SUPPLEMENTAL MATERIAL

Table S1. Criteria for assessment of bias / study quality

1st Author	Year	Representativeness of cohort	Selection of non- exposed	Measurement of body weight	Measurement of physical activity	Response rate	Loss to follow-up	Reverse causality	Measurement of health outcomes	Quality score
Sherman(1)	1994	1	1	1	0	0	1	1	1	6
Sesso(2)	1999	1	1	0	1	1	0	1	0	5
Hu(3)	2000	1	1	0	0	0	1	1	1	5
Sesso(4)	2000	1	1	0	0	0	1	1	0	4
Gregg(5)	2003	1	1	1	1	0	1	1	0	6
Hu (NHS)(6)	2004	1	1	0	0	0	1	1	1	5
Hu (Finnish pop)(7)	2004	0	1	0	1	0	1	1	1	5
Franco(8)	2005	1	1	1	0	0	1	1	0	5
Myint(9)	2006	1	1	1	1	0	1	1	1	7
Hu(10)	2007	0	1	0	1	0	1	1	1	5
Hu(11)	2010	1	0	1	0	1	0	1	1	5
Eguchi (12)	2012	1	1	1	0	0	0	1	1	5
Odegaard(13)	2011	1	1	1	1	0	1	1	1	7
Petersen(14)	2012	1	1	1	1	0	1	1	1	7
Reis(15)	2011	1	1	1	0	0	0	1	0	4
Shi(16)	2013	1	1	1	1	1	0	1	1	7
Baceviciene(17)	2012	1	1	1	1	1	0	0	1	6
Clays(18)	2012	1	1	1	1	0	0	1	1	6
Holtermann(19)	2012	1	1	1	1	1	0	1	1	7
Jefferis(20)	2012	1	1	1	1	1	0	1	1	7
Kraigher- Krainer(21)	2013	1	1	0	1	0	1	1	1	6
Park(22)	2012	1	1	1	1	0	0	0	1	5
Chomistek(23)	2013	1	1	0	1	0	0	1	1	5
Gunnell(24)	2013	1	1	1	1	0	0	1	1	6
Holtermann(25)	2013	1	1	1	1	1	0	1	1	7
Jefferis(26)	2013	1	1	1	1	1	0	1	1	7
Kim(27)	2013	1	1	1	1	0	0	1	1	6
McDonnell(28)	2013	0	1	1	1	1	0	1	1	6
Patel(29)	2013	1	1	1	1	1	0	1	0	6
Soedamah(30)	2013	1	1	0	0	0	0	1	1	4
Vergnaud(31)	2013	1	1	1	1	1	0	1	1	7
Wang(32)	2013	1	1	1	1	1	0	1	1	7
Williams(16)	2013	1	0	1	1	0	1	1	1	6
Zhang, Q(29)	2013	1	1	1	0	1	0	1	1	6
Zhang, Y(29)	2013	1	1	1	1	1	0	1	1	7
Young(33)	2014	1	1	1	1	0	0	1	1	6

- Representativeness of cohort (0 = no description or selected group of users (e.g. nurses), 1 = otherwise)
- Selection of non-exposed (0 = no description or drawn from different source than exposed, 1 = otherwise)
- Measurement of body weight (0 = no description or self report, 1 = otherwise)
- Measurement of physical activity (0 = no description or non-validated self report, 1 = otherwise)
- Response rate (0 = no description or less than 60%, 1 = otherwise)
- Loss to follow-up (0 = no description or greater than 5%, 1 = otherwise)
- Reverse causality (0 = no description or included participants with health outcome at baseline, 1 = otherwise)
- Measurement of health outcome (0 = no description or incidence measured by self report of doctor diagnosis, 1 = otherwise)

Table S2. Converting physical activity measures to a standardised metric of 'Additional METh/d'

The single metric that we converted all the measures from the identified papers to was 'Additional MET hours per day' (or 'Additional METh/d'). This measure is a comparative measure, where the baseline group in each paper is arbitrarily assigned the value of zero and the extra physical activity in the other exposure groups is estimated as the amount of time spent in physical activity multiplied by the intensity of the physical activity, measured in METs (or 'metabolic equivalents'). METs are a standard measure used in physical activity research, which are an estimate of the intensity of physical activity compared to a baseline of 1 MET which is the intensity of sitting quietly. A standard compendium of MET values for many different activities can be found on the Compendium of Physical Activities Google Site.(34)

In order to develop the 'Additional METh/d' metric, it is necessary to estimate the METh/d for all of the reported physical activities described in each paper for each of the exposure groups, and then subtract the baseline METh/d from each of the groups. There were a number of standard rules that we applied for each paper, to remove subjectivity from the process. These rules were as follows:

