

Supplementary Figure 1 | Flavins and nicotinamide . The molecular structures of (**a**) lumiflavin, (**b**) riboflavin, (**c**) flavin mononucleotide (FMN, riboflavin-5'-monophosphate), (**d**) flavin adenine dinucleotide (FAD), and (**e**) nicotinamide (pyridine-3-carboxylic acid amide).

Supplementary Figure 2 | Redox reactions of FMN-Na. Proposed redox mechanisms of FMN-Na with different protonation states of the phosphate group and 3-position nitrogen. (a) $pH = 5.5$, (b) $pH = 8.6$, 10.0, and (c) $pH = 13.0$. $p \cdot \mathbf{v}$

Supplementary Figure 3 | Alkaline hydrolysis of riboflavin.

Supplementary Figure 4 | Dimerization effect on optical characteristics. UV-VIS spectra of (a) 50 μ M FMN-Na (pH 5.5) and (b) 50 μ M FMN-Na in pH 9.1 buffer (pH 8.6) aqueous solutions 0–6 h after electrolyte preparation.

Supplementary Figure 5 | **Electrochemistry of an electrolyte**. (**a**) Cyclic voltammograms of 20 mM $K_4[Fe(CN)_6]$ and 1 M KOH aqueous positive electrolyte and 10 mM FMN-N and 1 M KOH aqueous negative electrolyte. (**b**) RDE measurements of 20 mM $K_4[Fe(CN)_6]$ and 1 M KOH aqueous positive electrolyte. The inset shows the limiting current (i) vs. the square root of the rotation velocity (Levich-plot).

Supplementary Figure 6 | Possible resonance structures of FMN-Na. (a) FMN³⁻, (b) FMN^{4-•}, and **(c)** FMN⁵⁻.

Supplementary Figure 7 | Possible resonance structures at two-electron reduced state. (a) Anthraquinone and (b) *p*-benzoquinone.

Supplementary Figure 8 | The effect of nicotinamide on water solubility of **FMN-Na.** (a) Water solubilities of FMN-Na in 1 M H₂SO₄, KCl, and KOH with and without 3 M nicotinamide (NA) at 288 K. (b) The picture of an aqueous electrolyte consisting of 1.5 M FMN-Na, 3.0 M NA, and 1.0 M KOH.

Supplementary Figure 9 | Electrochemistry of FMN-Na electrolytes with and without nicotinamide (NA). (a) Cyclic voltammograms (CVs) of 10 mM FMN-Na and 1 M KOH aqueous electrolytes with and without 10 mM NA at a sweep rate of 10 mV s⁻¹. (b,c) CVs of 0.24 M FMN-Na, 1 M NA, and 1 M KOH aqueous electrolyte at a sweep rate of 10 and 25 mV s⁻¹. CVs in (a) and (c) were measured immediately after electrolyte preparation. CV in (b) was measured 100 h after electrolyte preparation.

Supplementary Figure 10 | Electrochemistry of a positive electrolyte after 200 cycles. Cyclic voltammogram (CV) of 0.4 M K₄[Fe(CN)₆] and 1 M KOH aqueous electrolyte at a sweep rate of 25 mV s⁻¹.

Supplementary Table 1 | Kinetic parameters of redox couples in aqueous solutions.

1) PFC: Plastic formed carbon, 2) GC: Glassy carbon

AQDS: 9,10-anthraquinone-2,7-disulphonic acid

Active material (concentration)		Energy Density ¹⁾	Max. power density	Capacity retention $(100$ cycles)	Ref.
Positive	Negative	[Wh L -1]	$\mathbf{[}W \mathbf{cm}\cdot\mathbf{2}\mathbf{]}$	[%]	
TEMPO-polymer (N/A)	Viologen-polymer (N/A)	\sim 3.6 ²)	N/A	~ 80	5.
TEMPOL (0.5 M)	Methyl-viologen (0.5 M)	\sim 4.73)	N/A	$~1$ – 85	6
Bromide/bromine (3 M HBr/0.5 M Br ₂)	AQDS (1 M)	~ 164	1.0	\sim 100	4,7,8
K_4 [Fe(CN) ₆] (0.4 M)	DHAQ (0.5 M)	N/A^{5}	0.40	\sim 90	9
K_4 [Fe(CN) ₆] (0.4 M)	FMN-Na (0.24 M)	4.8	0.16	\sim 99	This work

Supplementary Table 2 | Comparison of aqueous redox flow batteries based on organic active materials.

1) Measured energy density was calculated from the capacity (Ah L-1) and average discharge voltage. Volume is based on the total volume of positive and negative electrolytes.

2) Capacity: (10 Ah L-1 × **10 mL)/(10 mL + 15 mL) = 4 Ah L-1; average discharge voltage:** *ca.* **0.9 V.**

3) Capacity: (10.5 Ah L-1)/2 = 5.3 Ah L-1; average discharge voltage: *ca.* **0.9 V.**

4) 40 ˚C. Capacity: 26.8 Ah L-1; average discharge voltage: *ca.* **0.6 V.**

5) 45 ˚C. The only normalized capacity was shown in ref 9.

TEMPOL: 4-hydroxy-2,2,6,6-tetramethyl-1-piperidinyloxyl,

AQDS: 9,10-anthraquinone-2,7-disulphonic acid ,

DHAQ: 2,6-dihydroxyanthraquinone.

Supplementary References

- 1 Yamamura, T., Watanabe, N., Yano, T. & Shiokawa, Y. Electron-transfer kinetics of Np³⁺/Np⁴⁺, NpO²⁺/NpO₂²⁺, V²⁺/V³⁺, and VO₂⁺/VO²⁺ at carbon electrodes. *J. Electrochem. Soc.* **152**, A830-A836 (2005).
- 2 Weber, A. Z. *et al.* Redox flow batteries: a review. *J. Appl. Electrochem.* **41**, 1137-1164 (2011).
- 3 Randles, J. E. B. & Somerton, K. W. Kinetics of rapid electrode reactions. Part 3. Electron exchange reactions. *Trans. Faraday Soc.* **48**, 937-950 (1952).
- 4 Huskinson, B. *et al.* A metal-free organic-inorganic aqueous flow battery. *Nature* **505**, 195-198 (2014).
- 5 Janoschka, T. *et al.* An aqueous, polymer-based redox-flow battery using non-corrosive, safe, and low-cost materials. *Nature* **527**, 78-81 (2015).
- 6 Liu, T. B., Wei, X. L., Nie, Z. M., Sprenkle, V. & Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. *Adv. Energy Mater.* **6**, 1501449 (2016).
- 7 Chen, Q., Gerhardt, M. R., Hartle, L. & Aziz, M. J. A quinone-bromide flow battery with 1 W/cm2 power density. *J. Electrochem. Soc.* **163**, A5010-A5013 (2016).
- 8 Huskinson, B., Marshak, M. P., Gerhardt, M. R. & Aziz, M. J. Cycling of a quinone-bromide flow battery for large-scale electrochemical energy storage. *ECS Trans.* **61**, 27-30 (2014).
- 9 Lin, K. X. *et al.* Alkaline quinone flow battery. *Science* **349**, 1529-1532 (2015).