
SUPPLEMENTARY INFORMATION

BioNetGen 2.2: Advances in Rule-Based Modeling

Leonard A. Harris, Justin S. Hogg, José-Juan Tapia, John A. P. Sekar, Sanjana A. Gupta,
Ilya Korsunsky, Arshi Arora, Dipak Barua, Robert P. Sheehan, and James R. Faeder∗

Department of Computational and Systems Biology, University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA

∗Corresponding author: faeder@pitt.edu

General Information
BioNetGen website: bionetgen.org

Source code: github.com/RuleWorld/bionetgen

Release notes: bionetgen.org/index.php/Release_Notes

Users’ email list: groups.google.com/d/forum/bionetgen-users

Developers’ email list: groups.google.com/d/forum/RuleWorld-developers

Facebook: facebook.com/bionetgen

Twitter: twitter.com/bionetgen

Online Documentation
Actions & Arguments Guide: bionetgen.org/index.php/BNG_Actions_Args

Built-in mathematical operators and functions: bionetgen.org/index.php/Built-ins

Compartmental BNGL: bionetgen.org/index.php/Compartments_in_BNGL

Energy-based modeling: bionetgen.org/index.php/Energy_Modeling

Functional rate laws: bionetgen.org/index.php/Functions

Hybrid particle/population (HPP): bionetgen.org/index.php/HPP

MEX code generation: bionetgen.org/index.php/Mex_code_generator

Partial list of publications using BioNetGen: /bionetgen.org/index.php/Model_Examples

Partitioned leaping: bionetgen.org/index.php/RK-PLA

SBML-to-BNGL translation (Atomizer): bionetgen.org/index.php/SBML2BNGL

Spatial modeling with CellBlender/MCell: bionetgen.org/index.php/Compartmental_LR_model

Visualization: bionetgen.org/index.php/Visualization

mailto:faeder@pitt.edu
http://bionetgen.org
http::/github.com/RuleWorld/bionetgen
http://bionetgen.org/index.php/Release_Notes
http://groups.google.com/d/forum/bionetgen-users
http://groups.google.com/d/forum/RuleWorld-developers
http://facebook.com/bionetgen
http://twitter.com/bionetgen
http://bionetgen.org/index.php/BNG_Actions_Args
http://bionetgen.org/index.php/Built-ins
http://bionetgen.org/index.php/Compartments_in_BNGL
http://bionetgen.org/index.php/Energy_Modeling
http://bionetgen.org/index.php/Functions
http://bionetgen.org/index.php/HPP
http://bionetgen.org/index.php/Mex_code_generator
http://bionetgen.org/index.php/Model_Examples
http://bionetgen.org/index.php/RK-PLA
http://bionetgen.org/index.php/SBML2BNGL
http://bionetgen.org/index.php/Compartmental_LR_model
http://bionetgen.org/index.php/Visualization

Runge-Kutta PLA
The partitioned-leaping algorithm (PLA) [1] is a multiscale variant of the τ -leaping algorithm of Gillespie
[2, 3]. The PLA differs from other τ -leaping variants (e.g., [4–11]) in that it utilizes the full theoretical
framework derived by Gillespie [12] for bridging from the exact-stochastic to the continuous-deterministic
description of chemical kinetics. At each step of a PLA simulation, each reaction is classified, based on
the current values of the reaction rate and the time step, into one of four categories spanning both discrete
and continuous representations: exact stochastic, Poisson, Langevin, and deterministic. As such, the PLA
is able to efficiently “leap” over large numbers of reaction firings involving species with large populations
(e.g., metabolites, small-molecule signaling agents) while simultaneously accurately capturing stochastic
effects associated with small-population species (e.g., genes, mRNA transcripts). An extensive performance
analysis comparing the PLA to the exact stochastic simulation algorithm (SSA) [13] is presented in [14].
A spatial variant of the PLA has also been proposed [15]. Further information regarding the theoretical
foundations of the PLA can be found in [16].

In its original formulation, the τ -leaping algorithm (and many of its variants, including the PLA) is
analogous to the simple forward Euler method for solving ordinary differential equations (ODEs) [2]. Rec-
ognizing the potential limitations that this poses, Gillespie proposed in [2] an additional method, termed
the “midpoint” τ -leaping algorithm, based on estimating the values of the reaction propensities (rates) at
the midpoint between time t (the current time) and t+ τ , where τ is the chosen time step. This method is
analogous to the well known midpoint method for solving ODEs, which is a second-order variant of a larger
class of methods known as explicit Runge-Kutta methods [17]. This generalization of the original τ -leaping
algorithm has inspired the development of numerous additional τ -leaping methods, including implicit [18, 19]
and higher-order Runge-Kutta [20] variants. An in-depth discussion of different τ -leaping variants and their
relationship to the PLA can be found in [16].

In BioNetGen 2.2, we have followed this lead and implemented an explicit Runge-Kutta variant of the
PLA (RK-PLA). Details of the implementation will be reported elsewhere [21]. However, briefly, the algo-
rithm is comprised of four basic steps:

1. τ selection (time step calculation)
2. reaction classification
3. firing generation
4. postleap checking and correcting

τ selection can be performed using either established pre-leap τ -selection formulae [1, 4] or via a postleap
checking strategy similar to that proposed by Anderson [22]. Both approaches require defining various
adjustable parameters (see Table S1), including the “error control parameter” ε [2], and can be invoked
in either a reaction-based (RB) or species-based (SB) formulation [1, 4]. Reaction classification and firing
generation depend on the calculated values of τ and the chosen Runge-Kutta method. Forward Euler (first
order), midpoint (second order), and 4th-order Runge-Kutta methods can be called by keyword (Table S1).
Custom methods (explicit only) can also be defined in a Butcher tableau [17] input file. Postleap checking
can be performed in two ways: (i) a simple check to ensure that populations do not become negative [23];
(ii) a check to see if the so-called “leap condition” [2] (either RB or SB versions [1, 4]) has been violated.
Negative-population postleap checking can only be performed in concert with pre-leap τ selection. Leap-
condition, or “ε-based,” postleap checking can be performed either with pre-leap τ selection or within a
full Anderson-style postleap checking procedure [22]. In all cases, postleap violations are corrected using
binomial random numbers, as in [22].