- 1. When a paper uses a range to describe an exposure (e.g. 0-2 h/week walking) we used a point estimate which was the mid-point of the range.
- 2. When a paper uses an open category to describe an exposure we assume that the size of this category is the same as the closest equivalent exposure category and then calculate the median. For example, if a paper categorised walking as 0-2h/week; 2-4h/week; 4+ h/week, then we assume that the last exposure group is 4-6h/week and use the median value of 5h/week.
- 3. When physical activity is measured in 'occasions' or 'sessions' but no time is estimated, we assume that each occasion or session is half an hour.
- 4. When a paper describes physical activity in terms of intensity (rather than describing the actual activity that was performed) then we assume the following MET values: light intensity: 2.5 METs; moderate intensity: 4.5 METs; vigorous intensity: 6.5 METs. Ambiguous activities are assigned to either light, moderate or vigorous intensity levels for example, 'exercise' or 'sport' are both categorised as vigorous.
- 5. Where the paper tries to measure amount of time spent in 'moderate or vigorous' physical activity but gives no information about the type of activity, we assume a MET value of 5.5.
- 6. Often papers categorised groups using an 'or' function. For example, an exposure group may consist of individuals who walk for at least 5 hours per week or exercise for at least two hours per week. In these instances, we assumed that any combination of these two activities is equally likely. So we calculated the METh/d for someone who only walks 5 hours per week, for someone who only exercises for two hours a week, and for someone who both walks for five hours a week AND exercises for two hours a week. We then calculated the average of the three measures, and assigned that value to the exposure group.
- 7. When a paper split groups into x-tiles of an exposure variable and provided estimates of mean and standard deviation of the exposure variable in the whole sample, we assumed that the exposure variable was log-normally distributed (unless otherwise stated in the paper) and then calculate the exposure variable for each of the x-tile variables from this assumed distribution.

1st Author (year)	Cohort name	Domains of PA measured	Disease outcome	Disease ascertainment	Population	Sample size	Number of events	Follow- up (years)	Adjustments
Baceviciene (2012)(17)	MONICA	Recreational; Active Travel; Household	CVD mortality	National Death Register	Lithuanian adults aged 25-64	2,643	150	12.6	Age, sex, education, study year, smoking, alcohol, BMI, hypertension, cholesterol, glucose, CHD, stroke
Chomistek (2013)(23)	WHI	Recreational;	CHD incidence	Questionnaire & medical	US women		2,411		Age, sedentary time, race, education, income, marital status, smoking, history of MI,
		Active Travel	Stroke incidence	records, adjudicated by	aged 50-79	71,018	2,050	12.2	depression, alcohol, sleep, total calories, saturated fat & fibre,
			CVD incidence	physicians			4,235		BMI
Clays (2012)(18)	Belstress	Recreational; Occupational	CHD incidence	Not reported	Belgian adults aged 35-59	14,337	87	3.15	Age, educational level, occupational class, job strain, BMI, smoking, alcohol, diabetes, SBP, cholesterol, HDL,
Eguchi (2012) (12)	JAAC	Recreational; Active Travel	CVD mortality	Death Certificates	Japanese men aged 40-79	18,747	441	16.5	Age, hx of hypertension, hx of diabetes, education, employment, mental stress, seven health behaviours (fruit,
					Japanese women aged 40-79	24,263	408		fish, milk, exercise, BMI, ethanol, sleep, smoking)
Franco (2005)(8)	Framingham	Recreational; Active Travel; Household; Occupational	CVD incidence	Physician evaluation of diagnosis	US adults aged 28-62,	9,033	1,573	12.0	Age, sex, smoking, BMI, hypertension, co-morbidities

Table S3. Identified studies evaluating the effect of physical activity on CVD outcome and Type II Diabetes Incidence with adjustment for body weight

1st Author (year)	Cohort name	Domains of PA measured	Disease outcome	Disease ascertainment	Population	Sample size	Number of events	Follow- up (years)	Adjustments
Gregg (2003)(5)	SOF	Walking; leisure activities; sports	CVD mortality	Death certificates	US women aged >65	9,518	826	10.6	Age, smoking, BMI, co- morbidities
Gunnell (2013)(24)	HWSS	Recreational; Active Travel	IHD disease incidence	Hospital records	Australian adults aged >45	14,890	538	3	Age, sex, smoking, charlson index, LTPA, sedentary activity level, BMI, fruit & veg intake, survey year, diabetes hospitalisation
Holtermann (2012)(19)	Copenhagen City Heart Study	Recreational; Household	IHD mortality	Death registry	Danish men aged 40-59	5,249	579	30	Age, clinical factors (BMI, BP)
Holtermann (2013)(25)	Copenhagen City Heart Study	Recreational; Occupational	CVD mortality	National Death Register	Danish men aged 25-66 Danish	7,411	1,945	22.4	Age, smoking, alcohol, cholesterol, SBP, blood pressure meds, diabetes,
					women aged 25-66	8,916	1,814	22.4	household income, BMI
Hu (2000)(3)	Nurses Health Study	Walking; vigorous exercise activities	Stroke incidence	Self-report and health screening	US women aged 40-65	72,488	407	8.0	Age, smoking, BMI, alcohol, menopausal status, parental history of CHD, aspirin use, co- morbidities
Hu (2004)(6)	Nurses Health Study	Walking; leisure activities	CVD mortality	Death certificates	US women aged 30-55	116,564	2,370	24.0	Age, BMI, smoking, alcohol, parental history of CHD, menopausal status, hormone use
Hu (2004)(7)	Finland population	Occupational PA; leisure activities	CVD incidence	Routine update from registry	Finnish adults aged 25-64	18,892	818	9.8	Age, education, alcohol, smoking, BMI, SBP, cholesterol, co-morbidities

