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Genome-wide mutation rates and rare SNP 

Understanding the functional significance of polymorphisms is essential for designing 
better strategies for plant breeding. Modern, cost-effective sequencing and genotyping 
methods are providing valuable resources for the development of novel approaches. For 
example, the recent availability of extensive collections of SNPs has allowed researchers 
to analyze patterns of sequence variability along genomes: bacteria,1-3 mammals,4-13 and 
plants.14-19 

The original rice SNP dataset contained 29 mil SNPs. We excluded SNPs detected in 5 
genomes of Oryza glaberrima, restricting our analysis of O. sativa accessions. Twelve 
other genomes were excluded due to excessive amounts (i.e., >10,000) of heterozygous 
singleton SNPs. Supp. Figure 1 shows distribution of singleton heterozygotes per sample 
(genome). 

 

Supp. Figure 1: Distribution of the number of heterozygous singleton SNPs per sample 
(genome). The vertical dashed line marks a cutoff of 10,000 SNPs separating the 
seventeen outlier samples. 

As an additional measure of quality control for genomes, we computed the number of 
heterozygous calls that are private to each genome (singleton hets) using the Complete 
SNP set (29M). The distribution of singleton hets per genome is skewed to the right, with 
a long tail. After a log transformation, the distribution becomes bell-shaped (Supp. Figure 
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1), with peak corresponding to ~670 SNPs per sample. The apparent outliers are 
separated by the cutoff of 10,000 SNPs, and together contribute 970,976 SNPs (24% of 
the total singleton hets). The high number of singleton hets can be due either to high 
divergence of the sample with respect to the whole collection (five of these outlier 
accessions are known to be O. glaberrima) or to contamination. We excluded these 
samples from further analyses. 

 

Supp. Figure 2: MAF distribution 

Distribution of minor allele frequency (MAF) varies between genomic regions (  
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Supp. Table 1). Distribution of MAF in the coding regions (CDS and EXON panes in the 
Supp. Figure 2) are right-skewed (mode shifted towards smaller MAF values). Therefore, 
with increase of the MAF cut-off, introduced to remove sequencing errors (Supp. Figure 
3), increasingly smaller fractions of SNPs in these regions remain in the dataset. 

 

Supp. Figure 3: Percent of SNPs remaining after imposing MAF cut-off 
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Supp. Figure 4: Number of SNPs as a function of MAF, stratified by the type of 
substitution, 29M subset. 
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Supp. Table 1: Summary statistics for MAF in various regions, 29M dataset. 

FRAGMENT TYPE STANDARD 
DEVIAION 

MEAN MEDIAN 

CDS 0.086 0.028 4.97E-04 
EXON 0.096 0.035 4.98E-04 
MRNA 0.108 0.046 8.28E-04 
WHOLE GENOME 0.111 0.052 1.70E-03 
5'UTR 0.117 0.056 1.19E-03 
3'UTR 0.120 0.060 1.33E-03 
INTRON 0.120 0.061 1.50E-03 
PROMOTER 0.124 0.062 1.50E-03 

 

 

Supp. Figure 5: Distribution of non-synonymous mutations in CDS, 29M dataset. 
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Figure 6: Non-synonymous SNP density for the Exon-Intron-Exon junction, 29M dataset. 

When we exclude synonymous positions, the trends are re-arranged (compare Supp. 
Figure 5 with the main Figure 4). The frequency of non-synonymous SNPs in the 2nd 

position in the codon is the highest, while the frequency at the 3rd position is the lowest. 
This effect can also be explained using the codon table: a point mutation in the 3rd position 
of the codon never results in amino acid change for the 4-fold degenerate cases (such as 
Proline encoded by codons CCU, CCC, CCA, or CCG), and half of the time for the 2-fold 
degenerate cases (such as Histidine encoded by CAU or CAC).  

 

PFAM and GO categories 
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Gene that belong to different GO categories differ in distribution of SNPs (Supp. Figure 
7). For example, GO:0006355 "regulation of transcription, DNA-templated" has a higher 
SNP density as compared to the GO:0006200 category "obsolete ATP catabolic process".  

 

 

Supp. Figure 7: Comparison of the SNP density distribution for GO:0006355 "regulation 
of transcription, DNA-templated" and GO:0006200 "obsolete ATP catabolic process" in 
relation to the SNP density distribution in all genes using the entire 29M dataset. 