BioNetGen 2.2 users can perform RK-PLA simulations by calling either the simulate_pla action or the
simulate action together with the method=>"pla" argument (Table S2), invoked in the usual way from
within a .bngl input file [24]. In both cases, a user-defined configuration of τ -selection, reaction classifica-
tion, firing generation, and postleap checking/correcting methods can be defined through the pla_config
argument (Table S2), which takes a string subdivided into three parts separated by vertical bars,

pla_config=>"arg1|arg2|arg3",

where arg1 specifies the desired Runge-Kutta method, arg2 defines a τ selection + postleap checking/correcting
combination, and arg3 is reserved for parameter definitions. If not defined, the default configuration is

pla_config=>"fEuler|pre-neg:sb|eps=0.03", which specifies a forward Euler method with SB pre-leap
τ selection, negative-population postleap checking, and an error control parameter ε=0.03. A complete list
of pla_config arguments is provided in Table S1.

As a first test of the RK-PLA implementation in BioNetGen 2.2, we performed a weak-order error analysis
using the simple test system S

k=1−→ 2S, with initial populationX(0)=1. We ran 100 000 RK-PLA simulations
to t=8 using four RKmethods, ranging from first to fourth order, with a negative-population postleap checker
and a range of fixed time steps between 0.01 and 8. The first-, second-, and fourth-order methods are the
forward Euler, midpoint, and 4th-order Runge-Kutta methods supported by keyword. We also considered
Kutta’s 3rd-order method [17], specified via a Butcher tableau input file. We performed an equal number
of SSA simulations and calculated the RK-PLA error in the first moment (|E[XP LA(8)]− E[XSSA(8)]|) and
second moment (

∣∣E[X2
P LA(8)]− E[X2

SSA(8)]
∣∣) as a function of the time step. In Fig. S1a, we see that the

error in the first moment scales as expected for each method (slope ≤ order). In Fig. S1b, the error in the
second moment scales as first order in all cases.

We then tested the RK-PLA simulator on the decaying-dimerizing (DD) reaction set [2], a model com-
prised of the following four reactions,

S1
k1−→ 0,

S1 + S1
k2−⇀↽−
k3

S2,

S2
k4−→ S3,

where k1 = 1.0 s−1, k2 = 0.002 s−1, k3 = 0.5 s−1, and k4 = 0.04 s−1. The initial species populations are
X1(0)=4150, X2(0)=39 565, and X3(0)=3445 [2]. Simulations were run to t=30 s using the forward Euler
variant of the RK-PLA with SB pre-leap τ selection, negative-population postleap checking, and values of
the error-control parameter ε = [0.01, 0.03, 0.05, 0.1, 0.2]. For each value of ε, we ran 10 000 RK-PLA
simulations and generated smoothed histograms [1] for X1(10), the population of species S1 at t=10 s. We
also generated histograms from 10 000 SSA simulations for comparison. Differences between the RK-PLA
and SSA histograms were quantified using the “histogram distance,” D, and the “self distance,” Dself [1, 25].
Two histograms cannot be statistically distinguished if D ≤ Dself . In Fig. S2a, we show the mean time course
for species S1 from 10 000 SSA simulations. In Fig. S2b, we plot the ratio of the RK-PLA and SSA run times
for each value of ε. We also include next to each symbol values of the histogram distance D. Circles are
used if D≤Dself and triangles are used otherwise. We see in Fig. S2b that for ε=0.05 we achieve a speedup
of ∼ 4× with no loss of accuracy; for ε= 0.1 we achieve a speedup of ∼ 8× with minimal loss of accuracy.
Increasing the order of the RK method does not significantly improve accuracy in this case.

As a final test of the RK-PLA simulator, we considered a published model of epidermal growth factor
(EGF) receptor (EGFR)-mediated signaling [26, 27] (available in the Models2 directory of the BioNetGen
2.2.6 release as egfr_path.bngl). The primary focus of this model is the cascade of signaling events that
leads to recruitment of cytosolic Sos to the inner cell membrane. EGF ligands bind to EGFR, leading
to the formation of signaling-competent receptor dimers, which can be transphoshorylated. The cytosolic
adapter proteins Grb2 and Shc are recruited to the phosphorylated dimer. When Shc is bound to a dimer
it can be phosphorylated by EGFR. The phosphorylated form of Shc interacts with Grb2, which interacts
constitutively with Sos. The model is comprised of 18 species (EGF, EGFR, Grb2, Shc, Sos + complexes)
and 37 reactions. We performed RK-PLA simulations using SB pre-leap τ selection, negative-population
postleap checking, and values of the error-control parameter ε = [0.01, 0.03, 0.05, 0.1, 0.2]. To illustrate
the advantages of using a higher-order RK method, we performed simulations using both the forward Euler
and midpoint variants of the RK-PLA. For each configuration, we ran 10 000 RK-PLA and SSA simulations
to t= 100 s and compared histograms for activated Sos (Sos_act) at t= 10 s using the histogram and self
distances. In Fig. S3a, we show the mean time course for activated Sos from 10 000 SSA simulations. In
Fig. S3b, we show that for forward Euler with ε=0.05 we achieve a speedup of ∼8× with respect to the SSA
with no loss of accuracy. In Fig. S3c, we show that with the higher-order midpoint method we can increase ε
to 0.1 with no loss of accuracy, resulting in a speedup of >20×. Further increasing the order of the method
has no significant effect on the accuracy in this case.