1st Author (year)	Cohort name	Domains of PA measured	Disease outcome	Disease ascertainment	Population	Sample size	Number of events	Follow- up (years)	Adjustments
Hu (2007)(10)	Finland population	Occupational PA; active travel; leisure activities	CHD incidence	Routine update from registry	Finnish adults aged 25-64	47,840	4,660	18.9	Age, education, alcohol, smoking, BMI, SBP, cholesterol, diabetes
Hu (2010)(11)	Finland population	Occupational PA; active travel; leisure activities	Heart Failure incidence	Routine update from registry	Finnish adults aged 25-74	59,178	3,614	18.4	Age, education, alcohol, smoking, BMI, SBP, cholesterol, co-morbidities
Jefferis (2012)(20)	BRHS	Recreational; Active Travel; Household	Type II Diabetes incidence	Self report, then corresponden ce with primary care	UK men aged 60-79	2,675	113	7.1	Age, region, social class, smoking, alcohol, coffee, total kcal/day, dietary intake, cholesterol. BMI
Jefferis (2013)(35)	BRHS	Recreational; Household; Active Travel	Stroke incidence	NHS central registers & death certificates	UK men aged 40-59	3,435	195	10.9	Age, region, alcohol, smoking, social class, cholesterol, SBP, BMI, AF, LVH
Kim (2013)(27)	Seoul Male Cohort Study	Recreational; Active Travel; Household; Occupational	CVD mortality	Mortality microdata by National stats office	Korean adults aged 40-59	12,538	171	19	Age, educational attainment, alcohol, sleep, FHx of CVD, smoking, BMI, health score, cholesterol, blood pressure, glucose
Kraigher-Krainer (2013)(21)	Framingham	Recreational; Occupational	Heart Failure Incidence	Review of medical records & adjudicated by physician panel	US adults aged 30-62	1,142	250	10	Age, sex, SBP, Hypertension, diabetes, valve disease, alcohol, LV hypertrophy, BMI

1st Author (year)	Cohort name	Domains of PA measured	Disease outcome	Disease ascertainment	Population	Sample size	Number of events	Follow- up (years)	Adjustments
McDonnell (2013)(28)	REGARDS	Recreational; Occupational; Active Travel	Stroke incidence	Patients, medical records and adjudication by 2 physicians	US adults aged >45	27,348	918	5.7	Age, sex, race, age-race interaction, socioeconomic factors, diabetes, hypertension, BMI, alcohol, smoking
Myint (2006)(9)	EPIC - Norfolk	Occupational PA; leisure activities	Stroke incidence	Routine update from registry	UK adults aged 40-79	20,040	361	8.6	Age, sex, BMI, SBP, cholesterol, smoking, alcohol, diabetes
Odegaard (2011)(13)	Singapore Chinese Health Study	Recreational; Active Travel	CVD mortality	Registries	Chinese adults aged 45-74	44,056	1,971	13	Factors simultaneously (BMI, Alcohol, Smoking, Diet, sleep), Age, sex, dialect, age enrolled, education, diabetes, FHx of Colorectcal Ca, energy intake Age, self-reported health, self-
Park (2012)(22)	KEPEC	Recreational; Household	CVD mortality	Death Certificates	Korean women aged >65	5,079	607	8	reported limitation in activity, smoking status, drinking status, body mass index, religion and other types of physical activity
Patel (2013)(29)	CHS	Recreational; Occupational;	Heart Failure incidence Acute MI incidence	Adjudicated by CHS Events committee	US adults aged >65	5,503	1,037 5,061	13	Age, sex, race, education, income, alcohol, smoking, BMI, Coronary artery disease, MI,
		Active Travel	Stroke incidence				5,290		

