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Table S1. Reactions in differential equation model of soybean metabolic system used in this study 

Reaction Substrate Product Kinetics1 

Km 

[µmol g 

DW−1] 

Vmax-control 

[µmol g DW-1 

h-1] 

Vmax-flooded 

[µmol g DW−1 

h-1] 

R1a Citrate Isocitrate Michaelis–Menten 0.12 0.958 0.708 

R1b Isocitrate Citrate Michaelis–Menten 0.58 0.625 0.313 

R2 Isocitrate 2OG Michaelis–Menten 0.12 0.542 0.375 

R3a 2OG Succinyl-CoA Michaelis–Menten 0.25 1.208 0.333 

R3b 
Succinyl-Co

A 
2OG Michaelis–Menten 0.25 0.125 0.625 

R4a 
Succinyl-Co

A 
Succinate Michaelis–Menten 0.086 0.625 0.708 

R4b Succinate Succinyl-CoA Michaelis–Menten 0.49 0.313 0.417 

R5a Succinate Fumarate Michaelis–Menten 0.23 0.75 0.75 

R5b Fumarate Succinate Michaelis–Menten 0.455 0.208 0.583 

R6a Fumarate Malate Michaelis–Menten 0.031 0.708 0.875 

R6b Malate Fumarate Michaelis–Menten 0.45 0.208 0.375 

R7a Malate OAA Michaelis–Menten 0.19 1.042 0.813 

R7b OAA Malate Michaelis–Menten 0.0121 0.208 0.208 

R8a OAA Citrate Michaelis–Menten 0.016 0.313 0.49 

R8b Citrate 
Acetyl-CoA, 

OAA 
Michaelis–Menten 0.1 0.042 0.208 

R8c Acetyl-CoA Citrate Michaelis–Menten 0.031 0.292 1.042 

R9 Asp Fumarate Michaelis–Menten 2.6 0.125 0.938 

R10 Asp Ala Michaelis–Menten 1.3 0.021 0.729 

R11a Alcohol Acetaldehyde Michaelis–Menten 3.5 0.208 0.208 

R11b Acetaldehyde Alcohol Michaelis–Menten 1.45 0.208 0.208 

R12 Pyr Acetaldehyde Michaelis–Menten 0.042 0.063 0.063 

R13 Pyr Acetyl-CoA Michaelis–Menten 0.09 0.021 0 

R14 PEP Pyr Michaelis–Menten 0.052 0.208 0.208 

R15a Pyr Lac, LDHi Competitive inhibition 0.69 0.021 7.292 

R15b Lac Pyr Michaelis–Menten 19.5 0.042 0.833 

R15c xi LDHi Mass action2 
Not 

applicable 
Not applicable Not applicable

R16a Ala, 2OG Pyr, Glu Ping-pong 2.8, 0.283 0.417 0.417 

R16b Pyr, H+ Ala  Ordered 0.09, 2.83 0.208 0.625 

R16c Ala, NAD Pyr, H+ Ordered 0.37, 0.363 0.417 0.313 

R17 Glu, OAA 2OG, Asp Ordered 0.023, 7.53 0.417 0.458 

R18 OAA PEP Michaelis–Menten 0.016 0.021 0.042 

R19 Glu, H+ GABA Ordered 22, 223 4.625 4.792 

R20 SSA 2OG Michaelis–Menten 0.33 0.333 0.417 

R21 GABA SSA Michaelis–Menten 0.18 0.5 0.438 

R22 Gln, 2OG Glu Ordered 0.24, 0.0223 0.25 0.396 

R23 SSA Succinate Michaelis–Menten 1.06 0.052 0.208 

R24 GTP, OAA GDP, EP Ordered 0.065, 0.0163 0.375 0.208 
1 We assigned kinetic functions based on data provided on the web page for each enzyme in BRENDA database27 and/or 

Purich (2010)53 ; 2 k=0.417 [h−1]; 3 KmA, KmB 



Table S2. Reactants in differential equation model of soybean metabolic system used in this 

study 

Reactant Type 
Initial value1 

[µmol gDW-1]