The examples that we have presented here demonstrate the ability of the RK-PLA simulator in BioNetGen
2.2 to perform accurate and efficient stochastic simulations on select models. A more extensive performance

analysis considering additional RK-PLA features (pre-eps/post-eps configurations, higher-order methods,
etc.), as well as more complex models, will be presented elsewhere [21]. However, some practical rules-
of-thumb that we can report here based on our experiences include: (i) values of ε between 0.03 and 0.1
provide a good balance between accuracy and efficiency in most cases; (ii) all else being equal, simulation
run times increase (as expected) with increasing order of the RK method (fEuler < midpoint < kutta3 <
rk4); (iii) SB methods tend to be somewhat faster than equivalent RB methods; (iv) pre-eps configurations
tend to be the slowest but most accurate, post-eps methods tend to be the fastest but least accurate,
and pre-neg methods lie somewhere in between. Further documentation about the RK-PLA simulator
in BioNetGen 2.2 can be found at bionetgen.org/index.php/RK-PLA. User questions can be directed to
bionetgen.help@gmail.com.

References
[1] L. A. Harris and P. Clancy, “A ‘partitioned leaping’ approach for multiscale modeling of chemical

reaction dynamics,” J. Chem. Phys., vol. 125, p. 144107, 2006.

[2] D. T. Gillespie, “Approximate accelerated stochastic simulation of chemically reacting systems,” J.
Chem. Phys., vol. 115, pp. 1716–1733, 2001.

[3] D. T. Gillespie, “Stochastic simulation of chemical kinetics,” Annu. Rev. Phys. Chem., vol. 58, pp. 35–55,
2007.

[4] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Efficient step size selection for the tau-leaping simulation
method,” J. Chem. Phys., vol. 124, p. 044109, 2006.

[5] T. Tian and K. Burrage, “Binomial leap methods for simulating stochastic chemical kinetics,” J. Chem.
Phys., vol. 121, pp. 10356âĂŞ–10364, 2004.

[6] A. Chatterjee, D. G. Vlachos, and M. A. Katsoulakis, “Binomial distribution based τ -leap accelerated
stochastic simulation,” J. Chem. Phys., vol. 122, p. 024112, 2005.

[7] A. Auger, P. Chatelain, and P. Koumoutsakos, “R-leaping: Accelerating the stochastic simulation algo-
rithm by reaction leaps,” J. Chem. Phys., vol. 125, p. 084103, 2006.

[8] X. Cai and Z. Xu, “K-leap method for accelerating stochastic simulation of coupled chemical reactions,”
J. Chem. Phys., vol. 126, p. 074102, 2007.

[9] M. F. Pettigrew and H. Resat, “Multinomial tau-leaping method for stochastic kinetic simulations,” J.
Chem. Phys., vol. 126, p. 084101, 2007.

[10] X. Peng, W. Zhou, and Y. Wang, “Efficient binomial leap method for simulating chemical kinetics,” J.
Chem. Phys., vol. 126, p. 224109, 2007.

[11] A. Leier, T. T. Marquez-Lago, and K. Burrage, “Generalized binomial τ -leap method for biochemical
kinetics incorporating both delay and intrinsic noise,” J. Chem. Phys., vol. 128, p. 205107, 2008.

[12] D. T. Gillespie, “The chemical Langevin equation,” J. Chem. Phys., vol. 113, pp. 297–306, 2000.

[13] D. T. Gillespie, “A general method for numerically simulating the stochastic time evolution of coupled
chemical reactions,” J. Comput. Phys., vol. 22, pp. 403–434, 1976.

[14] L. A. Harris, A. M. Piccirilli, E. R. Majusiak, and P. Clancy, “Quantifying stochastic effects in biochem-
ical reaction networks using partitioned leaping,” Phys. Rev. E, vol. 79, p. 051906, 2009.

[15] K. A. Iyengar, L. A. Harris, and P. Clancy, “Accurate implementation of leaping in space: the spatial
partitioned-leaping algorithm,” J. Chem. Phys., vol. 132, p. 094101, 2010.

[16] L. A. Harris, Multiscale Simulation of Reaction Dynamics in Chemical, Biological and Materials Sys-
tems. PhD thesis, Cornell University, 2010.

http://bionetgen.org/index.php/RK-PLA
bionetgen.help@gmail.com

[17] J. C. Butcher, Numerical Methods for Ordinary Differential Equations. Chichester, UK.: John Wiley
& Sons, Ltd, 2nd ed., 2008.

[18] M. Rathinam, L. R. Petzold, Y. Cao, and D. T. Gillespie, “Stiffness in stochastic chemically reacting
systems: The implicit tau-leaping method,” J. Chem. Phys., vol. 119, pp. 12784–12794, 2003.

[19] Y. Cao, L. R. Petzold, M. Rathinam, and D. T. Gillespie, “The numerical stability of leaping methods
for stochastic simulation of chemically reacting systems,” J. Chem. Phys., vol. 121, pp. 12169–12178,
2004.

[20] K. Burrage and T. Tian, “Poisson Runge-Kutta methods for chemical reaction systems,” in Third
International Workshop on Scientific Computing and Applications (Y. Lu, W. Sun, and T. Tang, eds.),
vol. 1 of Advances in Scientific Computing and Applications, pp. 82–96, Science Press, 2004.

[21] L. A. Harris, S. Gupta, L. J. Stover, N. S. Nair, and J. R. Faeder, “An explicit Runge-Kutta τ -leaping
algorithm.” in preparation.

[22] D. F. Anderson, “Incorporating postleap checks in tau-leaping,” J. Chem. Phys., vol. 128, p. 054103,
2008.

[23] Y. Cao, D. T. Gillespie, and L. R. Petzold, “Avoiding negative populations in explicit Poisson tau-
leaping,” J. Chem. Phys., vol. 123, p. 054104, 2005.

[24] J. R. Faeder, M. L. Blinov, and W. S. Hlavacek, “Rule-based modeling of biochemical systems with
BioNetGen,” in Methods in Molecular Biology, vol. 500, pp. 113–167, Clifton, N.J.: Humana Press,
2009.

