Supporting information for:

Interrupting biosynthesis of O-antigen or the lipopolysaccharide core produces morphological defects in *Escherichia coli* by sequestering undecaprenyl phosphate

Matthew A. Jorgenson and Kevin D. Young*

Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA

*Corresponding author

E-mail: kdyoung@uams.edu

Table \$	S1:	Strains	used in	this	study
----------	-----	----------------	---------	------	-------

MAJ1MG1655 wbbL::IS5Lab collectionMAJ330MG1655 frt wbbL+(1)MAJ339MAJ330 Δ wzxB::kanThis studyMAJ343MAJ330 Δ wecA::kanThis studyMAJ344MAJ330 Δ wbbK::kanThis studyMAJ345MAJ330 Δ waaL::kanThis studyMAJ346MAJ330 Δ wbbJ::kanThis studyMAJ349MAJ330 Δ wbbJ::kanThis study
MAJ1MG1655 WbbL:IS5Lab collectionMAJ330MG1655 frt wbbL+(1)MAJ339MAJ330 ΔwzxB::kanThis studyMAJ343MAJ330 ΔwecA::kanThis studyMAJ344MAJ330 ΔwbbK::kanThis studyMAJ345MAJ330 ΔwbbK::kanThis studyMAJ346MAJ330 ΔwbbJ::kanThis studyMAJ349MAJ330 ΔwbbJ::kanThis study
MAJ330MG1655 //t WbbL+(1)MAJ339MAJ330 $\Delta wzxB::kan$ This studyMAJ343MAJ330 $\Delta wecA::kan$ This studyMAJ344MAJ330 $\Delta wbbK::kan$ This studyMAJ345MAJ330 $\Delta wbbK::kan$ This studyMAJ346MAJ330 $\Delta wbbJ::kan$ This studyMAJ349MAJ330 $\Delta wbbI::kan$ This studyMAJ350MAJ330 $\Delta wbbI::kan$ This study
MAJ339MAJ330 ΔWZXB::kanThis studyMAJ343MAJ330 ΔwecA::kanThis studyMAJ344MAJ330 ΔwbbK::kanThis studyMAJ345MAJ330 ΔwaaL::kanThis studyMAJ346MAJ330 ΔwbbJ::kanThis studyMAJ349MAJ330 ΔwbbJ::kanThis studyMAJ350MAJ330 ΔwbbJ::kanThis study
MAJ343MAJ330 ΔwecA::kanThis studyMAJ344MAJ330 ΔwbbK::kanThis studyMAJ345MAJ330 ΔwaaL::kanThis studyMAJ346MAJ330 ΔwbbJ::kanThis studyMAJ349MAJ330 ΔwbbJ::kanThis studyMAJ350MAJ330 ΔwbbH::kanThis study
MAJ344MAJ330 ΔwbbK::kanThis studyMAJ345MAJ330 ΔwaaL::kanThis studyMAJ346MAJ330 ΔwbbJ::kanThis studyMAJ349MAJ330 ΔwbbI::kanThis studyMAJ350MAJ330 ΔwbbI::kanThis study
MAJ345MAJ330 ΔwaaL::kanThis studyMAJ346MAJ330 ΔwbbJ::kanThis studyMAJ349MAJ330 ΔwbbI::kanThis studyMAJ350MAJ330 ΔwbbH::kanThis study
MAJ346MAJ330 ΔwbbJ::kanThis studyMAJ349MAJ330 ΔwbbI::kanThis studyMAJ350MAJ330 ΔwbbH::kanThis study
MAJ349MAJ330 Δwbbl::kanThis studyMAJ350MAJ330 ΔwbbH::kanThis study
MAJ350 MAJ330 \Delta wbbH::kan This study
MAJ351 MAJ330 Δ <i>wzzB</i> :: <i>kan</i> This study
MAJ356 MAJ330 Δ <i>wecB</i> :: <i>kan</i> This study
MAJ368 MAJ345 Δ <i>waaL</i> :: <i>frt</i> This study
MAJ369 MAJ343 ΔwecA::frt ΔwzxB::kan This study
MAJ370 MAJ343 ΔwecA::frt ΔwaaL::kan This study
MAJ374 MAJ330 Δ <i>waaC</i> :: <i>kan</i> This study
MAJ375 MAJ330 Δ <i>waaF</i> :: <i>kan</i> This study
MAJ384 MAJ343 ΔwecA::frt ΔwaaC::kan This study
MAJ385 MAJ343 ΔwecA::frt ΔwaaF::kan This study
MAJ397 MAJ356 ΔwecB::frt ΔwbbK::kan This study
MAJ398 MAJ356 ΔwecB::frt ΔwbbJ::kan This study
MAJ411 MAJ374 Δ <i>waaC</i> :: <i>frt</i> This study
MAJ427 MAJ330/pDSW361 This study
MAJ428 MAJ330/pMAJ41 This study
MAJ429 MAJ330/pMAJ42 This study
MAJ430 MAJ330/pMAJ43 This study
MAJ431 MAJ330/pMAJ44 This study
MAJ432 MAJ330/pMAJ45 This study
MAJ433 MAJ368/pDSW361 This study
MAJ434 MAJ368/pMAJ41 This study
MAJ435 MAJ368/pMAJ43 This study
MAJ436 MAJ368/pMAJ44 This study
MAJ437 MAJ368/pMAJ45 This study
MA.I438 MA.I411/pDSW361 This study
MA.I439 MA.I411/pMA.I42 This study
MA.1440 MA.1411/pMA.143 This study
MA.1441 MA.1411/pMA.144 This study
MA 1442 MA 1411/pMA 145 This study
MΔ //89 MΔ //339 rm/C···195
MA.1490 MA.1339 whbl185 This study

