Supplementary Information

Auxotrophy-based High Throughput Screening assay for the identification of *Bacillus subtilis* **stringent response inhibitors**

Liis Andresen^{1,2,}^{金,*}, Vallo Varik^{1,2,3,}^金, Yuzuru Tozawa⁴, Steffi Jimmy^{1,2}, Stina Lindberg⁵, Tanel Tenson³ & Vasili Hauryliuk^{1,2,3,*}

¹Department of Molecular Biology, Umeå University, Building 6K, 6L University Hospital Area, SE-901 87 Umeå, Sweden ²Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Building 6K and 6L, University Hospital Area, SE-901 87 Umeå, Sweden ³University of Tartu, Institute of Technology, Nooruse 1, 50411 Tartu, Estonia 4Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, Saitama 338-8570, Japan. ⁵Laboratories for Chemical Biology Umeå (LCBU), Department of Chemistry, Umeå University, SE-901 87 Sweden ⌘denotes equal contribution *denotes corresponding authors

Contact details of corresponding authors:

Liis Andresen: liis.andresen@umu.se, +46702016884 Vasili Hauryliuk: vasili.hauryliuk@umu.se, +46907850807

Supplementary Methods

Preparation of B. subtilis *Rel*

B. subtilis rel gene coding for (p)ppGpp synthetase was cloned into pET24d plasmid. The protein was overexpressed in *E. coli* BL21(DE3) from pET284d-*rel* plasmid as follows. Single colony was inoculated into 3 ml of LB medium and grown aerobically at 37° C until $OD_{600}=0.5$ in the presence of 50 μ g/ml kanamycin (Km). The culture was transferred into 400 ml of fresh pre-warmed 2xYT medium (with 50 μ g/ml Km) and grown aerobically at 37 \degree C to OD₆₀₀=0.5. Rel overexpression was induced by addition of IPTG with a final concentration of 1 mM to the culture. The temperature was decreased to 30° C and bacteria were grown for another 1 hour. The bacterial cell mass was collected by centrifugation, resuspended in lysis buffer (50 mM NaH2PO⁴ pH 7.5, 350 mM NaCl, 2 mM MgCl2, 10 mM imidazole, 1 mM 2-mercaptoethanol (βME), 100 μM PMSF and 1 U/ml DNase I) and lysed with Stansted SPCH-10 homogenizer. The lysate was centrifuged and the supernatant was used for Zn-NTA Sepharose affinity chromatography. The elution buffer consisted of 50 mM NaH_2PO_4 pH 7.5, 1 M NaCl, 2 mM MgCl2, 10 mM imidazole, and 1 mM βME. The peak corresponding to Rel protein was collected and loaded on gel filtration column (HiLoad 16/600, Superdex 200 pg). Purified protein was concentrated using Amicon Ultra-15 (Millipore) centrifugal filter devices with a 50 kDa cut-off. The final preparations were aliquoted, snap-frozen with liquid nitrogen and stored at -80° C in storage buffer (25 mM HEPES-KOH, pH 7.5, 0.7 M KCl, 1 mM β ME, 5 mM MgCl2 and 10% glycerol).

Enzymatic assays with B. subtilis *Rel*

ppGpp synthesis reactions were performed in 1x HEPES:Polymix buffer (25 mM HEPES, 15 mM Mg2+ and 1 mM βME) and contained 0.5 μM *B. subtilis* ribosomes, 100 μM ppGpp, 300 μM ³H-labelled GDP, 0.1 μM Rel, 0.12 μg/ml polyU mRNA, 2 μM tRNAPhe and 0-50 μM compound C302. The reaction mixture was preincubated at 37° C for 2 min and started by addition of 1 mM ATP. At each time points 5 μl of reaction mixture was quenched with 70% formic acid and analyzed by TLC.

Thin layer chromatography (TLC) analysis of nucleotide mixtures

Rel ppGpp synthesis activity was followed by separating reaction mixtures on TLC analysis followed by scintillation counting according to Mechold and colleagues, with modifications1. At each time point 5 μl of reaction mixture was quenched by addition of 4 μl 70% formic acid supplemented with a cold nucleotide standard used for UV-shadowing (10 mM GDP and 10 mM GTP) and spotted on PEI-TLC plates (Macherey-Nagel). TLC was run in 0.5 M KH2PO4. The plates were dried and cut into sections guided by UV-shadowing and 3H radioactivity was quantified by scintillation counting. Conversion of substrate to product was quantified as described in the Shyp et al. (2012)2.