Next, we divided all rice genes into SNP abundance categories using SNP density in 
coding and promoter regions. “H” category is defined as 10% of genes ranked by the SNP 
density, and “L” is the bottom 10% of the genes. GO categories that differ most between 
the “L” and “H” categories are in the Tables Supp. Table 2 and Supp. Table 5. 
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Supp. Table 2: GO categories difference 

CAT GO-SLIM #High #Low F(H) F(L) Z-score 

F sequence-specific DNA binding 
transcription factor 

20 128 1% 10% -9.61647 

C plasma membrane 323 133 24% 12% 8.133084 

F DNA binding 40 137 3% 10% -8.07424 

F kinase activity 159 43 11% 3% 7.923264 

P carbohydrate metabolic process 101 22 7% 2% 6.738508 

F nucleotide binding 211 94 15% 7% 6.40524 

F transporter activity 143 50 10% 4% 6.39815 

F catalytic activity 300 158 21% 12% 6.382855 

P catabolic process 142 51 10% 4% 6.091804 

P transport 202 93 14% 7% 5.828575 

F hydrolase activity 216 109 15% 8% 5.593938 

P response to stress 319 184 22% 14% 5.441419 

C cell wall 112 37 8% 3% 5.425288 

C nucleus 120 178 9% 16% -4.95284 

F transferase activity 150 75 11% 6% 4.624286 

P response to abiotic stimulus 191 104 13% 8% 4.472828 

P nucleobase, nucleoside, nucleotide and 
nucleic acid 

156 215 11% 16% -4.3043 

P signal transduction 104 48 7% 4% 4.055829 

P protein modification process 203 119 14% 9% 4.048254 

C Golgi apparatus 36 7 3% 1% 3.984855 

C endoplasmic reticulum 59 20 4% 2% 3.804433 

C membrane 310 197 23% 17% 3.778593 

C cellular component 309 341 23% 30% -3.66064 

P response to biotic stimulus 99 49 7% 4% 3.616344 

C extracellular region 66 28 5% 2% 3.276697 

F protein binding 285 203 20% 16% 3.166319 

F nucleic acid binding 22 45 2% 3% -3.16517 

F receptor activity 18 3 1% 0% 3.112005 

P protein metabolic process 93 50 6% 4% 3.09495 

C nucleoplasm 5 18 0% 2% -3.08682 

P lipid metabolic process 74 37 5% 3% 3.061764 

P cell growth 38 14 3% 1% 3.007337 

 

The category “Sequence-specific DNA binding transcription factor” is 1% in the “H” 
category and 10% in the “L” category. PFAM category annotation also supports the 
hypothesis that transcription factors feature fewer SNPs compared to other categories 
(Supp. Table 3). 
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Supp. Table 3: PFAM categories difference 

CATEGORY PFAM #High #Low F(H) F(L) Z-score 

Family DUF1618 0 20 0% 3% -5.21793 

Domain Pkinase 91 23 12% 4% 5.176136 

Family LRRNT_2 39 6 5% 1% 4.040701 

Domain Myb_DNA-binding 3 17 0% 3% -3.80892 

Domain zf-C3HC4 6 20 1% 3% -3.51301 

Domain AP2 1 11 0% 2% -3.40984 

Repeat LRR_1 60 13 53% 25% 3.375925 

Domain ABC_tran 21 2 3% 0% 3.364107 

Repeat Ank 10 15 9% 29% -3.32817 

Family Sugar_tr 18 1 2% 0% 3.318228 

Domain HLH 0 8 0% 1% -3.25726 

Domain WRKY 0 8 0% 1% -3.25726 

Domain Cu_bind_like 1 10 0% 2% -3.2125 

Domain Lectin_legB 13 0 2% 0% 3.155725 

Domain EGF_CA 13 0 2% 0% 3.155725 

Domain Glyco_hydro_17 16 1 2% 0% 3.121329 

Domain Pkinase_Tyr 31 7 4% 1% 3.120969 

Domain F-box 16 30 2% 5% -3.07749 

 

Distribution of SNPs in the promoter regions is also biased towards functional categories, 
in a similar fashion (Supp. Table 4). 

Supp. Table 4: GO categories and SNP in promoter 

CAT GO description #High #Low F(H) F(L) Z-
score 

F sequence-specific DNA binding 
transcription factor 

60 201 4% 12
% 

-8.143 

F DNA binding 62 138 4% 8% -4.71 

P nucleobase, nucleoside, nucleotide 
and nucleic acid 

190 304 12% 18
% 

-4.27 
 

C cell wall 41 97 3% 6% -4.12 

P biosynthetic process 262 390 17% 23
% 

-4.07 

C cell 128 216 10% 14
% 

-3.79 

P anatomical structure morphogenesis 35 74 2% 4% -3.23 

C extracellular region 29 65 2% 4% -3.15 

F transferase activity 144 113 10% 7% 3.00 
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Supp. Table 5: Analysis of SNPs density per GO category using the 16M dataset 

GOSLIM TERM AVERAGE 
SNP DENSITY 

STDEV 
SNP 
DENSITY 

NUMBER 
OF GENES 

Z-score LOG(P-
VALUE) 

