The title: Simvastatin induces cell cycle arrest and inhibits proliferation of bladder cancer cells via PPARγ signalling pathway

The authors: Gang Wang, Rui Cao, Yongzhi Wang, Guofeng Qian, Han C. Dan, Wei Jiang, Lingao Ju, Min Wu, Yu Xiao, Xinghuan Wang

Supplementary Information 1

Supplementary Figure S1. Top 20 ranking of affected cell function by mRNA microarray using bladder cancer tissue, compared with normal bladder tissue. Based on GO analysis from GCBI platform, the alteration of mitotic cell cycle (ranked 6), cell proliferation (ranked 13) and positive regulation of cell proliferation (ranked 16) in the human bladder cancer were noticed.

Supplementary Figure S2. Upregulation of $PPAR\gamma$ mRNA expression in bladder cancer analysed by Oncomine database. Analysis using the Oncomine database (www.oncomine.org) revealed an increased $PPAR\gamma$ at mRNA level in bladder cancer versus normal bladder tissues.

Supplementary Figure S3. Evaluation of BCa cell growth and viability by simvastatin treatment for 24 and 72 h. Cell growth and viability were analysed by MTT assay using 5637 (red, marked with solid circle), EJ (violet, solid triangle) and T24 cells (green, solid square) treated by simvastatin at different concentrations of 0, 0.5, 1, 5, 10, 20 and 40 μ M, cultured for 24 (**a**) and 72 h (**b**), to determinate the correct concentration of simvastatin treatment on BCa cells.

Supplementary Figure S4. Analysis of BCa cell migration and protein abundance of the related pathways after simvastatin treatment by wound healing assay. Three BCa cells 5637 (a), EJ (b) and T24 (c) in 6-well plates were divided into three groups for treatment by 0 (i-iii), 1 (iv-vi) and 5 μ M (vii-ix) simvastatin after the wound was generated. Wound healing assay was monitored by phase contrast microscope at 0 (i, iv, vii), 12 (ii, v, viii) and 24 h (iii, vi, ix). (d) and (e) revealed statistical analysis for cell migration after simvastatin treatment at 12 h and 24 h respectively. * p<0.05, ** p<0.01. (f) Western blot analysis of phosphorylated AKT (p-AKT), total AKT (t-AKT), phosphorylated GSK3 β (p-GSK3 β), total GSK3 β (t-GSK3 β), ERBB1, phosphorylated p38 (p-p38) and total p38 (t-p38) in the EJ and T24 cells by simvastatin treatment at 0, 1 and 5 μ M. Protein abundance of GAPDH was used as a loading control.

Supplementary Figure S5. Flow cytometry analysis for BCa cell apoptosis by FITC-Annexin V/PI staining assay after simvastatin treatment. Three types of BCa cells, 5637 (a), EJ (b) and T24 (c), were treated by simvastatin at 0 (i), 1 (ii) and 5 μ M (iii) for 48 h. Cell apoptosis was using flow cytometry analysis (representatively indicated in a-c), revealing no considerably differences of apoptosis by the effect of simvastatin.

Supplementary Figure S6. Effect of PPAR α -antagonist GW6471 for cell cycle alterations triggered by simvastatin in BCa cells. The three BCa cells EJ (a), 5637 (b) and T24 (c) were treated by GW6471 at 0 μ M (i-ii), 20 μ M (iii), 40 μ M (iv) and 60 μ M (v) for 24 h, and continually treated by simvastatin at 0 μ M (i) and 5 μ M (ii-v) for 48 h. Alterations of cell cycle were measured by flow cytometry analysis (representatively indicated in **a-c**) and statistically analysed (**d-f**), * p<0.05, ** p<0.01, *** p<0.001.

Supplementary Figure S7. Effect of PPAR γ -antagonist GW9662 on migration of the simvastatin-treated BCa cells. The three BCa cells 5637 (a), EJ (b) and T24 (c) were treated by GW9662 at 0 μ M (i-ii), 20 μ M (iii) and 40 μ M (iv) for 24 h, and continually treated by simvastatin at 0 μ M (i) and 5 μ M (ii-v) for 48 h. Migration and invasion were revealed by the transwell assay, suggesting no strong effect of GW9662 on recovering the reduced migration and invasion rate of the BCa cells by simvastatin treatment. The scale bars for a-c are 50 μ m.