Table S2: Plasmids used in this study

Plasmid	Relevant features	Source or reference
pDSW361	pDSW361 is a KanR derivative of pDSW204; IPTG regulation (P ₂₀₄) <i>lacI</i> ^q pBR ori	(2)
pMAJ41	pDSW361:: <i>waaL</i>	This study
pMAJ42	pDSW361:: <i>waaC</i>	This study
pMAJ43	pDSW361:: <i>murA</i>	This study
pMAJ44	pDSW361::wecG	This study
pMAJ45	pDSW361::uppS	This study

Primer	Sequence ^a	Purpose	
P21	CAGGAATTCTTGTCTGCTACTCAACCACTTAG	pMAJ45	
P23	ATACTTCTGCTAATAATTTTCTCTGAGAGCATGCATTGTG	AwaaAukan	
	TGTAGGCTGGAGCTGCTTCG		
P24	TGTGTCATCACATCCTCATTTATTTGGTTAAATTGGGGCT	Dwecakan	
	ATTCCGGGGATCCGTCGACC		
D07	CGCAAAGGCGCTCGCCGCTTATTCGAAGAGAATCGATGT		
FZ1	GTGTAGGCTGGAGCTGCTTCG	Awoo B: kan	
P28	ACAGAAATGGTCGCAAAACTCATAGTGATATCCGATTATT	Awecdkan	
	ATTCCGGGGATCCGTCGACC		
D110	ATAATCGTACATAAAATCCTCAGCAAACCAGTAATTTATTA		
FIIO	TTCCGGGGATCCGTCGACC	ΛwzyΒ∵kan	
D110	TTACGTTAGATGAGCTTATCAGATTAAAATTAATTGCATGT	AWZADKali	
FII9	GTAGGCTGGAGCTGCTTCG		
D180	CAAAAATCATAAAGAAATACAATCATGAGACCAAATTATG		
1 100	TGTAGGCTGGAGCTGCTTCG	∧whhK…kan	
D181	GATTATTATATATACCATTTCAATGTTCTTCAGTAATAAAA	Δνισσιλικαι	
1 101	TTCCGGGGATCCGTCGACC		
D18/	GGAAGTTACTTCAGGGATGTTCTTGAAGAGGTGATCGAT	Awbh likan	
1 104	GTGTAGGCTGGAGCTGCTTCG		
P185	TTGACCGCAGAAACAACGACTATGCTTTTTCCCATAATTT	AWDDJKall	
1 100	ATTCCGGGGATCCGTCGACC		
P192	AACTATGCGGACTTGGAAATTTCCGTCAGTTAGGGTAAT		
1 152	GTGTAGGCTGGAGCTGCTTCG	∧wzzR∵kan	
P193	TTCTTTAAAACCGAAAAGATTACTTCGCGTTGTAATTGCG	AWZZDNam	
1 100	ATTCCGGGGATCCGTCGACC		
P196	CTCTTTATCAAGTGAAAAATATAATGAGTACGGATTAATG	∆wbbH∵kan	
1 100	TGTAGGCTGGAGCTGCTTCG		
P197	TCATTCAAAAAATACATTTTCACTTTATTTTCTGGGCCTTA	Awoorninan	
1 107	TTCCGGGGATCCGTCGACC		
P208	CATGGCCTGGCTGAATCGCGACGCATAAGAGCTCTGCAT		
1 200	GTGTAGGCTGGAGCTGCTTCG	∧waaF∵kan	
P209	CGATCAAAACCCGCATCCGTCAGGCTTCCTCTTGTAACA		