R code for detection of growth inhibition

Load required libraries ### library(readxl); library(plyr); library(dplyr); library(zoo)

Read in and clean the data ### temp <- list.files(pattern="*.xls") *# Point to the files* raw_data <- lapply(temp, read_excel) raw_df <- ldply(raw_data, data.frame) *# Turn into one data frame* df <- raw_df[, c(3, 6)] *# Take well ID and OD value* df <- cbind(Plate = rep(1:(length(df[,1])/384), each=384,), df) *# Plate index* df <- rename(df, OD = Abs600..0.1s...A.) *# Give a clean name to OD column*

Split the data

Set data filters for medium, dSAS, ppGpp0 pos.medium <- paste(LETTERS[1:16], rep(c("01", "24"), each=16), sep="") pos.dSAS <- paste(LETTERS[1:16], rep("02", 16), sep="") pos.ppGpp0 <- paste(LETTERS[1:16], rep("23", 16), sep="") *# Take compound wells* df_cmp <- filter(df, !Well %in% c(pos.medium, pos.dSAS, pos.ppGpp0)) df_cmp <- cbind(PlateWell=paste(df_cmp[,1], df_cmp[,2], sep="_"), OD=df_cmp[3]) *# Merge, plate_well index*

Find local outliers by Median Absolute Deviation (MAD) threshold ### # MAD function to identify local outliers $local t < -function(x)$ {m = median(x); m - threshold * median(abs(x - m))} window <- 19 *# Set an arbitrary window, how many adjacent wells?* threshold <- 8 *# Set an arbitrary threshold, how many times MAD?* # Calculate threshold for each well zt <- rollapply(df_cmp[,2], window, localt, align="center") *# Fill in start and end gaps, quick and dirty* zt <- c(rep(zt[1], window/2), zt, rep(zt[length(zt)], window/2))

Assign local outliers a MAD based score

MAD function without threshold $\text{localmad} \leq \text{function}(x) \{ m = \text{median}(x); m - \text{median}(abs(x - m)) \}$ zmad <- rollapply(df_cmp[,2], window, localmad, align="center") zmad <- c(rep(zmad[1], window/2), zmad, rep(zmad[length(zmad)], window/2)) zmed <- rollapply(df_cmp[,2], window, median, align="center") zmed <- c(rep(zmed[1], window/2), zmed, rep(zmed[length(zmed)], window/2)) mad.score <- (zmed - df_cmp[,2])/(zmed - zmad) *# MAD score* df_cmp <- cbind(df_cmp, "Score"=mad.score) *# Add MAD score to data frame*

Store and view outliers in a table ### out <- filter(df_cmp, OD<zt); View(out, "Outliers")

Optional feature: plot MAD threshold outliers

Supplementary Table 1 | Structures and growth effects of general antimicrobials. Our secondary screen identified 12 compounds that significantly inhibited *B. subtilis* growth in S7-V as well as S7-K media. Rel. growth indicates relative growth where 0 – no growth, 1 – growth of the untreated control. Values indicate mean values of relative growth of 2 replicates ± standard deviation.

Supplementary Figure 1 | Auxotrophy-based HTS assay for Rel inhibitors in 384-well format. *B. subtilis* strain RIK1002³ lacking SAS YjbM and YwaC (ΔSAS, blue filled circles) as well ppGpp-deficient strain RIK1003³ lacking both SAS and long RSH Rel (ppGpp⁰, red empty circles) were grown in S7 medium supplemented with 1% glucose and 19 amino acids mixture lacking L-valine (S7- V). Traces show an arithmetic mean OD₆₀₀ values and standard deviations of 4 technical replicates. Z'-factor (red dashed line) was calculated according to Zhang and colleagues⁴.

