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ABSTRACT Classical insulin and insulin-like growth factor
I (IGF-I) receptors exist as well defined a2P2 heterotetrameric
complexes that are assembled from two identical al het-
erodimeric half-receptor precursors. Recent evidence suggests
that insulin and IGF-I half-receptors can heterologously assem-
ble to form a2lj2 insuln/IGF-I hybrid receptor complexes in
vivo and in vitro. We have utilized hybrid receptor complexes to
examine ligand-stimulated t embrane sgnaling of wild-
type insun (aIJNs.wr) or IGF-I (aIGF.wr) half-receptors
assembled with a kinase-defective insulin half-receptor mutant
(afNS.A/K). In Vito assembly ofeither (afIGF.wT/(af.s.A/K
or (af)Ns.wT/(aIhPs.A/K hybrid receptors resulted in de-
creased substrate protein kinase activity. The degree of protein
kinase inactivation directly correlated with the amount of im-
munologically cross-reactive hybrid receptors formed. In con-
trast to substrate kinase activity, insulin-stimulated autophos-
phorylation of the (aVIJiMS.WT/(a4*6S.A/K hybrid receptor
complex was completely unaffected in comparison to the wild-
type (aI)]Ns.wT/(a(J)uis.wT receptor. To assess a molecular
basis for this difference, autophosphorylation of a hybrid re-
ceptor composed of a truncated frsubunit insulin half-
receptor with the kinase-dfective half-receptor, (a*)s.AcTr/
(aIIh6S.A/K9 demonstrated the exclusive autophosphorylation of
the (aCI)ms.A/K half-receptor P subunit. These resul demon-
strate that ligand-dependent substrate phosphorylation by in-
sulin and IGF-I holoreceptors requires interactions between two
functional 3 subunits within the a2f32 heterotetrameric complex
and occurs through an intramolecular transphosphorylation
reaction.

Insulin and insulin-like growth factor I (IGF-I) holoreceptors
share a large degree of structural and functional similarity (1,
2). The mature a2(3 holoreceptors are synthesized from ad
fusion proreceptor precursors that are cotranslationally acy-
lated and glycosylated and then transported to the Golgi
apparatus where additional glycosylation, proteolytic cleav-
age, and assembly into an a2f32 complex occurs (3-9). The
mature a2f3A receptor state is required for ligand-stimulated
transmembrane signaling, since lower oligomeric forms such
as isolated af3 heterodimers (10-14) and truncated a2,ff'
receptors (15) are kinase-inactive species. Immunologically
cross-reactive a2f32 insulin/IGF-I hybrid receptors have been
described that appear to result from the heterologous assem-
bly of individual aB insulin and IGF-I receptor precursor
proteins in vivo (16, 17). In parallel, we have observed that
insulin/IGF-I hybrid receptor complexes can be assembled
from purified insulin and IGF-I a/3 half-receptors in vitro (18).

The identification of hybrid receptor complexes has raised
the question whether functional alterations in transmem-
brane signaling could result from the assembly of wild-type
receptor precursors with dysfunctional receptor subtypes.
For example, it has been observed that heterozygote indi-
viduals that express both wild-type and mutant tyrosine
kinase-defective insulin receptor precursors have severe
insulin resistance and diabetes (19-22). In these patients, the
degree ofinsulin resistance is significantly greater than would
be predicted from a simple loss of half the normal comple-
ment of insulin receptors. Similarly, cell lines that coexpress
both endogenous wild-type and transfected kinase-defective
insulin receptors display a marked decrease in insulin sensi-
tivity and/or responsiveness (23-26). To determine whether
defective insulin signaling through hybrid receptors could
contribute to the effects observed, we have examined the
kinase activity of a2f32 heterotetrameric hybrid receptors
composed of kinase-defective A/K1018 mutant insulin half-
receptors (24) assembled in vitro with a wild-type insulin or
IGF-I half-receptor.

