Supporting Information

Optofluidic Sensing from Inkjet-Printed Droplets: the Enormous Enhancement by Evaporation-Induced Spontaneous Flow on Photonic Crystal Biosilica

Xianming Kong^{a §}, Yuting Xi^{a §}, Paul LeDuff^b, Erwen Li^a, Ye Liu^a, Li-Jing Cheng^a, Gregory L. Rorrer^b, Hua Tan^{c*}, Alan X. Wang^{a*}

^a School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA. wang@eecs.oregonstate.edu

^b School of Chemical, Biological & Environmental Engineering, Oregon State University, Corvallis, OR, 97331, USA

^c School of Engineering and Computer Science, Washington State University-Vancouver, Vancouver, WA, 98686, USA. hua.tan@wsu.edu

§These two authors contributed equally to the manuscript

Figure S1 The microscopic optical images of the diatom frustules (a) and diatom-Ag NPs after inkjet-printing (b).

Figure S2 Raman spectra of glass and glass-Ag NPs.

Figure S3 Image of 2 μ L droplet of water on glass with and without diatom (a) and on glass-Ag NPs and diatom-Ag NPs SERS substrate (b).

Figure S4 FTIR spectra of glass and glass-diatom.

Figure S5 Raman mapping image of 400 droplets TNT (10^{-5} M) on a single diatom SERS substrate (a) and the corresponding microscopy image (b).