2OG Variable 0.295 

Acetaldehyde Variable 1 

Acetyl-CoA Variable 0.011 

Ala Variable 8.85 

Alcohol Variable 1 

Asp Pool 4.339 

Citrate Variable 12.1 

EP Variable 1 

Fumarate Variable 2.7 

GABA Variable 5.34 

GDP Variable 0.034 

Gln Pool 1.1 

Glu Variable 5.6 

GTP Pool 1.34 

H+ Pool 20 

Isocitrate Variable 2.84 

Lactate Variable 0.676 

LDHi Variable 0 

Malate Variable 44 

NAD Pool 0.0011 

OAA Variable 1.8 

PEP Pool 0.157 

Pyr Pool 0.94 

SSA Variable 5 

Succinate Variable 1.34 

Succinyl-CoA Variable 1 

xi Pool 7 
1 We set initial values based on experimental data from 2-day-old soybean plants. 

 

 



Table S3. Kinetic equations used in differential equation model of soybean metabolic system 
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Figure S1. State trajectory simulation of modular human THP-1 cells transcriptional network 

based on Boolean functions (modified from Kauffman14). (a) Schematic of Boolean functions 

used in simulation experiments. p is promoting input, i is inhibitory input, o is operator, and m is 

transcription factor module. Directed edges from p and i are indicated by red arrows and blue T-bars, 

respectively, in Fig. 3. Directed edge from i blocks activation of the module unless it is itself 

inhibited by activation of the module. (b) Effect of “NOT IF” Boolean function. Table (left) shows 

“NOT IF” Boolean function describing regulation of an operator by a modular state and inhibitory 

input. For an operator (o), 1 = enabled and 0 = disabled. For a module (m), 1 = active and 0 = 

inactive. Table (right) shows “NOT IF” Boolean function describing activation of a module. 

Activation requires that promotive input (p) is active (1), and operator is disabled (0). In Fig. 3, 

multiple T-bars to a module are considered as at least one input (1) that guarantees inhibition is 

enabled (1). In upper modules (A1, B1, C1, and D1) in Fig. 3, multiple arrows to a module are 

considered as at least one input (1) that guarantees promotion is enabled (1). In lower modules (A2, 

B2, C2, and D2) in Fig. 3, all inputs (1) are required to guarantee that promotion is enabled (1)15.  
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Figure S2. Information loss induced by external stimulus bias in hypothetical “external 

stimulus-induced information loss” model of biological systems. (a) External stimulus 

distribution before and after external stimulation against a dynamic range. (b) Loss of normalised 

Shannon entropy, which represents the amount of information taken into the system through the 

dynamic range, induced by the external stimulus bias shown in panel (a). In this simulation, we 

assumed that the external stimulus had a normal distribution whose mean corresponded to the centre 

of the dynamic range and that the dynamic range size was six times (standard deviation of normal 

distribution). 
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Figure S3. Scatter plots between expression levels at each time point determined by qRT-PCR 

of 2247 TFs in two biological replicates. Horizontal and vertical axes show expression level in first 

and second replicate, respectively. Spearman correlations between TF expression levels in the two 

replicates were 0.980, 0.987, 0.987, 0.989, 0.989, 0.988, 0.988, 0.984, 0.990 and 0.981, for 0, 1, 2, 4, 

6, 12, 24, 48, 72, and 96 h time points, respectively. These Spearman correlation values were higher 

than those (0.65-0.70) calculated for expression data from human myelomonocytic leukaemia cells 

using cap analysis of gene expression32, indicating high replicability of expression data used in this 

study.



Supplementary Note 

Growth suppression in soybean seedling after flooding 

Physiological changes were evaluated in the early stages of flooding stress54. For these analyses, 

soybean seeds were germinated on sand for 2 days and then subjected to flooding for 4 days. The 

length of the lateral and adventitious roots and the overall growth of the plants was suppressed after 

1 day of flooding stress. The root growth suppression continued over the 4 days. The fresh weight of 

the hypocotyl and total roots was 50% lower in flooding-stressed plants than in control plants. The  

main root was 25% shorter in flooding-stressed plants than in control plants54. 