Supplementary Figure S1. Top 20 ranking of affected cell function by mRNA

43 in 1	3 in total Function Analysis							
序号	GO ID	GO Name	Diff Gene Counts in GO	Gene Amou				
1	GO:0007165	signal transduction	111	1030				
2	GO:0007596	blood coagulation	73	465				
3	GO:0006955	immune response	58	351				
4	GO:0051301	cell division	53	295				
5	GO:0007155	cell adhesion	63	454				
6	GO:0000278	mitotic cell cycle	53	363				
7	GO:0000236	mitotic prometaphase	28	100				
8	GO:0044281	small molecule metabolic process	104	1363				
9	GO:0030198	extracellular matrix organization	37	210				
10	GO:0045087	innate immune response	60	554				
11	GO:0006954	inflammatory response	43	295				
12	GO:000087	M phase of mitotic cell cycle	35	198				
13	GO:0008283	cell proliferation	45	336				
14	GO:0030168	platelet activation	35	204				
15	GO:0007067	mitosis	32	182				
16	GO:0008284	positive regulation of cell proliferation	48	411				
17	GO:0045944	positive regulation of transcription from RNA polymeras	63	708				
18	GO:0006915	apoptotic process	60	654				
19	GO:0006936	muscle contraction	22	95				
20	GO:0035556	intracellular signal transduction	36	284				

microarray using bladder cancer tissue, compared with normal bladder tissue.

Supplementary Figure S2. Upregulation of *PPAR* γ mRNA expression in bladder cancer analysed by Oncomine database.

Supplementary Figure S3. Evaluation of BCa cell growth and viability using MTT test after simvastatin treatment for 24 and 72 h.

Supplementary Figure S4. Analysis of BCa cell migration and protein abundance of the related pathways after simvastatin treatment by wound healing assay.

Supplementary Figure S5. Representative flow cytometry analysis for BCa cell apoptosis by FITC-Annexin V/PI staining assay after simvastatin treatment.

Simvastatin (µM)

Supplementary Figure S6. Effect of PPAR α -antagonist GW6471 for cell cycle alterations triggered by simvastatin in BCa cells.

Supplementary Figure S7. Effect of PPARγ-antagonist GW9662 on migration of the

simvastatin-treated BCa cells.

Supplementary Information 2

	Patients	Donors	
Number	3	3	
Age, years (Mean ±SD)	62 ±1.581	37 ±2.327	
Gender	Male	Male	
BCa stage	Stage II	_	
Surgical method	Radical resection		

Supplementary Table S1. Information of the patients and donors.

Note: Stage II means BCa goes into muscle layer of the bladder.

Supplementary Table S2. Significantly altered genes and pathways related with bladder cancer by mRNA microarray using bladder cancer

tissues versus norm	al bladder tissues.
---------------------	---------------------

Pathway ID	Pathway Name	Diff Gene Counts in	Gene Amount in	Enrichment Score	p-value	FDR	Gene Symbols
		Pathway	Pathway				
4110	Cell cycle	18	124	4.92504304	5.39E-08	3.68E-07	PTTG1 PLK1 CCNB2 CCNA2 GADD45B CCNE 2 CDC25C MAD2L1 CDC20 CDK1 CCND1 BUB 1 CHEK1 CCND2 CDC7 TTK CCNB1 CDC6
4115	p53 signalling pathway	13	68	6.48624949	1.66E-07	1.02E-06	RRM2 CCNE2 CCNB1 CCND1 THBS1 IGF1 CC ND2 CCNG1 CHEK1 CCNB2 GADD45B CDK1 SERPINE1
5200	Pathways in cancer	27	327	2.80140063	3.72E-06	1.82E-05	RUNX1T1 AR CSF1R COL4A5 EGLN3 FGF10 NRAS HHIP COL4A1 CCND1 IL6 IGF1 KIT AK T3 RARB PRKCB BRCA2 IL8 PTCH1 MMP9 CK S2 MMP1 GLI3 KITLG HIF1A FZD7 CCNE2
3320	PPAR signalling pathway	11	71	5.25646221	1.42E-05	5.46E-05	ADIPOQ OLR1 GK ILK SCD PLTP ACSL1 SOR BS1 MMP1 LPL CD36
561	Glyceroli pid metabolis m	9	55	5.55186669	6.13E-05	0.000215	LPL GLA GK DGKB PPAP2B ALDH1B1 AKR1 B10 ALDH3A2 DGKE