1 203	AATTCCGGGGATCCGTCGACC		
P212	ACTCAACGCGCTATTGTTACAAGAGGAAGCCTGACGGAT		
	GTGTAGGCTGGAGCTGCTTCG	∆waaC::kan	
P213	ATGTTAGCATGTTTTACCTTTATAATGATGATAACTTTTCA	4	
. 2.0	TTCCGGGGATCCGTCGACC		
P229	CAG <u>GAATTC</u> CTAACATCCTTTAAACTTCATTC	pMAJ41	
P231	CAA <u>GAATTC</u> CGGGTTTTGATCGTTAAAAC	pMAJ42	
P233		pMAJ44	
P251	TTG <u>CTGCAG</u> TTAATTAATTGTATTGTTACG	pMAJ41	
P252	TTG <u>CTGCAG</u> TTATAATGATGATAACTTTTC	pMAJ42	
P253	TTG <u>CTGCAG</u> TCATAGGTTGCCGGTGTAGTG	pMAJ44	

P254	TTG <u>CTGCAG</u> TCAGGCTGTTTCATCACCGGG	pMAJ45	
P278	AGCAGTTTTGGAAAAGTTATCATCATTATAAAGGTAAAAC	- ∆waaL∷kan	
	ATTCCGGGGATCCGTCGACC		
P279	TAACTCACTTCTTAAACTTGTTTATTCTTAATTAATTGTATG		
	TAGGCTGGAGCTGCTTCG		

^aAll primer sequences are written $5' \rightarrow 3'$. Restriction sites are underlined.

Figure S1. Disrupting O-antigen biosynthesis induces cell shape defects. (A) Micrographs of cells from which the indicated genes were deleted. Cells were grown at 37° C in LB until they reached an $OD_{600} = 0.5$ -0.6. The cells were then fixed and photographed by phase-contrast microscopy. Micrographs of $\Delta wzxB$ cells are from overnight cultures because the strain readily develops suppressing mutations that correct the shape defect. The white bar represents 3 µm. (B) Flow cytometry data from

live cells in panel A. Histograms of the FSC-A from 100,000 events (cells). The mean cell size of the wild type (red graph) is represented by the vertical dashed line and is expressed in arbitrary units (AU). Data is representative of two independent experiments. Strains: MAJ330 (WT), MAJ1 (*wbbL*::IS5), MAJ344 (Δ *wbbK*), MAJ351 (Δ *wzzB*), MAJ346 (Δ *wbbJ*), MAJ349 (Δ *wbbI*), MAJ350 (Δ *wbbH*), MAJ343 (Δ *wecA*), MAJ345 (Δ *waaL*) and MAJ339 (Δ *wzxB*).