 

Maximum entropy in multi-state system 

The maximum value for 
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given by the Lagrange multipliers method55. The Lagrange function is as follows: 
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 , we obtained the solution ( ) 1 / ( 1,2, , )iP x n i n   , and maximum H(X)= —

log(1/n).  

 

Assumptions of transcriptional regulation model  

The transcriptional regulation model (Fig. S1) is based on the following assumptions: the state 

(‘active’ or ‘inactive’) of a gene module induces the state (‘active’ or ‘inactive’) of another gene 

module; Boolean functions represent this relationship between gene modules. Huang and Ingber 

showed that simulations based on a Boolean network model of individual genes well-mimicked 

expression patterns in human endothelial cell growth and quiescence56. Huang et al. suggested the 

existence of gene modules in mouse hematopoietic stem cells in which two groups of genes that 

were expressed in the undifferentiated cells and whose expression changed in opposite directions as 

cells differentiated into erythroid and myelomonocytic lineages (i.e., genes are down-regulated in 

one lineage and up-regulated in the other57). Shu et al. revealed a regulatory network composed of 

individual genes, gene modules, and activation or inhibition interactions between network-nodes 

(genes and gene modules) from experimental data of induction of pluripotency in mouse somatic 

cells58. These previous studies suggest the validity of our regulation model based on transcriptional 

modules (Fig. S1a) and Boolean functions (Fig. S1b). Furthermore, in our previous study, we 

compared simulation results produced using a modular regulation model so that identical expression 

levels were assigned for TFs in a module, with actual expression levels of individual TFs. We 



visualised the transcriptional network composed of ~1,600 TFs and indicated the expression level of 

each TF in the network by colour densities, and confirmed visually that simulation results 

well-mimicked actual expression patterns15. 

 

 



Supplementary Methods 

Calculation of variation of state H(X) and robustness R(X) from state trajectories  

Here, we describe the methods based on an example. The graphs below show an example of the 

temporal profiles of the simulated amounts of 2OG, Glu, GABA, and succinate in soybean. In the 

simulation, the amount of metabolites was updated every 0.04 day (=0.96 hour) based on the 

differential equation model (see Supplementary Table S1). A plus symbol indicates the sampling 

point of the simulation results. At each sampling time (0, 1, 2, 3, and 4 days), the amount of each 

metabolite was translated into Boolean representation as ‘true’, representing ‘accumulated’ (more 

than double the initial amount of metabolite shown in Supplementary Table S2) or ‘false’, 

representing ‘not accumulated’ (no increase or an increase to less than double the initial amount). 

Red shading shows the area where the amount of the metabolite is more than double the initial 

amount of metabolite shown in Supplementary Table S2. The number 0 or 1 indicates the Boolean 

value translated from the simulated amount of each metabolite at the corresponding sampling time. 

In the following diagrams, the initial value of 2OG was set to double the initial value, and other 

metabolites were set to the same as the initial value in Supplementary Table S2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The following tables show the state trajectories of four metabolites; 2OG, Glu, GABA and 

Succinate in a Boolean representation. Trajectories start from 16 (＝24) initial states (t＝0, grey in 

the tables). The table in the red box corresponds to the state trajectory of the example explained 



above. The state (0 0 0 0) indicated by a black rectangle represents the state without perturbation. 

The initial (t＝0) and final (t＝4) states were plotted in Fig. 2a–e in main text. 
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 Variation of state H(X) was calculated using state trajectories on four units of time (t=1, 2, 

3, and 4): P (0 0 0 0)=8/64=0.125 (blue), P (0 0 1 0)=56/64=0.875 (orange) and 

H(X)=−0.125×log20.125−0.875×log20.875=0.54 [bit]. 

 Robustness R(X) was calculated using unperturbed state (t＝0, black rectangle in first 

table) and sixteen final states (t＝4) in the trajectories: 
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