MATERIALS AND METHODS
Isolation of a(J Heterodimeric Insulin and IGF-I Receptor

Complexes. Human placenta membranes (20 mg/ml) were
treated with 2mM dithiothreitol for 5 min at pH 8.5 to reduce
and dissociate the a2f2 heterotetrameric receptors, followed
by detergent solubilization and partial purification by Bio-Gel
A-1.5m gel filtration or wheat germ agglutinin-Sepharose
chromatography (27). The (aP)IGF.wT half-receptors were
isolated by immunoaffinity purification by using the anti-
IGF-I receptor monoclonal antibody aIR-3 or by immunode-
pletion of (af3)jNs.wT half-receptors by using the anti-insulin
receptor monoclonal antibody 83-7 (28-31). The (aI6)Ns.wT,
(aPINs.A/K, and (a)jNs.A&cr half-receptors were obtained
from cDNA-transfected cell lines expressing the wild-type
human insulin receptor (32), the A/K1018 mutant insulin
receptor (24), and a deletion-mutated insulin receptor lacking
43 COOH-terminal amino acid residues (33), respectively.
Cell membranes (3 mg/ml) were prepared (27) and treated
with alkaline pH plus dithiothreitol as described above for the
human placenta membranes followed by partial purification
by Bio-Gel A-1.5m gel filtration chromatography or poly-
lysine-Sepharose affinity chromatography (34).

Bio-Gel A-1.5m Column Gel Filtration Chromatography.
Isolated (a/3)IGF.w-r and (a3)jNs.A/K half-receptors (2 pmol/
ml) were mixed and incubated in 50 mM Hepes (pH 7.8)
containing 100 nM insulin, 100 nM IGF-I, or 100 nM insulin/
100 nM IGF-I for 1 hr at 230C. Samples were then applied to
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Bio-Gel A-1.5m gel filtration columns (1.6 x 50 cm) equili-
brated in 50 mM Tris1HCl, pH 7.6/0.1% Triton X-100/150
mM NaCl/0.02% NaN3 (Bio-Gel buffer) at 4°C. Fractions
containing the aJ2 heterotetrameric and af heterodimeric
insulin and/or IGF-I receptors were identified by 1251-labeled
IGF-I and 125I-labeled insulin binding.
Immunoabsorption of Insulin and IGF-I Receptor Com-

plexes. Bio-Gel A-1.5m gel filtration column fractions con-
taining the a2f2 heterotetrameric or a3 heterodimeric insulin
and IGF-I receptors were incubated (1:500 dilution) with
Sepharose-coupled anti-insulin receptor monoclonal anti-
body 83-7 and anti-IGF-I receptor monoclonal antibody
aIR-3 for 16 hr at 4°C. The antibody-receptor complexes
were collected by centrifugation and the supernatants were
assayed for 125I-labeled insulin and 1251-labeled IGF-I bind-
ing.
Kinase Assays. Isolated (aPl)INS.wT, (aP)INS.ACT, and

(a)INs.A/K half-receptors (0.1-5 pmol/ml) were mixed and
incubated in 50mM Hepes, pH 7.8/100 nM insulin for 1 hr at
22°C. The samples were immunoabsorbed with Sepharose-
coupled monoclonal antibody 83-7 and resuspended in 50mM
Hepes, pH 7.8/100 nM insulin/10mM MnCl2/10 mM MgCl2.
Substrate phosphorylation was initiated by the addition of
poly(Glu-Tyr) (2 mg/ml) and [y-32PJATP (100 ,uM, 3 ,uCi/
nmol; 1 Ci = 37 GBq), and the reaction was terminated (20
min) by precipitation onto Whatman 3MM filter paper with
10% (wt/vol) trichloroacetic acid. Autophosphorylation was
initiated by the addition of [y32P]ATP (100,uM, 3 ,Ci/nmol)
and terminated (5 min) by addition of 5 mM ATP/5 mM
EDTA/100 mM sodium fluoride/10 mM sodium pyrophos-
phate. Samples were centrifuged at 12,000 x g, resuspended
in Laemmli sample buffer (35) containing 300 mM dithio-
threitol, heated for 5 min at 100°C, and resolved on 7.5%
polyacrylamide gels containing SDS as described (33).
The isolated (a.B)IGF.wT and (a43)INS.A/K half-receptors