1st Author (year)	Cohort name	Domains of PA measured	Disease outcome	Disease ascertainment	Population	Sample size	Number of events	Follow- up (years)	Adjustments
			CVD mortality				877		
			CHD incidence		Danish men	1 197	1431		
	Copenhagen	Recreational:	MI incidence	National	aged 20-93	4,407	795		Age, education, smoking habits, alcohol, BMI, diabetes.
Petersen (2012)(14)	City Heart Study	Active Travel	CHD incidence	patient register	Danish women aged	5 056	1,393	13	cholesterol, blood pressure lowering therapy
			MI incidence		20-93	5,950	589		
		Occupational			US men aged 50-71	114,996	11,031		Age, Race, educational
Reis (2011)(15)	NIH-AARP	Household	Type II Diabetes	Self-report	US women aged 50-71	92,483	6,969	10	attainment, marital status, BMI, diet, Alcohol, smoking
Sesso (1999)(2)	CAHS	Walking; stair climbing; sports	CVD incidence	Self-report of doctor diagnosis	US women, 37-69	1,564	181	31	Age, BMI, SBP, smoking, family history of CHD, diabetes
Sesso (2000)(4)	Harvard college alumni	Walking; stair climbing; sports; leisure activities	CHD incidence	Self-report of doctor diagnosis	US adults aged 39-88	12,516	2,135	16.0	Age, BMI, smoking, alcohol, hypertension, diabetes, early parental death
Sherman (1994)(1)	Framingham	Recreational; Active Travel; Household; Occupational	CVD mortality	Death certificates	US adults >75	285	81	10.0	Age, SBP, cholesterol, smoking, weight, glucose intolerance, co-morbidities

1st Author (year)	Cohort name	Domains of PA measured	Disease outcome	Disease ascertainment	Population	Sample size	Number of events	Follow- up (years)	Adjustments
Shi (2013)(36)	SMHS	Recreational; Active Travel	Type II Diabetes	Follow-up surveys and checking if conforms to American guidelines	Chinese adults aged 40-64	51,464	1,304	5.4	Age, Energy intake, Smoking, Alcohol, education level, occupation, income level, hypertension, family history of diabetes, BMI, WHR
Soedamah (2013)(30)	Health Survey for England and Scottish Health Survey	Recreational; Household; Active Travel	CVD mortality	Patient-based database of deaths	UK adults aged >40	17,410	638	9.7	Age, Marital status, Social Class, Ethnicity, Education, Survey year, cigarette smoking status, longstanding illness, BMI, domestic activity and alcohol
Vergnaud (2013)(31)	EPIC	Recreational; Occupational; Household; Active Travel	CVD Mortality	Board of health & death indexes	Europeans Aged 25-70	378,864	23,828	12.8	Sex, Age, Centre, Educational level, smoking, menopause, body fatness, calorific foods, plant foods, animal foods, alcohol & breastfeeding
Wang (2013)(32)	SMHS	Recreational; Occupational; Household; Active Travel	CVD mortality	National patient register	Chinese men 40-74	61,477	1,181	5.48	Occupation, alcohol, pack-years of smoking, energy intake, red meat, fruit, daily PA other than exercise, BMI, Hx of CVD, Diabetes, Hypertension, Liver disease
Williams (2013)(16)	NWHS	Recreational; Active Travel; Household; Occupational	CVD mortality Ischaemic Heart	National death index	US walking magazine subscribers (ages unknown)	42,022	834	9.6	Age, race, sex, education, prior heart attack, aspirin use, intake of meat, fruit, alcohol, BMI and medication use
			disease incidence				443		

1st Author (year)	Cohort name	Domains of PA measured	Disease outcome	Disease ascertainment	Population	Sample size	Number of events	Follow- up (years)	Adjustments
Young (2014)(33)	California Men's Health Study	Recreational; Active Travel; Household; Occupational	Heart Failure Incidence	National patient register	US men aged 45-69	82,695	3,473	7.8	Age, race/ethnicity, education, income, BMI, smoking, hypertension, diabetes, anti- hypertensives, HDL, glucose, triglycerides, food intake, alcohol
Zhang, Q (2013)(29)	Kailuan	Recreational; Occupational; Household; Active Travel	Stroke incidence: total, ischaemic and haemorrhagic	2 yearly physician interviews and checking hospital discharges	Chinese adults aged 19-98	91698	1,486	4	Smoking, BMI, Diet, Cholesterol, Blood pressure, Glucose, Age, Sex, Hospital, Education, Income
Zhang, Y (2011)(37)	MONICA	Recreational; Occupational	Stroke incidence: total, ischaemic and haemorrhagic	Computer registry	Finnish adults Finnish adults aged 25-74	36,686	1,478	13.7	Age, Study year, sex, smoking, physical activity, vegetable consumption, fruit consumption, education, alcohol, FHx of Stroke, Hx of Diabetes, BMI, SBP, Cholesterol

