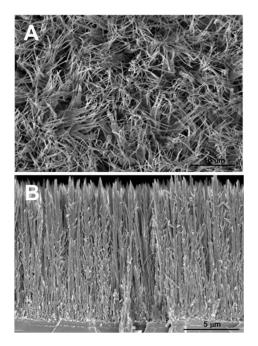
SUPPORTING INFORMATION


Polarized Raman Spectroscopy for Determining the Orientation of di-D-phenylalanine Molecules in a Nanotube

Valentin Sereda¹, Nicole M. Ralbovsky¹, Milana C. Vasudev², Rajesh R. Naik³, and Igor K. Lednev^{1*}


¹Department of Chemistry, University at Albany, SUNY, 1400 Washington Avenue, Albany, NY 12222, United States

²Department of Bioengineering, University of Massachusetts Dartmouth, 285 Old Westport Road, Dartmouth MA 02747, United States

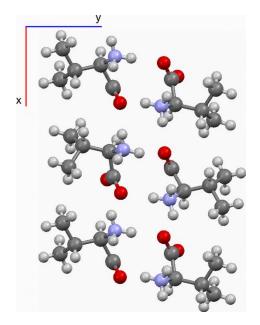

³Soft Matter Materials Branch, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Dayton, Ohio 45433, United States

Figure S1. SEM images of vertical arrays of di-D-phenylalanine nanotubes obtained using under pulsed conditions with RF power (30 W), frequency (100 Hz), and duty cycle (25%). (A). Top view of nanotubes; (B). Cross-sectional views.

Figure S2. Bright-field microscope image of a bundle of nanotubes. The assigned coordinate system for the orientation of laser polarization relative to the sample is shown schematically.

Figure S3. The structure of the L-valine crystal shown in the projection along the z-axis. The small x, and y letters denote the crystallographic directions.