[25] Y. Cao and L. Petzold, “Accuracy limitations and the measurement of errors in the stochastic simulation
of chemically reacting systems,” J. Comput. Phys., vol. 212, pp. 6–24, 2006.

[26] B. N. Kholodenko, O. V. Demin, G. Moehren, and J. B. Hoek, “Quantification of short term signaling
by the epidermal growth factor receptor,” J. Biol. Chem., vol. 274, pp. 30169–30181, 1999.

[27] M. L. Blinov, J. R. Faeder, B. Goldstein, and W. S. Hlavacek, “A network model of early events in
epidermal growth factor receptor signaling that accounts for combinatorial complexity,” Biosystems,
vol. 83, pp. 136–151, 2006.

Table S1: List of all supported options to the pla_config argument in BioNetGen 2.2. If
pla_config is not defined in the simulate_pla or simulate action call then a default configuration of
"fEuler|pre-neg:sb|eps=0.03" is used. All keywords are case-insensitive.

pla_config=>"arg1|arg2|arg3"

arg1

fEuler forward Euler
midpt midpoint
rk4 4th-order Runge-Kutta

custom custom method (requires bt to be defined)

arg2

pre-neg:rb RB pre-leap τ selection + negative-population postleap checking
pre-neg:sb SB pre-leap τ selection + negative-population postleap checking
pre-eps:rb RB pre-leap τ selection + ε-based (leap condition) postleap checking
pre-eps:sb SB pre-leap τ selection + ε-based (leap condition) postleap checking
post-eps:rb RB Anderson-style postleap checking/τ selection
post-eps:sb SB Anderson-style postleap checking/τ selection
Anderson:rb same as post-eps:rb
Anderson:sb same as post-eps:sb
fixed-neg fixed time step + negative-population postleap checking (requires tau to be defined)

fixed-eps:rb fixed time step + RB ε-based postleap checking (requires tau to be defined)
fixed-eps:sb fixed time step + SB ε-based postleap checking (requires tau to be defined)

arg3
(comma-separated list: par1=val1,par2=val2,...)

eps “error-control parameter” (0 . ε < 1); used in pre-leap τ selection and
ε-based postleap checking; required

apx1 “approximately 1” (≈1); used in reaction classification; default: 3
gg1 “much greater than 1” (�1); used in reaction classification; default: 100
p fraction to reduce τ if postleap violation is detected; default: 0.5
pp fraction to reduce τ if postleap leap check is “barely” satisfied

(post-eps:rb, post-eps:sb only); default: 0.8
q fraction to increase τ if postleap leap check is “substantially” satisfied

(post-eps:rb, post-eps:sb only); default: 1.5
w fraction of leap condition that if satisfied is considered “substantial”

(post-eps:rb, post-eps:sb only); default: 0.75
tau fixed time step (required for fixed-neg, fixed-eps:rb, fixed-eps:sb)
bt Butcher tableau input file (including path; required for custom)

Figure S1: Weak-order error analysis of the RK-PLA implementation in BioNetGen 2.2 using the
simple test system S

k=1−→ 2S, with initial population X(0)=1: (a,b) errors in the first (a) and
second (b) moments as a function of the time step; (c) Butcher tableau for Kutta’s 3rd-order
method [17]; (d) Butcher tableau input file used to run RK-PLA simulations with Kutta’s 3rd-
order method. In (a,b), all plotted points are based on 100 000 RK-PLA and SSA simulations run
to t = 8. RK-PLA simulations were performed with fixed time steps and a negative-population
postleap checker, i.e., pla_config=>"METHOD|fixed-neg|tau=FLOAT" for METHOD = fEuler, midpt,
rk4 and pla_config=>"custom|fixed-neg|tau=FLOAT,bt=[path_to_file]/ButcherTableau.txt" for
Kutta’s 3rd-order method. In all cases, 0.01 ≤ FLOAT ≤ 8. (fEuler: forward Euler; midpt: midpoint;
kutta3: Kutta’s 3rd-order; rk4: 4th-order Runge-Kutta.)

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
log10(∆t)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

lo
g
10
(e
rr
o
r)

y=
x+

4

y
=
2x
+
3.
5

y
=
3x
+
2.
73

y
=
4x

+
1.
8

fEuler

midpt

kutta3

rk4

−2.5 −2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0
log10(∆t)

4.5

5.0

5.5

6.0

6.5

7.0

7.5
lo
g
10
(e
rr
o
r) y=

x
+
8.
1

y=
x
+
6.
8

fEuler

midpt

kutta3

rk4

kutta3

0
1⁄2 1⁄2

1 -1 2
1⁄6 2⁄3 1⁄6

ButcherTableau.txt

0 0 0
1/2 0 0
-1 2 0
#------------
1/6 2/3 1/6

A B

C D

Figure S2: Performance analysis for the decaying-dimerizing (DD) reaction set: (a) average time course for
species S1 from 10 000 SSA simulations; (b) ratio of RK-PLA to SSA run times as a function of error-control
parameter ε. In (b), values of the histogram distance D are shown next to the symbols for each value of ε;
circles are used if D≤Dself , triangles are used otherwise. Smoothed histograms at t=10 s are shown in the
inset, with colors corresponding to those of the symbols in the main plot. Mean values are designated with ‘+’;
horizontal bars represent ± one standard deviation around the mean. The SSA histogram is shown in black.
All histograms were generated using the histogram smoothing procedure described in [1] with a “smoothing
parameter” σ = 30. RK-PLA simulations were run with pla_config=>"fEuler|pre-neg:sb|eps=FLOAT",
where FLOAT is one of [0.01,0.03,0.05,0.1,0.2].

epsilon
0
.0

1

0
.0

3

0
.0

5
0
.1

0
.2

S
p

e
e
d

u
p

 r
e
la

ti
v
e
 t

o
 S

S
A

0

2

4

6

8

10

12

0.01

0.01

0.01

0.08

0.37

D
self

 = 0.07

Forward Euler

Number of molecules / 10
3

2 2.5 3

P
ro

b
a
b

il
it

y
 d

e
n

s
it

y

0

Time (s)
0 10 30

N
u

m
b

e
r

o
f

m
o

le
c
u

le
s
 /
 1

0
3

0

1

2

3

4

5

S1

A

B

• SSA

Figure S3: Performance analysis for the EGFR signaling model [26, 27]: (a) average time course for activated
Sos from 10 000 SSA simulations; (b,c) ratio of RK-PLA to SSA run times as a function of error-control
parameter ε for the forward Euler and midpont RK-PLA variants. Layout is identical to that in Fig. S2. All
smoothed histograms were generated with a “smoothing parameter” σ=30. RK-PLA simulations were run
with pla_config=>"METHOD|pre-neg:sb|eps=FLOAT", where METHOD is fEuler or midpt and FLOAT is one
of [0.01,0.03,0.05,0.1,0.2].