AF – Atrial Fibrillation; BMI – Body Mass Index; BP – Blood pressure; BRHS – British Regional Heart Study; CAH - College Alumni Health Study; CHS – Cardiovascular Health Study; CHD – Coronary Heart Disease; CVD Cardiovascular disease; EPIC – European Prospective Investigation of Cancer; FHx – family history; HWSS – Health and Wellbeing Surveillance System; Hx – history; JAAC - Japan Collaborative Cohort Study; JPHC – Japan Public Health Center based prospective study; KEPEC – Korean Elderly Pharmacoepidemiologic Cohort; LTA - Leisure Time Physical Activity; LVH – Left Ventricular hypertrophy; MI – Myocardial Infarction; Monica – the WHO Multinational Monitoring of Trends and Determinants of Cardiovascular Disease; NHANES – National Health and Nutrition Examination Survey; NHS – National Health Service; NHS – Nurses' Health Study; NIH-AARP – National Institute of Health – American Association of Retired Persons; NWHS - National Walker's Health Study; PA – physical activity; REGARDS – Reasons for Geographic Differences in Stroke; SBP – Systolic Blood Pressure; SMHS - Shanghai Men's Health Study; SOF – Study of Osteoporotic Fractures; SOF – Study of Osteoporotic Fractures; T2DM Type II Diabetes Mellitus; US – United States; VTE – Venous thromboembolism; WHI – Women's Health Initiative; CHS – Cardiovascular Health Study; WHR - Waist-to-hip ratio Table S4. Excluded studies and data points evaluating the effect of physical activity on CVD outcome and Type II Diabetes Incidence.

Note these studies have been excluded as only one data point for the disease outcome was found, therefore it was decided not to include in a metaanalysis

1st Author (year)	Cohort name	Domains of PA measured	Disease outcome	Disease ascertainme nt	Population	Sample size	Number of events	Follow -up (years)	Adjustments
Patel (2013)(29)	CHS	Recreational, Occupational, Household, Active Travel	Angina incidence	Adjudicated by CHS Events committee	Age >65	5,503	4708	13	Age, sex, race, education, income, alcohol, smoking, BMI, Coronary artery disease, Myocardial infarction, Hypertension, T2DM and Stroke
		Recreational,	Cerebrovascular disease mortality		M47 III 1		147		Age, race, sex, education, prior
Williams (2013)(16)	NWHS	Active Travel, Household, Occupational	Heart Failure mortality	National death index	waiking magazine subscribers	42,022	53	9.6	heart attack, aspirin use, intake of meat, fruit, alcohol, BMI and medication use
			Diabetes mortality				48		
Wattanakit (2012)(38)	ARIC	Recreational, occupational	Venous thromboembolism incidence	Telephoning patients & hospital discharge list	Adults aged 45-64	15340	468	15.5	BMI, age, race, field centre, and sex

ARIC – Atherosclerosis Risk in Communities Study; BMI – Body Mass Index; CHS – Cardiovascular Health Study; NWHS - National Walker's Health Study.

Table S5. Sensitivity analyses: results restricted to studies that achieved at least six of the eight study criteria; studies with implausible PA values removed. Meta-analyses adjusted for body weight for 11.25 METhr/week increase in PA, with a 0.25 power transformation

	High quality	' studies	Implausible PA	A ranges	Main results (for		
		only	1	removed	сог	nparison)	
Condition (ICD-10 code)	RR (95% CI)	²	RR (95% CI)	l ²	RR (95% CI)	l ²	
CVD incidence (l00- l99)	n/a		0.83 (0.77, 0.89)	0.0%	0.83 (0.77, 0.89)	0.0%	
CVD mortality (I00-I99)	0.81 (0.76, 0.86)	25.1%	0.76 (0.69, 0.84)	78.2%	0.77 (0.71 <i>,</i> 0.84)	73.6%	
Stroke incidence (I60- I69)	0.81 (0.75, 0.87)	0.0%	0.82 (0.77, 0.87)	0.0%	0.82 (0.77 <i>,</i> 0.87)	0.0%	
CHD incidence (I20- I25)	0.76 (0.67, 0.86)	0.0%	0.79 (0.74, 0.86)	0.0%	0.80 (0.75, 0.86)	0.0%	
CHD mortality (I20-25)	0.80 (0.58, 1.09)	59.1%	0.80 (0.58, 1.09)	59.1%	0.80 (0.58, 1.09)	59.1%	
Heart failure incidence (I50)	0.79 (0.73, 0.85)	0.0%	0.80 (0.75 <i>,</i> 0.86)	4.0%	0.81 (0.76, 0.86)	0.0%	
Myocardial infarction incidence (I21-22)	0.75 (0.62, 0.89)	0.0%	0.75 (0.62, 0.89)	0.0%	0.75 (0.62 <i>,</i> 0.89)	0.0%	
Type 2 diabetes incidence (E11)	0.71 (0.52, 0.97)	27.3%	0.74 (0.72, 0.77)	0.0%	0.74 (0.72, 0.77)	0.0%	

n/a - too few studies for a meta-analysis

Table S6. Meta-regressions: Association between study-level variables and CVD mortality relativerisk for 11.25 METhours/week increase in physical activity, assuming .025 power transformation

