
	

Supplementary	Figure	1	|	Flavins	and	nicotinamide	.	The	molecular	structures	

of	 (a)	 lumiflavin,	 (b)	 riboflavin,	 (c)	 flavin	 mononucleotide	 (FMN,	

riboflavin-5’-monophosphate),	 (d)	 flavin	 adenine	 dinucleotide	 (FAD),	 and	 (e)	

nicotinamide	(pyridine-3-carboxylic	acid	amide).	 	
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Supplementary	 Figure	 2	 |	 Redox	 reactions	 of	 FMN-Na.	 Proposed	 redox	
mechanisms	of	FMN-Na	with	different	protonation	states	of	 the	phosphate	group	
and	3-position	nitrogen.	(a)	pH	=	5.5,	(b)	pH	=	8.6,	10.0,	and	(c)	pH	=	13.0.	 	
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Supplementary Figure 1 | Chemical structures redox mechanism of RPs at different 
protonation states of the phosphate group and 3-position nitrogen.
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Supplementary	Figure	3	|	Alkaline	hydrolysis	of	riboflavin.	 	
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Supplementary	 Figure	 4	 |	 Dimerization	 effect	 on	 optical	 characteristics.	
UV-VIS	 spectra	of	 (a)	50	µM	FMN-Na	 (pH	5.5)	and	 (b)	50	µM	FMN-Na	 in	pH	9.1	
buffer	(pH	8.6)	aqueous	solutions	0–6	h	after	electrolyte	preparation.	
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Supplementary	 Figure	 5	 |	 Electrochemistry	 of	 an	 electrolyte.	 (a)	 Cyclic	
voltammograms	of	20	mM	K4[Fe(CN)6]	and	1	M	KOH	aqueous	positive	electrolyte	
and	 10	 mM	 FMN-N	 and	 1	 M	 KOH	 aqueous	 negative	 electrolyte.	 (b)	 RDE	
measurements	of	20	mM	K4[Fe(CN)6]	and	1	M	KOH	aqueous	positive	electrolyte.	
The	inset	shows	the	limiting	current	(i)	vs.	the	square	root	of	the	rotation	velocity	
(Levich-plot).	
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Supplementary	Figure	6	|	Possible	resonance	structures	of	FMN-Na.	(a)	FMN3-,	
(b)	FMN4–•,	and	(c)	FMN5–.	 	
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Supplementary	 Figure	 7	 |	 Possible	 resonance	 structures	 at	 two-electron	
reduced	state.	(a)	Anthraquinone	and	(b)	p-benzoquinone.	
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Supplementary Figure 4 | Redox reaction and contributing structures of anthraquinone 
compound.
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Supplementary	 Figure	 8	 |	 The	 effect	 of	 nicotinamide	 on	water	 solubility	 of	
FMN-Na.	 (a)	Water	 solubilities	of	FMN-Na	 in	1	M	H2SO4,	KCl,	 and	KOH	with	and	
without	3	M	nicotinamide	(NA)	at	288	K.	(b)	The	picture	of	an	aqueous	electrolyte	
consisting	of	1.5	M	FMN-Na,	3.0	M	NA,	and	1.0	M	KOH.	
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Supplementary	Figure	9	|	Electrochemistry	of	FMN-Na	electrolytes	with	and	
without	nicotinamide	(NA).	(a)	Cyclic	voltammograms	(CVs)	of	10	mM	FMN-Na	
and	1	M	KOH	aqueous	electrolytes	with	and	without	10	mM	NA	at	a	sweep	rate	of	
10	mV	s-1.	(b,c)	CVs	of	0.24	M	FMN-Na,	1	M	NA,	and	1	M	KOH	aqueous	electrolyte	
at	a	sweep	rate	of	10	and	25	mV	s-1.	CVs	in	(a)	and	(c)	were	measured	immediately	
after	 electrolyte	 preparation.	 CV	 in	 (b)	 was	 measured	 100	 h	 after	 electrolyte	
preparation.	
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Supplementary	 Figure	 10	 |	 Electrochemistry	 of	 a	 positive	 electrolyte	 after	
200	cycles.	Cyclic	voltammogram	(CV)	of	0.4	M	K4[Fe(CN)6]	and	1	M	KOH	aqueous	
electrolyte	at	a	sweep	rate	of	25	mV	s-1.	
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Supplementary	 Table	 1	 |	 Kinetic	 parameters	 of	 redox	 couples	 in	 aqueous	
solutions.	 	