(0.3-3 pmol/ml) were mixed and incubated for 1 hr at 22°C
with 100 nM insulin or 100 nM insulin/100 nM IGF-I,
followed by the addition of 10 mM MnCl2/10 mM MgCl2/
poly(Glu-Tyr) (2 mg/ml). Substrate phosphorylation was
then assayed directly in solution by the addition of
[y-32P]ATP (100 ,uM, 3 ,uCi/nmol) and terminated as de-
scribed above.

RESULTS AND DISCUSSION

Heterologous Assembly of (aN)ms.A/K and (aGF.WT Half-
Receptors. To determine whether mutant/wild-type hybrid
receptors could be formed in vitro, the highly related but
immunologically distinct (a13)IGF.wT and (aW)INS.A/K half-
receptor species were examined for heterologous assembly
into (aP8)IGF.WT/(a1)INs.A/K complexes (Fig. 1). Equal
amounts of (aPB)IGF.wT and (a1)INS.A/K were incubated with
insulin alone, IGF-I alone, or insulin/IGF-I and then sub-
jected to Bio-Gel A-1.5m gel filtration chromatography to
determine the receptor association state. Insulin treatment of
the mixed aB half-receptors resulted in a characteristic
mobility shift of insulin binding activity (Fig. 1A), consistent
with an insulin-induced in vitro assembly of a2jB2 heterotet-
rameric complexes (12). The formation of an (aP)INs.A/K/
(aC3)INS.A/K heterotetrameric receptor was specific for insu-
lin, since IGF-I treatment had no effect on the association
state of the (a1)INs.A/K half-receptor. Similarly, IGF-I incu-
bation of the mixed half-receptors resulted in a specific
mobility shift of IGF-I binding activity, consistent with the
formation of an (aP)IGF.WT/(aa)IGF.wT heterotetrameric
IGF-I receptor complex, whereas insulin was without effect
(Fig. 1B). The simultaneous treatment of the mixed half-
receptors with a combination of insulin plus IGF-I resulted in
a mobility shift of both insulin and IGF-I binding activity to
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FIG. 1. Ligand-dependent association of (aP)IGF.wT and
(aPl)INs.A/K heterodimeric half-receptors into an aZ82 heterotet-
rameric state. (aP)IGF.wr half-receptor and the (a)INs.A/K half-
receptor were obtained from human placenta membranes and trans-
fected Rat-1 fibroblast membranes. Equal amounts of (a,8)IGF.wr and
(aB)INs.A/K half-receptors (2 pmol/ml) were mixed and incubated
with 100 nM insulin (o), 100 nM IGF-I (A), or 100 nM insulin/100 nM
IGF-I (o) for 1 hr at 23°C. The samples were then applied to Bio-Gel
A-1.5m gel filtration columns (1.6 x 50 cm) equilibrated in 50 mM
Tris HCl, pH 7.6/150 mM NaCl/0.1% Triton X-100. Fractions (0.45
ml) were collected after voiding 20 ml and assayed (200 ,ul) for
1251-labeled insulin (125I-insulin) (A) and 1251-labeled IGF-I (125I-
IGF-I) binding (B). In the absence of ligand treatment, the mixed a'3
heterodimeric half-receptors displayed peak insulin and IGF-I bind-
ing at fractions 33-36 (data not shown).