Study-level variables	Meta-regression	р
	coefficient	
Quality score (minimum = 1; maximum = 8)	0.07	0.023
Method of obesity measurement (0 = subjective; 1 =	0.24	0.001
objective)		
Validated PA measurement (0 = no; 1 = yes)	0.07	0.342
Gender (0 = men only; 1 = women only)	-0.03	0.654
Mean age of participants (0 = under 65; 1 = 65+)	-0.09	0.287
Active travel (0 = not included; 1 = included)	-0.07	0.480
Occupational PA (0 = not included; 1 = included)	0.06	0.351
Household PA (0 = not included; 1 = included)	-0.07	0.330
Mean follow-up years	0.01	0.381
Geography (baseline – US): Europe	0.07	0.000
Geography (baseline – US): Other	0.15	0.000

NB: CVD mortality selected as outcome as it has the most data lines (17 data lines from 14 studies) and considerable heterogeneity. Meta-regression weighted by the inverse of the standard error. Results are not mutually adjusted.

Supplemental Figures

Figures S1-7: Meta-analysis of 11.25 METhr/week increase in physical activity for cardiovascular disease and diabetes health outcomes

Meta-analysis results are displayed for all the power 0.25 analyses, adjusted for body weight. Conditions are given in the figures.

S1: CVD incidence

Relative risk for CVD incidence of increase of 11.25 MET h/w

S2: Stroke incidence

16

S3: CHD incidence

S4: CHD mortality

17

S5: Heart failure incidence

Relative risk for heart failure incidence of increase of 11.25 MET h/w

S6: MI incidence

S7: Diabetes incidence

Figures S8-S10: Dose-response relationship for the effect of 11.25 METhr/week increase in physical activity for the cardiovascular disease and diabetes health outcomes

Meta-analysis results are displayed for all the power 0.25 analyses, adjusted for body weight. Conditions are given in the figures.

Figure S8: CVD mortality

Figure S10: T2DM incidence

The green line indicates the recommended PA level of 11.25METhr/week

The red lines indicate the threshold for implausibly high levels (10 times the recommendation) or implausibly low (less than 30 minutes as demonstrated by the lower line)

Figure S12. Chart showing additional METs of less than 30 in highest exposure category CVD mortality studies

Please note the green line relates to recommended PA of 11.25METs, compared with the red line this time pertaining to the lower limit of <30 mins per week.

Figure S13. Chart showing additional METs of less than 30 in highest exposure category for T2DM incidence studies

Please note the green line relates to recommended PA of 11.25METs, compared with the red line this time pertaining to the lower limit of <30 mins per week.

Figures S14—S20: Funnel plots for meta-analyses of 11.25 METhr/week increase in physical activity for cardiovascular disease and diabetes health outcomes

Meta-analysis results are displayed for all the power 0.25 analyses, adjusted for body weight. Conditions are given in the figures.

S14: CVD incidence

Funnel plot with pseudo 95% CIs: CVD incidence

S15: Stroke incidence

Funnel plot with pseudo 95% CIs: stroke incidence

S16: CHD incidence

S17: CHD mortality

Funnel plot with pseudo 95% CIs: CHD mortality

S18: Heart failure incidence

S19: MI incidence

Funnel plot with pseudo 95% CIs: MI incidence

S20: Diabetes incidence

References:

1. Sherman SE, D'Agostino RB, Cobb JL, Kannel WB. Does exercise reduce mortality rates in the elderly? Experience from the Framingham Heart Study. *Am Heart J.* 1994;128:965-72.

2. Sesso HD, Paffenbarger RS, Ha T, Lee IM. Physical activity and cardiovascular disease risk in middle-aged and older women. *Am J Epidemiol.* 1999;150408-16.

3. Hu FB, Stampfer MJ, Colditz GA, Ascherio A, Rexrode KM, Willett WC, Manson JE. Physical activity and risk of stroke in women. *Jama*. 2000;283:2961-7.

4. Sesso HD, Paffenbarger RS, Jr., Lee IM. Physical activity and coronary heart disease in men: The Harvard Alumni Health Study. *Circulation*. 2000;102:975-80.

5. Gregg EW, Cauley JA, Stone K, Thompson TJ, Bauer DC, Cummings SR, Ensrud KE; Study of Osteoporotic Fractures Research Group. Relationship of changes in physical activity and mortality among older women. *Jama*. 2003;289:2379-86.

6. Hu FB, Willett WC, Li T, Stampfer MJ, Colditz GA, Manson JE. Adiposity as compared with physical activity in predicting mortality among women. *N Engl J Med.* 2004;351:2694-703.