71	Fatty acid	8	44	6.16874077	7.69E-05	0.000255	ADH1C ACAT1 ACADSB ADH1B ALDH1B1 A
	degradati					2	CSL1 ALDH3A2 ADH5
	on						
5219	Bladder	7	38	6.24990841	0.0002156	0.000660	NRAS THBS1 MMP1 MMP9 CCND1 IL8 RPS6
	cancer					6	KA5
4012	ErbB	9	88	3.46991668	0.0023192	0.005598	CAMK2G NRAS AREG GAB1 EREG PAK6 AK
	signalling					9	T3 BTC PRKCB
	pathway						
61	Fatty acid	2	6	11.3093581	0.0240649	0.042921	ACACB ACACA
	biosynthe					8	
	sis						

Gui	6		D : (5) 2))	Annealing	Length
Gene	Symbol	Forward primer (5'-5')	Keverse primer (5'-5')	Temperature (°C)	(bp)
Amphiregulin	AREG	5'-TGCTGGATTGGAC	5'-TCCCGAGGACGGT	56	163
		CTCAATG-3'	TCACTAC-3'		
Epidermal growth	ERBB1	5'-GGTGCGAATGACA	5'-AAAGGTGGGCTCC	56	184
factor receptor		GTAGCATTATGA-3'	TAACTAGCTGAA-3'		
Erb-b2 receptor	ERBB2	5'-CAGGCACCGCAGC	5'-TCCCAGGTCACCA	56	139
tyrosine kinase 2		TCATCTA-3'	TCAAATACATC-3'		
Erb-b2 receptor	ERBB3	5'-CCCTGCCATGAGA	5'-TCACTGTCAAAGC	56	112
tyrosine kinase 3		ACTGCAC-3'	CATTGTCAGAT-3'		
Erb-b2 receptor	ERBB4	5'-TGATAGGCCGTTG	5'-CCAGGTAGACATA	56	149
tyrosine kinase 4		GTTGTCTGA-3'	CCCAATCCAGTG-3'		
Epiregulin	EREG	5'-CTGCCTGGGTTTCC	5'-GCCATTCATGTCA	56	163
		ATCTTCT-3'	GAGCTACACT-3'		
GRB2 associated	GAB1	5'-ATCAGAAACGCCA	5'-TCAGATACCACAA	56	209
binding protein 1		GCGAAGA-3'	AGCACCA-3'		
Glyceraldehyde-3-	GAPDH	5'-TGCACCACCAACT	5'-GATGCAGGGATGA	56	176
phosphate		GCTTAG -3'	TGTTC -3'		
dehydrogenase					
Peroxisome	PPARa	5'-ACTCTGCCCCCTCT	5'-GCCAAAGCTTCCA	60	130
proliferator		CGCCACTC-3'	GAACTATCCTC-3'		
activated receptor					
alpha					
Peroxisome	PPARβ	5'-GAGCAGCCACAGG	5'-GCTGTGGTCCCCC	56	100
proliferator		AGGAAGCC-3'	AT-3'		
activated receptor					
delta					
Peroxisome	PPARγ	5'-AGAGATGCCATTCT	5'-GTGGAGTAGAAAT	56	128
proliferator		GGCCCAC-3'	GCTGGAGA-3'		
activated receptor					
gamma					

Supplementary Table S3. List of primers for semiquanitative RT-PCR and qRT-PCR.