the expected position of an aA/3 heterotetrameric receptor
(Fig. 1).
Although these data demonstrate that both the (aP)INs.A/K

and (a,1)IGF.wT half-receptors associate, in a ligand-specific
manner, to a heterotetrameric state, such association could
have occurred in either a homologous or heterologous fash-
ion. To determine the degree ofinsulin/IGF-I hybrid receptor
formation, the peak fractions in Fig. 1 were immunoabsorbed
with the anti-insulin receptor specific monoclonal antibody
83-7 and the anti-IGF-I receptor monoclonal antibody aIR-3.
In the absence of ligand, the mixed af3 heterodimeric half-
receptors displayed absolute antibody specificity without any
detectable cross-reactivity (e.g., 98-100%o of binding precip-
itated only by the cognizant monoclonal antibody) (Table 1).
Antibody specificity (90-100%) was also maintained subse-

Table 1. Insulin and IGF-I induced heterologous assembly of
(aP)IGF.WT and (a3)INs.A/K half-receptors into an immunological
cross-reactive a2,82 heterotetrameric hybrid receptor complex

1251-labeled '25I-labeled
insulin IGF-I

precipitated, precipitated,
Receptor % %

Treatment species 83-7 aIR-3 83-7 aIR-3

Untreated af 98 0 1 100
Insulin aZ82/a,8 95 3 10 100
IGF-I a82A/afl 93 0 9 100
Insulin/IGF-I a132 95 55 54 100

Bio-Gel A-1.5m gel filtration column fractions containing the aZ82
heterotetrameric or a,3 heterodimeric insulin and IGF-I receptors
(Fig. 1) were immunoabsorbed with 83-7 or aIR-3 followed by
125I-labeled insulin and 125I-labeled IGF-I binding.
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quent to separate insulin or IGF-I treatment of the mixed a/3
heterodimeric half-receptors. However, incubation of the
mixed al3 heterodimeric half-receptors with the combination
of insulin plus IGF-I resulted in a232 heterotetrameric recep-
tors that displayed partial (54-55%) cross-reactivity of ligand
binding precipitation by both 83-7 and aIR-3 (Table 1). Thus,
incubation of approximately equal amounts of (a,8)IGF.wT and
(aB)INs.A/K half-receptors with a combination of insulin plus
IGF-I resulted in the random formation of a2,32 heterotet-
rameric hybrid receptors. This is in accord with our previous
observations of random heterologous association between
the wild-type insulin and IGF-I half-receptors (18).

Inhibition of (a13)IGF.WT Kinase Activity by (a)INS.A/K
Half-Receptor. We next examined the effect of hybrid for-
mation between the (a13)INs.A/K and (a13)IGF.wT half-receptors
on IGF-I-stimulated substrate protein kinase activity (Fig. 2).
A fixed concentration of (ac4)IGF.WT was incubated with
various amounts of (a13)INS.A/K prior to the simultaneous
addition of insulin plus IGF-I. The addition of increasing
amounts of (a13)INS.A/K resulted in a progressive decrease in
IGF-I-stimulated substrate kinase activity (Fig. 2A), which
directly correlated (r2 = 0.91) with an increased in vitro
assembly of (a,/)IGF.wT/(a1INs.A/K heterotetrameric hybrid
receptors. Kinase inactivation did not simply result from
heterologous hybrid formation between the insulin and IGF-I
af3 half-receptors per Se, since (a/3)INS.Wr/(a13)IGF.WT hybrid
receptor complexes displayed ligand-stimulated kinase ac-
tivity in response to both insulin and IGF-I (data not shown).
In addition, the (aP8)IGF.wT displayed a linear 4.5-fold increase
in substrate protein kinase activity as the concentration of
(a,8)IGF.WT was increased 6-fold in the presence of IGF-I
alone (data not shown) or insulin plus IGF-I (Fig. 2B).

In these experiments it was necessary to drive the forma-
tion of the insulin/IGF-I hybrid receptors by a combination
of insulin plus IGF-I (Fig. 1). To confirm the ligand specificity
of substrate kinase activation of the (a/3)IGF.wT half-receptor,
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a comparison between insulin and IGF-I stimulation was
determined (Fig. 2B). As observed in Fig. 1, insulin did not
induce the self-association of the (a13)IGF.WT into an a2f82
heterotetrameric state and was relatively ineffective in acti-
vating the IGF-I receptor kinase (Fig. 2B). In the presence of
IGF-I alone or insulin plus IGF-I, the linear relationship
between af3 half-receptor concentration and kinase activity
reflected the complete formation of a2f32 IGF-I heterotet-
rameric receptor complexes under these conditions (27, 29).