7. Hu G, Tuomilehto J, Silventoinen K, Barengo N, Jousilahti P. Joint effects of physical activity, body mass index, waist circumference and waist-to-hip ratio with the risk of cardiovascular disease among middle-aged Finnish men and women. *Eur Heart J*. 2004;25:2212-9.

8. Franco OH, de Laet C, Peeters A, Jonker J, Mackenbach J, Nusselder W. Effects of physical activity on life expectancy with cardiovascular disease. *Arch Intern Med.* 2005;165:2355-60.

9. Myint PK, Luben RN, Wareham NJ, Welch AA, Bingham SA, Day NE, Khaw KT. Combined work and leisure physical activity and risk of stroke in men and women in the European prospective investigation into Cancer-Norfolk Prospective Population Study. *Neuroepidemiology*. 2006;27:122-9.

10. Hu G, Jousilahti P, Borodulin K, Barengo NC, Lakka TA, Nissinen A, Tuomilehto J. Occupational, commuting and leisure-time physical activity in relation to coronary heart disease among middle-aged Finnish men and women. *Atherosclerosis*. 2007;194:490-7.

11. Hu G, Jousilahti P, Antikainen R, Katzmarzyk PT, Tuomilehto J. Joint effects of physical activity, body mass index, waist circumference, and waist-to-hip ratio on the risk of heart failure. *Circulation*. 2010;121:237-44.

12. Eguchi E, Iso H, Tanabe N, Wada Y, Yatsuya H, Kikuchi S, Inaba Y, Tamakoshi A; Japan Collaborative Cohort Study Group. Healthy lifestyle behaviours and cardiovascular mortality among Japanese men and women: the Japan collaborative cohort study. *Eur Heart J*. 2012;33:467-77.

13. Odegaard AO, Koh WP, Gross MD, Yuan JM, Pereira MA. Combined lifestyle factors and cardiovascular disease mortality in Chinese men and women: the Singapore Chinese health study. *Circulation*. 2011;124:2847-54.

14. Petersen CB, Gronbaek M, Helge JW, Thygesen LC, Schnohr P, Tolstrup JS. Changes in physical activity in leisure time and the risk of myocardial infarction, ischemic heart disease, and all-cause mortality. *Eur J Epidemiol.* 2012;27:91-9.

15. Reis JP, Loria CM, Sorlie PD, Park Y, Hollenbeck A, Schatzkin A. Lifestyle factors and risk for new-onset diabetes: a population-based cohort study. Annals of internal medicine. 2011;155:292-9.

16. Williams PT. Dose-response relationship of physical activity to premature and total all-cause and cardiovascular disease mortality in walkers. *PloS one*. 2013;8:e78777.

17. Baceviciene M, Luksiene DI, Bernotiene G, Tamosiunas A. Estimation of all-cause and cardiovascular mortality risk in relation to leisure-time physical activity: a cohort study. *Medicina (Kaunas).* 2012;48:632-9.

18. Clays E, Van Herck K, De Buyzere M, Kornitzer M, Kittel F, De Backer G, De Bacquer D. Behavioural and psychosocial correlates of nondipping blood pressure pattern among middle-aged men and women at work. *J Hum Hypertens*. 2012;26:381-7.

19. Holtermann A, Mortensen OS, Sogaard K, Gyntelberg F, Suadicani P. Risk factors for ischaemic heart disease mortality among men with different occupational physical demands. A 30-year prospective cohort study. *BMJ open.* 2012;2:e000279.

20. Jefferis BJ, Whincup PH, Lennon L, Wannamethee SG. Longitudinal associations between changes in physical activity and onset of type 2 diabetes in older British men: the influence of adiposity. *Diabetes Care*. 2012;35:1876-83.

21. Kraigher-Krainer E, Lyass A, Massaro JM, Lee DS, Ho JE, Levy D, Kannel WB, Vasan RS. Association of physical activity and heart failure with preserved vs. reduced ejection fraction in the elderly: the Framingham Heart Study. *Eur J Heart Fail*. 2013;15:742-6.

22. Park S, Lee J, Kang DY, Rhee CW, Park BJ. Indoor physical activity reduces all-cause and cardiovascular disease mortality among elderly women. *J Prev Med Public Health*. 2012;45:21-8.

23. Chomistek AK, Manson JE, Stefanick ML, Lu B, Sands-Lincoln M, Going SB, Garcia L, Allison MA, Sims ST, LaMonte MJ, Johnson KC, Eaton CB. Relationship of sedentary behavior and physical activity to incident cardiovascular disease: results from the Women's Health Initiative. *J Am Coll Cardiol*. 2013;61:2346-54.

24. Gunnell AS, Einarsdottir K, Galvao DA, Joyce S, Tomlin S, Graham V, McIntyre C, Newton RU, Briffa T. Lifestyle factors, medication use and risk for ischaemic heart disease hospitalisation: a longitudinal population-based study. *PloS one*. 2013;8:e77833.