0.
01

0.
03

0.
05 0.

1
0.

2

S
p

e
e

d
u

p
 r

e
la

ti
v

e
 t

o
 S

S
A

0

10

20

30

40

50

60

0.01
0.03

0.05

0.19

0.46

D
self

 = 0.09

Forward Euler

Number of molecules / 10
4

1.34 1.39 1.44

P
ro

b
a

b
il

it
y

 d
e

n
s

it
y

0

epsilon
0.

01
0.

03
0.

05 0.
1

0.
2

S
p

e
e

d
u

p
 r

e
la

ti
v

e
 t

o
 S

S
A

0

10

20

30

40

50

60

0.03
0.02

0.03

0.06

0.23

D
self

 = 0.09
Midpoint

Number of molecules / 10
4

1.34 1.39 1.44

P
ro

b
a

b
il

it
y

 d
e

n
s

it
y

0

Time (s)
0 10 100

N
u

m
b

e
r

o
f

m
o

le
c

u
le

s
 /

 1
0

4

0

0.5

1

1.5

Sos_act

A

B

C

• SSA

• SSA

Table S2: New actions and arguments (key=>value format) introduced in the BioNetGen 2.2.x series of releases. STRING is any
string of characters (must be enclosed in quotes); INT is any integer; FLOAT is any real-valued number; BOOL is either 0 (False) or 1
(True); [...] is a comma-separated list. Default values are provided for optional arguments. Actions introduced prior to version
2.2.0 are labeled “< 2.2.0”. For a complete list of all BioNetGen actions and arguments, see http://bionetgen.org/index.php/
BNG_Actions_Args.

action({argument=>type}) Description Introduced

bifurcate({}) Perform a bifurcation analysis. 2.2.6
Inherits all arguments from parameter_scan, with the following defaults:

reset_conc=>0

generate_hybrid_model({ Generate a hybrid particle/population version of a BNGL model. 2.2.0
Significantly reduces memory use in NFsim simulations.

prefix=>"STRING", Change the base filename for output. 2.2.0
Default: model name

suffix=>"STRING", Suffix added to output base filename. 2.2.0
Default: "hpp"

actions=>["STRING",...], List of actions to append to bottom of generated hybrid model file. 2.2.0
Default: "writeXML()"

execute=>BOOL, Execute actions in hybrid model. 2.2.0
Default: 0

overwrite=>BOOL, Overwrite existing hybrid model file. 2.2.0
Default: 0

safe=>BOOL, Enable safe mode. 2.2.4
Less efficient but guaranteed to work with any “lumping rate constant” value.

Default: 0

verbose=>BOOL Enable verbose output. 2.2.0
Default: 0

})

parameter_scan({ Scan over a range of values of a specified parameter. < 2.2.0
Recognizes all previous arguments (including all from simulate), plus . . .

par_scan_vals=>[FLOAT,...], Specific values of a parameter to be scanned over. 2.2.6
(Required if par_min, par_max, and n_scan_pts not defined.)

Default: N/A

reset_conc=>BOOL Reset species concentrations after each simulation of a scan. 2.2.6
Default: 1

})

readFile({ Read a model from file. < 2.2.0
Recognizes all previous arguments, plus . . .

blocks=>["STRING",...], List of blocks to be read in from a BNGL or NET file. 2.2.6
Default: all blocks

atomize=>BOOL Import an SBML model as “flat” (atomize=>0) or structured (atomize=>1). 2.2.6
Default: 0

})

simulate_pla({ Simulate using the “partitioned-leaping algorithm" (PLA), a τ -leaping variant. 2.2.0
Inherits many arguments from simulate_ode and simulate_ssa, plus . . .

pla_config=>"STRING" Define configuration parameters needed to run PLA simulations. 2.2.0
Default: "fEuler|pre-neg:sb|eps=0.03"

})

simulate({ All-purpose simulate action. 2.2.0
Inherits all arguments from simulate_ode, simulate_ssa, simulate_pla,

and simulate_nf, plus . . .

method=>"STRING", Set simulation method as "ode", "ssa", "pla", or "nf". 2.2.0
Required argument. ("nf" in 2.2.6)

argfile=>"STRING", File name containing action commands and arguments. 2.2.0
Default: N/A

max_sim_steps=>INT, Maximum number of simulation steps. 2.2.0
Default: N/A

http://bionetgen.org/index.php/BNG_Actions_Args
http://bionetgen.org/index.php/BNG_Actions_Args

output_step_interval=>INT, Number of simulation steps between outputs. 2.2.0
Default: N/A

print_CDAT=>BOOL, Print species concentrations to .cdat file at all output times. 2.2.0
(If print_CDAT=>0, only initial and final concentrations are printed.)

Default: 1

print_functions=>BOOL, Print values of global functions to .gdat file at all output times. 2.2.0
Default: 0

print_on_stop=>BOOL, Print to file at the time point that logical stopping condition is met. 2.2.1
Default: 1

stop_if=>"STRING" Define a logical condition for terminating a simulation. 2.2.1
Default: N/A

})

writeFile({ All-purpose method for writing models to file. 2.2.0

format=>"STRING", Select output format as "bngl", "net", or "xml". 2.2.0
("xml" writes BNG-XML, readable by NFsim; for SBML, use writeSBML.)

