella-Containing Vacuole Biogenesis and Infection. *Cell Host & Microbe* **17**, 58-71 (2015).
- 69. Freeman, J.A., Ohl, M.E. & Miller, S.I. The *Salmonella enterica* Serovar Typhimurium Translocated Effectors SseJ and SifB Are Targeted to the Salmonella-Containing Vacuole. *Infection and Immunity* **71**, 418-427 (2003).
- 70. Schroeder, N. et al. The Virulence Protein SopD2 Regulates Membrane Dynamics of *Salmonella* Containing Vacuoles. *PLoS Pathog* **6**, e1001002 (2010).
- 71. Tezcan-Merdol, D. et al. Actin is ADP-ribosylated by the Salmonella enterica virulence-associated protein SpvB. *Molecular Microbiology* **39**, 606-619 (2001).
- 72. Lesnick, M.L., Reiner, N.E., Fierer, J. & Guiney, D.G. The Salmonella spvB virulence gene encodes an enzyme that ADPribosylates actin and destabilizes the cytoskeleton of eukaryotic cells. *Molecular Microbiology* **39**, 1464-1470 (2001).
- 73. Miao, E.A. et al. Salmonella effectors translocated across the vacuolar membrane interact with the actin cytoskeleton. *Molecular Microbiology* **48**, 401-415 (2003).
- 74. Browne, S.H., Hasegawa, P., Okamoto, S., Fierer, J. & Guiney, D.G. Identification of Salmonella SPI-2 secretion system components required for SpvB-mediated cytotoxicity in macrophages and virulence in mice. *FEMS Immunology & Medical Microbiology* **52**, 194-201 (2008).
- 75. Haneda, T. et al. Salmonella type III effector SpvC, a phosphothreonine lyase, contributes to reduction in inflammatory response during intestinal phase of infection. *Cellular Microbiology* **14**, 485-499 (2012).
- 76. Mazurkiewicz, P. et al. SpvC is a Salmonella effector with phosphothreonine lyase activity on host mitogen-activated protein kinases. *Molecular Microbiology* **67**, 1371-1383 (2008).
- 77. Habyarimana, F., Sabag-Daigle, A. & Ahmer, B.M.M. The SdiA-Regulated Gene srgE Encodes a Type III Secreted Effector. *Journal of Bacteriology* **196**, 2301-2312 (2014).
- 78. Guy, R.L., Gonias, L.A. & Stein, M.A. Aggregation of host endosomes by Salmonella requires SPI2 translocation of SseFG and involves SpvR and the fms–aroE intragenic region. *Molecular Microbiology* **37**, 1417-1435 (2000).
- 79. Kuhle, V. & Hensel, M. SseF and SseG are translocated effectors of the type III secretion system of *Salmonella* pathogenicity island 2 that modulate aggregation of endosomal compartments. *Cellular Microbiology* **4**, 813-824 (2002).
- 80. Deiwick, J. et al. The Translocated Salmonella Effector Proteins SseF and SseG Interact and Are Required To Establish an Intracellular Replication Niche. *Infection and Immunity* **74**, 6965-6972 (2006).
- 81. McLaughlin, L.M. et al. The *Salmonella* SPI2 Effector Ssel Mediates Long-Term Systemic Infection by Modulating Host Cell Migration. *PLoS Pathog* **5**, e1000671 (2009).

- 82. Worley, M.J., Nieman, G.S., Geddes, K. & Heffron, F. Salmonella typhimurium disseminates within its host by manipulating the motility of infected cells. *Proceedings of the National Academy of Sciences* **103**, 17915-17920 (2006).
- 83. Christen, M. et al. Activation of a Bacterial Virulence Protein by the GTPase RhoA. Science Signaling 2, ra71 (2009).
- 84. Birmingham, C.L., Jiang, X., Ohlson, M.B., Miller, S.I. & Brumell, J.H. *Salmonella*-Induced Filament Formation Is a Dynamic Phenotype Induced by Rapidly Replicating *Salmonella enterica* Serovar Typhimurium in Epithelial Cells. *Infection and Immunity* **73**, 1204-1208 (2005).
- 85. Ohlson, M.B., Fluhr, K., Birmingham, C.L., Brumell, J.H. & Miller, S.I. SseJ Deacylase Activity by *Salmonella enterica* Serovar Typhimurium Promotes Virulence in Mice. *Infection and Immunity* **73**, 6249-6259 (2005).
- 86. Lossi, N.S., Rolhion, N., Magee, A.I., Boyle, C. & Holden, D.W. The *Salmonella* SPI-2 effector SseJ exhibits eukaryotic activator-dependent phospholipase A and glycerophospholipid: cholesterol acyltransferase activity. *Microbiology* **154**, 2680 (2008).
- 87. Kujat Choy, S.L. et al. SseK1 and SseK2 Are Novel Translocated Proteins of Salmonella enterica Serovar Typhimurium. *Infection and Immunity* **72**, 5115-5125 (2004).
- 88. Rytkonen, A. et al. SseL, a Salmonella deubiquitinase required for macrophage killing and virulence. *Proceedings of the National Academy of Sciences* **104**, 3502-3507 (2007).
- 89. Arena, E.T. et al. The Deubiquitinase Activity of the Salmonella Pathogenicity Island 2 Effector, SseL, Prevents Accumulation of Cellular Lipid Droplets. *Infection and Immunity* **79**, 4392-4400 (2011).
- 90. Miao, E.A. et al. Salmonella typhimurium leucine-rich repeat proteins are targeted to the SPI1 and SPI2 type III secretion systems. *Molecular Microbiology* **34**, 850-864 (1999).
- 91. Quezada, C.M., Hicks, S.W., Galán, J.E. & Stebbins, C.E. A family of Salmonella virulence factors functions as a distinct class of autoregulated E3 ubiquitin ligases. *Proceedings of the National Academy of Sciences* **106**, 4864-4869 (2009).
- 92. Levin, I. et al. Identification of an unconventional E3 binding surface on the UbcH5~Ub conjugate recognized by a pathogenic bacterial E3 ligase. *Proceedings of the National Academy of Sciences* **107**, 2848-2853 (2010).
- 93. Bhavsar, A.P. et al. The *Salmonella* Type III Effector SspH2 Specifically Exploits the NLR Co-chaperone Activity of SGT1 to Subvert Immunity. *PLoS Pathog* **9**, e1003518 (2013).
- 94. Poh, J. et al. SteC is a Salmonella kinase required for SPI-2-dependent F-actin remodelling. *Cellular Microbiology* **10**, 20-30 (2008).
- 95. Odendall, C. et al. The Salmonella Kinase SteC Targets the MAP Kinase MEK to Regulate the Host Actin Cytoskeleton. *Cell Host & Microbe* **12**, 657-668 (2012).