Redox	
couple	

Kinetic	rate	
constant	k	[cm	s-1]	

Concentration	 	
of	redox	 	

species	[mM]	

Supporting	
electrolyte	 Electrode	 Ref.	

V2+/V3+	 𝟐. 𝟐×𝟏𝟎&𝟓@	298	K	 50	 1	M	H2SO4	 PFC1)	 1	

VO2+/VO2+	 𝟔. 𝟖×𝟏𝟎&𝟓@	298	K	 50	 0.5	M	HClO4	 GC2)	 1	

Fe2+/Fe3+	 𝟐. 𝟐×𝟏𝟎&𝟓@	298	K	 40	 0.5	M	HClO4	 Au	 2	

Fe2+/Fe3+	 𝟓×𝟏𝟎&𝟑@	293	K	 1	 1	M	HClO4	 Pt	 3	

[Fe(CN)6]4-	
/[Fe(CN)6]3-	 𝟗×𝟏𝟎&𝟐@	293	K	 1	 1	M	KCl	 Pt	 3	

AQDS/AQDS2-	 𝟕. 𝟐(𝟓)×𝟏𝟎&𝟑	 1	 1	M	H2SO4	 GC	 4	

FMN3–/FMN5–	 (𝟓. 𝟖 ± 	𝟎. 𝟔)×𝟏𝟎&𝟑	
@	298	K	 10	 1	M	KOH	 GC	 This	

work	

1)	PFC:	Plastic	formed	carbon,	2)	GC:	Glassy	carbon	
AQDS:	9,10-anthraquinone-2,7-disulphonic	acid	
	
	
	
	
	
	
	
	
	
	
	
	
	



Supplementary	Table	2	|	Comparison	of	aqueous	redox	flow	batteries	based	
on	organic	active	materials.	 	

Active	material	
(concentration)	 Energy	

Density1)	
[Wh	L-1]	

Max.	power	
density	
[W	cm-2]	

Capacity	
retention	
(100	cycles)	

[%]	

Ref.	

Positive	 Negative	

TEMPO-polymer	
(N/A)	

Viologen-polymer	
(N/A)	 ∼3.62)	 N/A	 ∼	80	 5	

TEMPOL	
(0.5	M)	

Methyl-viologen	
(0.5	M)	 ∼	4.73)	 N/A	 ∼85	 6	

Bromide/bromine	
(3	M	HBr/0.5	M	Br2)	

AQDS	
(1	M)	 ∼	164)	 1.0	 ∼	100	 4,7,8	

K4[Fe(CN)6]	
(0.4	M)	

DHAQ	
(0.5	M)	 N/A5)	 0.40	 ∼	90	 9	

K4[Fe(CN)6]	
(0.4	M)	

FMN-Na	
(0.24	M)	 4.8	 0.16	 ∼99	 This	

work	

1)	Measured	energy	density	was	calculated	from	the	capacity	(Ah	L-1)	and	average	discharge	

voltage.	Volume	is	based	on	the	total	volume	of	positive	and	negative	electrolytes.	

2)	Capacity:	(10	Ah	L-1	×	 10	mL)/(10	mL	+	15	mL)	=	4	Ah	L-1;	average	discharge	voltage:	ca.	

0.9	V.	

3)	Capacity:	(10.5	Ah	L-1)/2	=	5.3	Ah	L-1;	average	discharge	voltage:	ca.	0.9	V.	

4)	40	˚C.	Capacity:	26.8	Ah	L-1;	average	discharge	voltage:	ca.	0.6	V.	

5)	45	˚C.	The	only	normalized	capacity	was	shown	in	ref	9.	

TEMPOL:	4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl,	 	

AQDS:	9,10-anthraquinone-2,7-disulphonic	acid	,	

DHAQ:	2,6-dihydroxyanthraquinone.	 	
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