Inhibition of (A)INS.wr Kna Activity by the (aP)INS.A/K
Half-Receptor. In a similar paradigm, we examined the effect
of the (aPB)INS.A/K half-receptor on insulin-stimulated sub-
strate kinase activity by (a/3)INS.wT. As observed for
(aP)IGF.WT (Fig. 2), the addition of increasing amounts of
(aP)INS A/K to a fixed concentration of (ap)INS.WT resulted in
a dose-dependent inhibition of (aP)INS.wT substrate protein
tyrosine kinase activity (Fig. 3A). Half-maximal inhibition of
the (aP)INS.wT kinase activity occurred at approximately
equal molar amounts of (aP)INs.A/K whereas maximal inhi-
bition required a 10-fold excess. As previously reported
(23-25), the kinase-defective (aI3)INs.A/K was substrate-
kinase-inactive (Fig. 3B). In contrast, the isolated (a1)INs.wT
displayed a linear 6-fold increase in insulin-stimulated sub-
strate phosphorylation over an 8-fold (a.B)INS.WT concentra-
tion range (Fig. 3B). In addition, we have observed that
(aP)INS.A/K inhibition of substrate kinase activity is specific
for the (a/3)INS.wr half-receptor, since addition of (aP8)INS.A/K
to aJ32 wild-type insulin receptors had no effect on substrate
kinase activity (data not shown). Furthermore, in vitro as-
sembly of the (aA)INs.A/K half-receptor with prephosphory-
lated and autoactivated (a1)INs.wT half-receptors (10) did not
result in diminished substrate kinase activity (data not
shown). These data demonstrate that the transdominant
inhibition of (acq)INS.WT substrate kinase activity by
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FIG. 2. Transdominant inhibition of (a3)IGF.wT half-receptor
substrate kinase activity by in vitro assembly with the (aP)INs.A/K
half-receptor. (A) A fixed amount of (aP)IGF.wT half-receptor (0.3
pmol/ml) was mixed with increasing relative amounts of (a13)INs.A/K
half-receptor and incubated with 100 nM insulin/100 nM IGF-I for 1
hr at 22°C and substrate phosphorylation was determined. (B) The
(a,/),GF.wT half-receptor (0.3 pmol/ml) was mixed with increasing
relative amounts of homologous (aj3)IGF.wT half-receptors in the
presence of 100 nM insulin (o) or 100 nM insulin/100 nM IGF-I (o)
for 1 hr at 22°C. Poly(Glu-Tyr) substrate phosphorylation was then
determined as described in A.

of# (pmol/ml)
FIG. 3. (a13)INS.A/K inhibition of insulin-stimulated protein kinase

activity of the (a!)INs.wT half-receptor. (A) A fixed amount of
(aP)INS.wT half-receptor (0.5 pmol/ml) was mixed with increasing
amounts of (a/3)INS.A/K half-receptor prior to the addition of 100 nM
insulin for 1 hr at 22°C. The samples were immunoabsorbed to
anti-insulin receptor monoclonal antibody 83-7 and substrate phos-
phorylation was initiated. (B) (aB)INs.wr (e) and (a3)INs.A/K (0)
insulin half-receptors (0.5 pmol/ml) were mixed with increasing
amounts of homologous half-receptor in the presence of 100 nM
insulin for 1 hr at 22°C. Samples were then immunoabsorbed to
monoclonal antibody 83-7 and assayed for poly(Glu-Tyr) substrate
phosphorylation as described in A.
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(a,3)INS.A/K results from impaired insulin-signaling within a
wild-type/mutant hybrid receptor complex.