25. Holtermann A, Marott JL, Gyntelberg F, Sogaard K, Suadicani P, Mortensen OS, Prescott E, Schnohr P. Does the benefit on survival from leisure time physical activity depend on physical activity at work? A prospective cohort study. *PloS one.* 2013;8:e54548.

26. Jefferis BJ, Whincup PH, Papacosta O, Wannamethee SG. Protective effect of time spent walking on risk of stroke in older men. *Stroke*. 2014;45:194-9.

27. Kim JY, Ko YJ, Rhee CW, Park BJ, Kim DH, Bae JM, Shin MH, Lee MS, Li ZM, Ahn YO. Cardiovascular health metrics and all-cause and cardiovascular disease mortality among middle-aged men in Korea: the Seoul male cohort study. *J Prev Med Public Health*. 2013;46:319-28.

28. McDonnell MN, Hillier SL, Hooker SP, Le A, Judd SE, Howard VJ. Physical activity frequency and risk of incident stroke in a national US study of blacks and whites. *Stroke*. 2013;44:2519-24.

29. Patel K, Sui X, Zhang Y, Fonarow GC, Aban IB, Brown CJ, Bittner V, Kitzman DW, Allman RM, Banach M, Aronow WS, Anker SD, Blair SN, Ahmed A. Prevention of heart failure in older adults may require higher levels of physical activity than needed for other cardiovascular events. *Int J Cardiol.* 2013;168:1905-9.

30. Soedamah-Muthu SS, De Neve M, Shelton NJ, Tielemans SM, Stamatakis E. Joint associations of alcohol consumption and physical activity with all-cause and cardiovascular mortality. *Am J Cardiol.* 2013;112:380-6.

31. Vergnaud AC, Romaguera D, Peeters PH, van Gils CH, Chan DS, Romieu I, Freisling H, Ferrari P, Clavel-Chapelon F, Fagherazzi G, Dartois L, Li K, Tikk K, Bergmann MM, Boeing H, Tjønneland A, Olsen A, Overvad K, Dahm CC, Redondo ML, Agudo A, Sánchez MJ, Amiano P, Chirlaque MD, Ardanaz E, Khaw KT, Wareham NJ, Crowe F, Trichopoulou A, Orfanos P, Trichopoulos D, Masala G, Sieri S, Tumino R, Vineis P, Panico S, Bueno-de-Mesquita HB, Ros MM, May A, Wirfält E, Sonestedt E, Johansson I, Hallmans G, Lund E, Weiderpass E, Parr CL, Riboli E, Norat T. Adherence to the World Cancer Research Fund/American Institute for Cancer Research guidelines and risk of death in Europe: results from the European Prospective Investigation into Nutrition and Cancer cohort study1,4. *Am J Clin Nutr.* 2013;97:1107-20.

32. Wang N, Zhang X, Xiang YB, Li H, Yang G, Gao J, Zheng W, Shu XO. Associations of Tai Chi, walking, and jogging with mortality in Chinese men. *Am J Epidemiol.* 2013;178:791-6.

33. Young DR, Reynolds K, Sidell M, Brar S, Ghai NR, Sternfeld B, Jacobsen SJ, Slezak JM, Caan B, Quinn VP. Effects of physical activity and sedentary time on the risk of heart failure. *Circ Heart Fail*. 2014;7:21-7.

34. Ainsworth BE, Haskell WL, Herrmann SD, Meckes N, Bassett DR, Jr., Tudor-Locke C, Greer JL, Vezina J, Whitt-Glover MC, Leon AS. 2011 Compendium of Physical Activities: a second update of codes and MET values. *Med Sci Sports Exerc*. 2011;43:1575-81.

35. Jefferis BJ, Whincup PH, Welsh P, Wannamethee SG, Rumley A, Ebrahim S, Lawlor DA, Lowe GD. Prospective study of IL-18 and risk of MI and stroke in men and women aged 60-79 years: a nested case-control study. *Cytokine*. 2013;61:513-20.

36. Shi L, Shu XO, Li H, Cai H, Liu Q, Zheng W, Xiang YB, Villegas R. Physical activity, smoking, and alcohol consumption in association with incidence of type 2 diabetes among middle-aged and elderly Chinese men. *PloS one*. 2013;8:e77919.

37. Zhang Y, Tuomilehto J, Jousilahti P, Wang Y, Antikainen R, Hu G. Lifestyle factors on the risks of ischemic and hemorrhagic stroke. *Arch Intern Med.* 2011;171:1811-8.

38. Wattanakit K, Lutsey PL, Bell EJ, Gornik H, Cushman M, Heckbert SR, Rosamond WD, Folsom AR. Association between cardiovascular disease risk factors and occurrence of venous thromboembolism. A time-dependent analysis. *J Thromb Haemost*. 2012;108:508-15.