Figure S2. $\Delta wzxB$ cells readily acquire suppressor mutations. (A) Streak plate of $\Delta wzxB$ cells grown overnight on LB medium at 37°C. $\Delta wzxB$ cells normally give rise to small colonies (arrowheads), but they readily develop suppressing mutations that result in bigger colonies (arrows). (B) Micrographs of $\Delta wzxB$ and $\Delta wzxB$ suppressing cells. Suppressing mutations were mapped to *rmlC* and *wbbL*, whose disruption prevents the formation of O-antigen intermediates. Cells were grown and imaged as described in the legend to Figure S1. Micrographs of $\Delta wzxB$ cells are from overnight cultures because the strain readily develops suppressor mutations that correct the shape defect. The white bar represent 3 µm. Strains: MAJ330 (WT), MAJ339 ($\Delta wzxB$), MAJ489 ($\Delta wzxB$ *rmlC*::IS5) and MAJ490 ($\Delta wzxB$ *wbbL*::IS5).

Figure S3. Overproducing ECA in cells that also accumulate O-antigen intermediates causes filamentation. (A) Micrographs of $\Delta waaL$ cells expressing various amounts of *wecG* in *trans*. Cells were grown at 37°C in LB containing various concentrations (μ M) of IPTG (indicated on the micrographs) until the cells reached an $OD_{600} = 0.5$ -0.6. The cells were then fixed and photographed by phase-contrast microscopy. The white bar represents 3 μ m. (B) Flow cytometry data from live cells in panel A. Histograms of the forward scatter area from 100,000 events (cells). The mean cell size of $\Delta waaL$ cells expressing *waaL* in *trans* (red graph) is represented by the vertical dashed line and is expressed in arbitrary units (AU). Note that IPTG was added

to 100 uM for $\Delta waaL$ cells harboring p*waaL* or the empty vector. Data is representative of two independent experiments. Strains: MAJ434 ($\Delta waaL/pwaaL$), MAJ436 ($\Delta waaL/pwecG$) and MAJ433 ($\Delta waaL/vector$). (C and D). Data for $\Delta waaC$ cells expressing various amounts of *wecG in trans*. The experimental conditions were the same as described in panels A and B. Strains: MAJ439 ($\Delta waaC/pwaaC$), MAJ441 ($\Delta waaC/pwecG$) and MAJ438 ($\Delta waaC/vector$).

Figure S4. Overexpressing other genes has little or no effect on cell shape in wild type *E. coli*. (A) Micrographs of wild type cells containing derivatives of pDSW361 that express the indicated genes. Cells were grown at 37°C in LB containing 100 μ M IPTG until the cells reached an OD₆₀₀ = 0.5-0.6. The cells were then fixed and photographed by phase-contrast microscopy. The white bar represents 3 μ m. (B) Flow cytometry data from live cells in panel A. Histograms of the forward scatter area from 100,000 events (cells). The mean cell size of the wild type with the empty vector (red graph) is represented by the vertical dashed line and is expressed in arbitrary units (AU). Data is representative of two independent experiments. Strains: MAJ427 (vector), MAJ429 (pwaaC), MAJ432 (puppS), MAJ430 (pmurA), MAJ428 (pwaaL) and MAJ431 (pwecG).

Figure S5. Morphological defects of LPS core mutants depend on O-antigen biosynthesis. Micrographs of cells with the indicated genotypes. Cells were grown and imaged as described in the legend to Figure S1. The white bar represents 3 μ m. Strain: MAJ330 (WT), MAJ375 (Δ waaF), MAJ343 (Δ wecA) and MAJ385 (Δ wecA Δ waaF).

Supplemental References

- Rendueles O, Beloin C, Latour-Lambert P, Ghigo JM. 2014. A new biofilmassociated colicin with increased efficiency against biofilm bacteria. ISME J 8:1275-1288.
- Weiss DS, Chen JC, Ghigo JM, Boyd D, Beckwith J. 1999. Localization of Ftsl (PBP3) to the septal ring requires its membrane anchor, the Z ring, FtsA, FtsQ, and FtsL. J Bacteriol 181:508-520.