Default: "net"

prefix=>"STRING", Set prefix of output file name. 2.2.0
Default: model name

suffix=>"STRING", Set suffix of output file name. 2.2.0
Default: N/A

include_model=>BOOL, Include model blocks in output file. 2.2.0
Default: 1

include_network=>BOOL, Include network blocks in output file. 2.2.0
Default: 1

evaluate_expressions=>BOOL, Evaluate mathematical expressions to numbers. 2.2.0
Default: 0

pretty_formatting=>BOOL, Write output in human-readable form. 2.2.0
Default: 1

TextReaction=>BOOL, Write reactions as BNGL strings. 2.2.0
Default: 0

TextSpecies=>BOOL, Write species as BNGL strings. 2.2.0
Default: 1

overwrite=>BOOL Overwrite existing files. 2.2.0
Default: 1

})

writeMDL({ Write reaction network in MDL format for CellBlender/MCell. 2.2.5

prefix=>"STRING", Set prefix of output file name. 2.2.5
Default: model name

suffix=>"STRING" Set suffix of output file name. 2.2.5
Default: N/A

})

writeModel({}) Write model in BNGL format. 2.2.0
Inherits all arguments from writeFile, with the following defaults:

format=>"bngl",
include_model=>1,
include_network=>0,
evaluate_expressions=>0,
pretty_formatting=>1,
overwrite=>0

writeNetwork({}) Write reaction network in NET format. 2.2.0
Inherits all arguments from writeFile, with the following defaults:

format=>"net",
include_model=>0,
include_network=>1,
evaluate_expressions=>0,
pretty_formatting=>0,
overwrite=>0

visualize({ Produce a model visualization in graph modeling language (GML) format. 2.2.6

type=>"STRING", Set visualization type as "contactmap", "regulatory", 2.2.6
"ruleviz_operation", or "ruleviz_pattern".

Default: "regulatory"

help=>BOOL, Display the help menu. 2.2.6
(visualize({type=>"TYPE",help=>1}) displays a TYPE-specific help menu.)

Default: 0

suffix=>STRING, Set suffix of output file name. 2.2.6
Default: N/A

each=>BOOL, Output rule visualizations to separate files (incompatible with textonly=>1). 2.2.6
("ruleviz_pattern", "ruleviz_operation", and "regulatory" only.)

Default: 0

background=>BOOL, Include background nodes in the graph. 2.2.6
("regulatory" only.)

Default: 0

collapse=>BOOL, Collapse grouped nodes to single nodes. 2.2.6
("regulatory" only; requires groups=>1.)

Default: 0

filter=>BOOL, Filter the set of nodes using the provided options file. 2.2.6
("regulatory" only.)

Default: 0

groups=>BOOL, Enable automated grouping of nodes. 2.2.6
("regulatory" only; results depend on background=>BOOL.)

Default: 0

level=>INT, Number of levels deep the graph should be explored during filtering. 2.2.6
("regulatory" only.)

Default: 1

opts=>["STRING",...], List of text files with options for background, filtering, and groups. 2.2.6
("regulatory" only.)

Default: N/A

textonly=>BOOL Output a human-readable text file. 2.2.6
("regulatory" only.)

Default: 0
})

Table S3: New actions and arguments (comma-separated format) introduced in the BioNetGen 2.2.x series of releases. STRING
is any string of characters (must be enclosed in quotes); FLOAT is any real-valued number; <...> denotes an optional argument.
Actions introduced prior to version 2.2.0 are labeled “< 2.2.0”. For a complete list of all BioNetGen actions and arguments, see
http://bionetgen.org/index.php/BNG_Actions_Args.

action(arg1,arg2,...) Description Introduced

setModelName("STRING") Set the model name. 2.2.0
Default is the BNGL file basename.

addConcentration("STRING",FLOAT) Add to the concentration of a species. 2.2.0
Value of FLOAT can be positive or negative.

saveConcentrations(<"STRING">) Store the current species concentrations. < 2.2.0
Optional "STRING" label can be specified for later reference. (Labels in 2.2.0)

resetConcentrations(<"STRING">) Restore species concentrations. < 2.2.0
Unless an optional "STRING" label is provided, concentrations are restored (Labels in 2.2.0)
to those from the last saveConcentrations command, or to the initial

concentrations if saveConcentrations has not yet been called.

saveParameters(<"STRING">) Store the current parameter values. 2.2.0
Optional "STRING" label can be specified for later reference.

NOTE: Only constant parameters are saved, not derived parameters
(expressions of constant parameters); see resetParameters.

resetParameters(<"STRING">) Restore parameter values. 2.2.0
Unless an optional "STRING" label is provided, values are restored
to those from the last saveParameters command, or to the initial

values if saveParameters has not yet been called.
NOTE: Only constant parameters are restored, derived parameters

are recalculated; see saveParameters.

http://bionetgen.org/index.php/BNG_Actions_Args

BioNetGen Quick Reference Guide 1
Description
BioNetGen (bionetgen.org) is software for the specification and simulation of rule-based models of biochemical systems, including
signal transduction, metabolic, and genetic regulatory networks. The rule-based approach allows for the maintenance of detailed
information on molecular structures and interactions, as well as significant scalability both in model construction and simulation.
Installation

1. Download RuleBender, a Graphical User Interface for BioNetGen (rulebender.org).
2. Java: If needed, install Java version 1.6 or greater from the Oracle download site (oracle.com/java).
3. Perl: Perl is installed on most Unix-like operating systems. You may need to install it on Windows. We recommend ActivePerl.

Required Model Components Example BNGL Model

Block Name Description

parameters Values and expressions for
parameters in the model.

molecule types Molecule definitions
including components and
component states.

seed species Initial conditions for
molecules and complexes
present at simulation
start time.

observables Sums over concentrations
of species with properties
specified using patterns.

functions Functions of observables
used to construct
non-elementary rate laws
that depend on global or
local properties.

reaction rules Generate reactions with
the specified rate law
based on selecting and
transforming reactants
using patterns.

actions Sequence of actions used
to simulate the model.