Supplementary Figure 2 | Graphical output of the HTS hit detection script. Red trace represents input (acquired OD₆₀₀ values), grey trace is calculated threshold for every position in a given window. Black filled circles represent OD⁶⁰⁰ value of hits. 87 hits indicated by black dots are acquired with the following settings: window 19, threshold 8xMAD.

Supplementary Figure 3 | Correlation between MScreen⁵ and MAD score strategies used to identify hit compounds in the primary screen. MAD score reflects the OD⁶⁰⁰ deviation of a well from the median OD⁶⁰⁰ calculated for a 19 well sliding window and is expressed in MAD units. Z-score of MScreen⁵ reflects the deviation of the OD₆₀₀ of a well from the mean OD₆₀₀ calculated for the whole plate. Both scores take into account only wells with compounds added. r – Pearson's product-moment correlation coefficient.

Supplementary Figure 4 | Reproducibility of the two replicates of the secondary screen for Rel inhibitors. 480 hit compounds identified in the primary screen were tested for growth inhibition in S7-K (**a**) and S7-V (**b**) media. ΔSAS *B. subtilis* was grown in S7-V and S7-K liquid media on 384-well plates in the presence of 10 μM test compounds compound and 0.9 % DMSO. OD_{600} values were scored after 9 hours at 37°C. r – Pearson's product-moment correlation coefficient.

Supplementary Figure 5 | Dose-response curves for the hit compounds. 4- (6-alkyl)-3,5-dimethyl-1H-pyrazoles identified by our HTS as potential stringent response inhibitors were tested in dose-response assay. Compounds were serially diluted in DMSO and tested for growth inhibition in screening conditions, except final concentration of the compound varied from 0 to 50 μ M, and the experiments were performed in 96-well format in presence of 1.3% DMSO.

C302, μ M

Supplementary Figure 6 | Hit compounds do not inhibit *Bacillus subtilis* **Rel ppGpp synthetase activity** *in vitro***.** ppGpp synthesis reactions in presence of increasing concentrations of C302 (0-50 μM) were performed in 1x HEPES: Polymix buffer (25 mM HEPES, 15 mM Mg²⁺ and 1 mM βME) and contained 0.5 μM *B. subtilis* ribosomes, 100 μM ppGpp, 300 μM ³H-labelled GDP, 0.1 μM Rel, 0.12 μg/ml polyU mRNA, 2 μM tRNA^{Phe}. The reaction mixture was pre-incubated at 37° C for 2 min and started by addition of 1 mM ATP. At each time points 5 μl of reaction mixture was quenched with 70% formic acid and analyzed by TLC.

Supplementary Figure 7 | Relacin does not pass the selection criteria for a selective Rel inhibitor of the current auxotrophy-based HTS. Growth of ΔSAS (a, b) and ppGpp⁰ (b, d) *B. subtilis* was followed in S7-K (a, c) and S7-V (b, d) in the presence of increasing concentrations of Relacin⁶. Even at 2 mM Relacin fails to inhibit ΔSAS growth in S7-V (b), and has little effect on growth of the ppGpp⁰ strain regardless the media (**c**, **d**).

Supplementary References

- 1. Mechold, U., Murphy, H., Brown, L. & Cashel, M. Intramolecular regulation of the opposing (p)ppGpp catalytic activities of Rel(Seq), the Rel/Spo enzyme from Streptococcus equisimilis. *J Bacteriol* **184**, 2878-88 (2002).
- 2. Shyp, V. et al. Positive allosteric feedback regulation of the stringent response enzyme RelA by its product. *EMBO Rep* **13**, 835-9 (2012).
- 3. Nanamiya, H. et al. Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. *Mol Microbiol* **67**, 291-304 (2008).
- 4. Zhang, J.H., Chung, T.D. & Oldenburg, K.R. A Simple Statistical Parameter for Use in Evaluation and Validation of High Throughput Screening Assays. *J Biomol Screen* **4**, 67-73 (1999).
- 5. Jacob, R.T. et al. MScreen: an integrated compound management and highthroughput screening data storage and analysis system. *J Biomol Screen* **17**, 1080-7 (2012).
- 6. Wexselblatt, E. et al. Relacin, a novel antibacterial agent targeting the Stringent Response. *PLoS Pathog* **8**, e1002925 (2012).