PERCENT 
INCREASE 

sequence-specific DNA binding 
transcription factor 

0.018061 0.011489 1196 -11.8581 -32 -18% 

DNA binding 0.018157 0.012281 1070 -10.2366 -24 -17% 

RNA binding 0.019057 0.011865 438 -5.19156 -7 -13% 

nucleic acid binding 0.019267 0.011974 447 -4.82522 -6 -12% 

transporter activity 0.020665 0.013907 1025 -3.0726 -3 -6% 

structural molecule activity 0.020066 0.013915 376 -2.69439 -2 -9% 

binding 0.021292 0.014657 2528 -2.4271 -2 -3% 

hydrolase activity 0.021191 0.015328 1993 -2.35512 -2 -4% 

signal transducer activity 0.020084 0.014801 192 -1.79346 -1 -9% 

protein binding 0.021435 0.017342 2352 -1.58047 -1 -3% 

nuclease activity 0.019955 0.014866 117 -1.48809 -1 -9% 

enzyme regulator activity 0.021373 0.014897 199 -0.59373 -1 -3% 

catalytic activity 0.022055 0.015584 2553 0.177305 0 0% 

lipid binding 0.022416 0.017119 193 0.337465 0 2% 

transferase activity 0.022316 0.015799 1271 0.714185 -1 1% 

nucleotide binding 0.022892 0.019593 1576 1.806708 -1 4% 

carbohydrate binding 0.025792 0.020204 110 1.968712 -2 17% 

kinase activity 0.023685 0.020725 1183 2.797077 -3 8% 

oxygen binding 0.028757 0.016818 175 5.315205 -7 31% 
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Nucleotide imbalance at the Transcription Start Site and gene expression 

TSS has a remarkable feature -peak in AT and CG skews, defined as 𝐴𝑇𝑠𝑘𝑒𝑤 =
 #А−#𝑇

#𝐴+#𝑇
, 

𝐶𝐺𝑠𝑘𝑒𝑤 =
 #𝐶−#𝐺

#𝐶+#𝐺
.20,21 

 

Supp. Figure 8 shows patterns of CG and AT skews in the region [TSS-500, TSS+500] 
for 20,367 rice genes. AT skew shows a peak associated mostly with the presence of 
TATA-box at [-40,-20], while CG skew peak is much wider and more pronounced.  

 

 

Supp. Figure 8: Nucleotide imbalance at TSS, all genes 
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Since we assume that the transcription process affects nucleotide imbalance and SNP 
density in the vicinity of TSS, we created several groupings of genes. First, we ranked the 
genes by the number of SNPs in the core promoter region [-250,50], sampled 1000 genes 
from the two tails of the gene list, and computed CG skew profiles. Genes with most 
mutations in the promoter region (Supp. Figure 9, blue dots) have a higher peak of CG 
skew compared with the less mutated genes (green dots), and 5'-end of the transcript is 
more C-rich. 

Next, we calculated variability of gene expression (standard deviation of gene expression) 
in embryo (GSE78997), ranked genes by variability, and computed CG skew profiles for 
constitutively and differentially (variably) expressed genes. As expected, constitutively 
expressed genes have a more pronounced peak of CG skew, since they spend more time 
in the single-strand mode. Comparison of genes in the 1000 SNP-rich list with the 1000 
SNP-poor list also shows that SNP-poor genes have 38% increase of variability of gene 
expression compared to the SNP-rich genes. Variability of gene expression is negatively 
correlated with the range of CG skew and AT skew (Pearson's correlation coefficients are 
-0.15 and -0.21, respectively); this observation also supports the claim that constitutively 
expressed genes, with low variability of gene expression, have more pronounced peaks 
of nucleotide composition in comparison to differentially expressed genes. 

 

 

Supp. Figure 9: CG skew for 1000 genes with most and least SNP-rich promoters 
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Supp. Figure 10: CG skew for 1000 constitutive and variable genes 
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Transcription termination models 

 

The final stage of transcription is its termination, when the complete transcript dissociates 
and the RNA polymerase is released from the DNA template. The mechanism of 
termination is the least understood of the three transcription stages; two competing, yet 
not fully satisfactory22 models known as "allosteric" and "torpedo"23 are proposed as 
mechanisms. 

In the framework of the allosteric model, transcription termination is caused by the 
destabilization and/or a conformational change of Pol II EC after transcribing the poly(A) 
site24. However, according to the torpedo model, endonucleolytic cleavage at the poly(A) 
site creates an entry site for 5′ → 3′ exonuclease, which then degrades the RNA 
downstream of the cleavage site24. Therefore, hybrid models have been proposed, such 
as allosteric–torpedo and double-torpedo models25,26. Modeling of the kinetics of allosteric 
protein-protein RNA/DNA binding is needed to shed more light on this mechanism. 

The profile of SNP density variation suggests the existence of evolutionary constraints 
protecting the TTS area, such as requirements to terminate transcription at the 
appropriate positions27,28, to interact with RNA-binding proteins to regulate mRNA 
translation29,30, and to accommodate miRNA target sites.31,32 
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