Autophosphorylation of Wild-Type/Mutant Hybrid Recep-
tor Complexes. To further investigate the insulin-signaling
defect in the wild-type/mutant hybrid receptor, insulin-
stimulated p-subunit autophosphorylation was examined
(Fig. 4). In contrast to the complete inhibition of substrate
kinase activity (Fig. 3), the (a,8)INS.wT/(a/3)INS.A/K hybrid
receptor (Fig. 4A, lane 2) displayed 83-subunit autophospho-
rylation that was essentially identical compared to the
(a,8)INs.wT/(a,)INs.w-r holoreceptor complex (Fig. 4A, lane
1). As expected, the in vitro-assembled (aj3)INS.A/K/
(a/3)INS.A/K holoreceptors alone were completely devoid of
insulin-stimulated /-subunit autophosphorylation (Fig. 4A,
lane 3).
One possible explanation for apparently normal /8-subunit

autophosphorylation but defective substrate kinase activity
in the (a3)INs.wT/(aP)INs.A/K hybrid receptor would be an
altered intramolecular autophosphorylation cascade. To ad-
dress this issue, autophosphorylation was reexamined in
hybrid receptors formed from the heterologous assembly of
the (a/3)INS.A/K half-receptor with the /3-subunit C-terminal-
truncated a,3 half-receptor, (a8)INs..cATr Insulin-stimulated
autophosphorylation of the (a3)INS.ACT/(a/3)INS.A/K hybrid
receptor complex demonstrated the specific labeling of the
Mr 95,000 (aB)INS.A/K /3 subunit, without significant auto-
phosphorylation of the truncated Mr 90,000 (a/8)INs.A&c-r /
subunit (Fig. 4B, lane 2). As reported (33), autophosphory-
lation of the (a/3)INs.AcT/(a3)INs..cAr receptors exclusively
identified the truncated Mr 90,000 ,/ subunit species (Fig. 4B,
lane 1). These data directly demonstrate an intramolecular
trans-phosphorylation of the (a18)INs.A/K /3 subunit by the
kinase-active (a8)INS. ACT /3 subunit within the a2/32 heterotet-
rameric (a13)INs.AcT/(a/3)INs.A/K hybrid receptor complex.

In summary, we have identified a transdominant inhibition
of ligand-stimulated substrate kinase activity in hybrid insulin
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FIG. 4. Insulin-stimulated autophosphorylation of wild-type/
mutant hybrid receptor complexes. (A) The (aP)INs.wT (0.2 pmol/ml;
lane 1), (a1)INs.wT plus (a13)INS.A/K (0.2 pmol/ml + 1.0 pmol/ml;
lane 2), and (aB3)INS.A/K (1.0 pmol/ml; lane 3) half-receptors were
incubated with 100 nM insulin for 1 hr at 220C, then immunoabsorbed
with the anti-insulin receptor monoclonal antibody 83-7, and auto-
phosphorylated. (B) The (ap)INs.AcT (0.1 pmol/ml; lane 1) and
(aA)iNS.ACT plus (a)INS.A/K (0.1 pmol/ml + 0.6 pmol/ml; lane 2)
half-receptors were incubated with 100 nM insulin for 1 hr at 220C,
then immunoabsorbed with the monoclonal antibody 83-7, and
autophosphorylated as described in A. Positions of molecular weight
markers are indicated (X 10-3).

and IGF-I holoreceptors composed of a/3 wild-type and a,3
kinase-defective half-receptors. However, these hybrid re-
ceptors display essentially normal /-subunit autophosphory-
lation activity that occurs by an intramolecular trans-
phosphorylation mechanism. Thus, insulin binding must nec-
essarily stimulate the kinase activity of one of the a/3 half-
receptors that subsequently utilizes the other a/3 half-
receptor as a phosphotyrosine acceptor substrate. Since
autophosphorylation has been established (36-39) to result in
the activation of substrate kinase activity, we hypothesize
that the presence ofa kinase-defective half-receptor within an
a2/2 hybrid receptor complex results in premature termina-
tion of the activating signal by preventing a secondary back
phosphorylation of the wild-type half-receptor species.
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