Antigens	Species antibodies raised in	Dilution (IF)	Dilution (WB)	Supplier
E-Cadherin, human	-Cadherin, human Rabbit, monoclonal		1:1,000	Cell Signaling Technology, USA, Cat. No: #3195
N-Cadherin, human	Rabbit, monoclonal	1:200	1:1,000	Cell Signaling Technology, USA, Cat. No: #13116
Vimentin, human	Rabbit, monoclonal	1:200	1:10,00	Cell Signaling Technology, USA, Cat. No: #5741
β-Catenin, human	Rabbit, monoclonal	-	1:1,000	Cell Signaling Technology, USA, Cat. No: #8480
Claudin-1, human	Rabbit, monoclonal	-	1:1,000	Cell Signaling Technology, USA, Cat. No: #13255
MMP-2, human	Rabbit, monoclonal	-	1:500	Cell Signaling Technology, USA, Cat. No: #13132
Glyceraldehyde 3-phosphate dehydrogenase (GAPDH), human	Mouse, monoclonal	-	1:2,000	Santa Cruz Biotechnology Inc., USA, Cat. No: sc-365062
Cyclin D1, human	Rabbit, monoclonal	-	1:1,000	Cell Signaling Technology, USA, Cat. No: #2978S
CDK4, human	Rabbit, monoclonal	-	1:1,000	Abcam, UK, Cat. No: ab108357
CDK6, human	Rabbit, monoclonal	-	1:1,000	Abcam, UK, Cat. No: ab124821
Caspase 3, human Rabbit, monoclona		-	1:1,000	Cell Signaling Technology, USA, Cat. No: #9665P
Caspase 9, human Rabbit, monoclonal		-	1:1,000	Cell Signaling Technology, USA, Cat. No: #9508P
Cleaved Caspase 3, human	Rabbit, monoclonal	-	1:1,000	Cell Signaling Technology, USA, Cat. No: #9664P
Cleaved Caspase 9, human Rabbit, monoclonal		-	1:1,000	Cell Signaling Technology, USA, Cat. No: #7237P
ERBB1, human	Rabbit, monoclonal	-	1:1,000	Abcam, UK, Cat. No: ab52894
PPARγ, human	Rabbit, monoclonal	-	1:1,000	Abcam, UK, Cat. No: ab45036
p-p38, human	p-p38, human Rabbit, monoclonal		1:1,000	Cell Signaling Technology, USA, Cat. No: #9211S
t-p38, human	t-p38, human Rabbit, monoclonal		1:1,000	Cell Signaling Technology, USA, Cat. No: #9212S
p-AKT, human	Rabbit, monoclonal	-	1:1,000	Cell Signaling Technology, USA, Cat. No: #4060P
t-AKT, human	-	1:1,000	Cell Signaling Technology, USA, Cat.	

Supplementary Table S4. List of primary antibodies.

				No: #4691L
p-GSK38 human	Rabbit, monoclonal	-	1:1,0000	Cell Signaling Technology, USA, Cat.
p-05K5p, numan				No: #5558S
t CSV28 human	Rabbit monoclonal		1.1.0000	Cell Signaling Technology, USA, Cat.
t-OSK5p, numan	Kabolt, monocional	-	1.1,0000	No: #12456S

Secondary detection system used	Host	Method	Dilution	Supplier
Anti-Mouse-IgG (H+L)-HRP	Goat	WB	1:10,000	Sungene Biotech, China, Cat. #LK2003
Anti-Rabbit-IgG (H+L)-HRP	Goat	WB	1:5,000	Sungene Biotech, China, Cat. #LK2001
Anti-rabbit IgG (H+L), F	Goat	IF	1:50	Cell Signaling Technology, USA, Cat. #4413
(ab') 2 Fragment (Alexa				
Fluor 555 Conjugate)				
Hoechst 33342 (1 mg/ml)	-	IF	1:750	Molecular Probes/Invitrogen, Carlsbad, CA, USA,
nucleic acid staining (DAPI)				Cat. #A11007

Supplementary Table S5. List of secondary antibodies and counterstaining of nuclei.