Contact Map
Shows the molecules, components, component states
and bonds, as well as synthesis and deletion of
molecules. Right-clicking on molecules allows the user
to search for similarly named proteins in a number of
established databases.

MM Example
begin model
begin parameters

Avogadro’s number - scaled for umol
NA 6.022e23/1e6
Cell volume
V 1e-12 # liters - typical for eukaryote
Rate constants
kp1 1.0/(NA*V) # 1/uM 1/s -> 1/molecules 1/s
km1 0.1 # 1/s
k2 0.01 # 1/s
ksyn 1e-4*(NA*V) # uM/s -> molecules / s
kdeg 0.01 # 1/s
Initial concentrations
E0 0.01*NA*V # uM -> molecules
S0 1.0*NA*V # uM -> molecules

end parameters
begin molecule types

E(s)
S(Y~0~P)

end molecule types
begin seed species

E(s) E0
S(Y~0) S0

end seed species
begin observables

Molecules SU S(Y~0)
Molecules SP S(Y~P)
Molecules ES E(s!1).S(Y!1)
Molecules Etot E()

end observables
begin reaction rules

ESbind: E(s) + S(Y~0) <-> E(s!1).S(Y~0!1) kp1,km1
ESconvert: E(s!1).S(Y~0!1) -> E(s) + S(Y~P) k2
Esyndeg: 0 <-> E(s) ksyn, kdeg

end reaction rules
end model
actions
generate_network({overwrite=>1})
visualize({type=>"regulatory",groups=>1,\

collapse=>1,opts=>"opts.txt"})
simulate({method=>"ode",t_end=>20000,n_steps=>1000})

Simulation Results

http://bionetgen.org
http://rulebender.org
http://oracle.com/java
http://www.activestate.com/activeperl

2
Compartmental BioNetGen (bionetgen.org/index.php/Compartments_in_BNGL)
Extension of BNGL to enable explicit modeling of the compartmental organization of the cell and its effects on system dynamics.
Introduces localization attributes for both molecules and species, as well as appropriate volumetric scaling of reaction rates.

begin compartments
EC 3 vol_EC # extracellular space
PM 2 sa_PM*eff_width EC # plasma membrane
CP 3 vol_CP PM # cytoplasm
NM 2 sa_NM*eff_width CP # nuclear membrane
NU 3 vol_NU NM # nuclear space
EM 2 sa_EM*eff_width CP # endosomal membrane
EN 3 vol_EN EM # endosomal space

end compartments

EC# PM#
CP#

EM#

EN#
NM#

NU#

EC#

CP#

EN# NU#

PM#

EM# NM#

Context and Pattern Matching within Rules
Context (shown below in red) encompasses components, states, and bonds in a rule that do not undergo transformation.

Reaction Rule Reactant Requirements Reactant Species Matched

R1: R(l!+,Y~0) -> R(l!+,Y~P) k1 R must be unphosphorylated at Y and bound at l (bind-
ing site for L).

R(l!1,Y~0).L(r!1)

R2: R(l,Y~0) -> R(l,Y~P) k2 R must be unphosphorylated at Y and not bound at l. R(l,Y~0)

R3: R(Y~0) -> R(Y~P) k3 R must be unphosphorylated at Y. R(l!1,Y~0).L(r!1)
R(l,Y~0)

Context restricts the application of a given rule. Rules with more context are more specific and rules with less context are more
general. Using more context allows for greater control over rates of specific reactions at the cost of requiring more rules to specify a
model. Here, R1 and R2 specify different phosphorylation rates depending on whether R is bound at l, whereas R3 specifies a rate
that is independent of the state of l.

Functional Rate Laws (bionetgen.org/index.php/Functions)
A function is a mathematical expression that can involve numbers, parameters, observables, and other pre-defined functions and op-
erators (see bionetgen.org/index.php/Built-ins). Functions can be used to define reaction rules that do not obey mass-action kinetics.
Importantly, functions substitute for rate constants, meaning that the rate of a reaction is calculated as the product of the function
and the reactant species concentrations (analogous to mass-action rate laws). Functions can be defined “inline” following a reaction
rule or within a separate block of the BNGL file, with the following syntax ([...] denotes an optional argument):

begin functions
[label:] func_name([arg]) [=] math_expression

...
end functions

Here, arg is a “pointer” to a specific complex or molecule and limits the scope over which observables within the function definition
are calculated (the default scope is the entire system). Functions that do not accept an argument are termed “global functions” and
those that do are termed “local functions.” Pointers to complexes and molecules are specified by “tagging” a reactant pattern in a
rule using the %tag syntax, where tag can be any alphanumeric string of characters. Tags prefixed to a pattern (e.g., %x:A()) point
to the complex matched by the pattern and tags postfixed (e.g., A()%x) point to the matched molecule.
Examples:
begin observables

Molecules Atot A() # Observable counting total number of A molecules
Molecules Bp B(c~P) # Observable counting number of phosphorylated B molecules

end observables
begin functions

gfunc() = 0.5*Atot^2/(10+Atot^2) # Hill function (global) defined over all A molecules in the system
lfunc(x) = 0.5*Atot(x)^2/(10+Atot(x)^2) # Hill function (local) defined over all A molecules in "x"

end functions
begin reaction rules

B(c) + C(b) -> B(c!1).C(b!1) gfunc() # Binding rate depends on no. of A molecules in the system
B(c) + C(b) -> B(c!1).C(b!1) 0.5*Atot^2/(10+Atot^2) # Ditto, but with "inline" function definition
%y:B(c) + C(b) -> %y:B(c!1).C(b!1) lfunc(y) # Prefix tag limits observable scope to complex containing B
B(c)%y + C(b) -> B(c!1)%y.C(b!1) Bp(y)*gfunc() # Postfix tag limits observable scope to B molecule only

end reaction rules

http://bionetgen.org/index.php/Compartments_in_BNGL
http://bionetgen.org/index.php/Functions
http://bionetgen.org/index.php/Built-ins

3
Maintaining Consistent Units
Units are not enforced within BioNetGen, but for realistic results units among all concentrations and rate constants must be kept
consistent. The most common units utilized are in terms of molecules/cell. (NA: Avogadro’s number; V : volume)

Common Parameters Example Starting Value Desired Units Conversion Factor Final Parameter

Volumes 10−6 µl l 10−6 l/µl 10−12 l
Concentrations 0.01 µM molec NA × V/106 molec/µM 6022 molec
1st-order rate constants 1 s−1 s−1 None 1 s−1

2nd-order rate constants 105 M−1s−1 molec−1s−1 1/(NA × V) M/molec 1.66× 10−7 molec−1s−1

Reading Models from File
In addition to .bngl files, BioNetGen can read in pre-generated reaction networks from .net files and SBML models with the .xml
extension. This is done using the readFile({file=>"filename"}) action. Optional arguments include blocks=>["blockname1",
"blockname2",...] and atomize=>0/1. If the filename ends with .xml, the SBML-to-BNGL translator is automatically called.
The atomize=>1 option invokes the “Atomizer,” a method for extracting implicit molecular structure from flat SBML species. The
Atomizer can also be accessed as a standalone web application at ratomizer.appspot.com/translate.

Simulation Methods

Method Command Description

Ordinary differential equations simulate({method=>"ode"}) Network-based deterministic simulation using the
SUNDIALS CVODE ODE solver.

Stochastic simulation algorithm simulate({method=>"ssa"}) Network-based stochastic simulation using the Gillespie
direct method to sample over reactions.

Partitioned-leaping algorithm simulate({method=>"pla"}) Network-based stochastic simulation using a tau-leaping
variant to speed up simulation.

Network-free simulation simulate({method=>"nf"}) Stochastic simulation that does not require network
generation. Uses the Gillespie direct method to sample
over reaction rules. Scalable to models encoding large
reaction networks (see nfsim.org for more information).

Parameter Scans
BioNetGen allows the user to run parameter scans, which quantify the effects of varying the value of an individual parameter on any
observable species. This is done using the command parameter_scan({argument=>value}) with the following arguments:

Argument Usage Example

parameter Name of the parameter to be varied. parameter=>"kp1"
par_min Minimum value the parameter will take. par_min=>1e-3
par_max Maximum value the parameter will take. par_max=>1e3

n_scan_pts Number of values the parameter will take, uniform between par_min and par_max. n_scan_pts=>1000
log_scale Selects parameter values uniformly between log10(par_min) and log10(par_max). log_scale=>1

method Simulation method to be used ("ode", "ssa", "pla", or "nf"). method=>"ode"
t_end Simulation run time. t_end=>10000

n_steps Number of observable outputs. n_steps=>1000

Exporting Models to Other Formats

Action File Extension(s) Description

writeModel .bngl BNGL model file.
writeNetwork .net Reaction network file used for network-based simulations.

writeSBML .xml Systems Biology Markup Language; compatible with many software packages.
writeMfile .m Model file compatible with Matlab.

writeMexfile .cvode.c, .m Model file written in C that can be compiled into a Matlab executable (MEX) file.
writeXML .xml Model file usable for network-free simulation in NFsim.
writeMDL .mdl, .py,

.geometry.mdl
Model file usable for spatial simulations in MCell.

visualize .gml Graph Modeling Language file for visualizations.

http://ratomizer.appspot.com/translate
http://nfsim.org

4
Energy Modeling in BioNetGen (http://bionetgen.org/index.php/Energy_Modeling)
Extension of BNGL to enable definition of energy patterns to drive model kinetics based on changes in free energy of reactions.
Typically allows for the writing of fewer rules for each model, less context in each rule, and the generation of reaction networks
guaranteed to satisfy detailed balance.

Visualization (bionetgen.org/index.php/Visualization)
Visualization tools are accessed using one or more visualize({type=>"string"}) commands. Optional arguments include each=>1
to generate a separate output file for each rule and suffix=>"string" to append a suffix to the file name. The output is a Graph Mod-
eling Language file [model]_[type]_[suffix].gml, which can be processed by graph layout software such as yEd (yworks.com/yed).

A B

C

D

opts.txt

begin background
begin include

E
_reverse_ESbind

end include
begin exclude

E(s)
S(Y∼0)

end exclude
end background
begin classes

begin free_enzyme
E(s)

end free_enzyme
begin unphos_substrate

S(Y∼0)
end unphos_substrate
begin phos_substrate

S(Y∼P)
end phos_substrate
begin enzyme_substrate_complex

E(s!1).S(Y!1))
end enzyme_substrate_complex

end classes

A. Rule visualization: Rules can be visualized either in terms of graph operations (type=>"ruleviz_operation") or reactant and
product patterns (type=>"ruleviz_pattern").
Command used here: visualize({type=>"ruleviz_operation"}).
B. Contact map: Equivalent to the contact maps generated by RuleBender (except for the synthesis/degradation directed edges).
Command used here: visualize({type=>"contactmap"}).
C. Regulatory graph: Graphical representation of the basic processes in a model. Here, processes are grouped (groups=>1)
and group nodes are collapsed (collapse=>1) into single nodes. Additional options exist for displaying hidden sites and processes
(background=>1) and for outputting the visualization to a human-readable text file (textonly=>1).
Command used here: visualize({type=>"regulatory",groups=>1,collapse=>1,opts=>"opts.txt"}).
D. User options: For regulatory graphs, user-defined commands can be specified in text files and loaded using opts=>"filename"
or opts=>["filename1","filename2",...]. Useful for modifying the background and providing intuitive names to groups of sites.

http://bionetgen.org/index.php/Energy_Modeling
http://bionetgen.org/index.php/Visualization
http://yworks.com/yed

