Supplementary Information

Super-resolution imaging of fluorescently labeled, endogenous RNA Polymerase II in living cells with CRISPR/Cas9-mediated gene editing

Won-Ki Cho¹, Namrata Jayanth¹, Susan Mullen¹, Tzer Han Tan¹, Yoon J. Jung¹ and Ibrahim I. Cissé¹*

¹Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139 *Correspondence to: <u>icisse@mit.edu</u>

	Sequence $(5' \Rightarrow 3')$
D	(forward) CACCGCTCTCTTGATGGTGCGCAGC
sgRNA #1	(reverse) AAACGCTGCGCACCATCAAGAGAGC
	(forward) CACCGAGTCCTGAGTCCGGATGAAT
sgRNA #2	(reverse) AAACATTCATCCGGACTCAGGACTC
	(forward) CACCGCGGGCATGCGCTGTCCCCGG
sgRNA #3	(reverse) AAACCCGGGGGACAGCGCATGCCCGC

Supplementary Table 1: sgRNA sequences targeted *Rpb1* gene

* Red : BbsI restricted DNA overhang sequences

Supplementary Table 2: PCR primers for repair DNA amplification and Dendra2 gene knock-in confirmation

	CTCACTATAGGGAGACCCAAGCTGGCTAGCGTTTAAACTTAAGCTTCCTCAGAAGCGCCG
	AGAGCGCGACCGGGACGGTTGGAGAAGAAGGTGGCTCCCGGAAGGGGGAGAGACAAACTG
Homology	CCGTAACCTCTGCCGTTCAGGATCCCGGTTACTTATTTAT
left arm	CCTCCCTCCCAAAACCTCCTCCTCCTCCCTTCTTTGTTTCCTTTTTGGGAGCCGACG
(5' UTR of	AATCTCCGGAAAGGGAGAAAAGGCTTTCTTTCAGCCCTTTTCGTTCCTCTGCCTTCCCCC
Rpb1)	CCCCTTCCCCCCCCCCCCCCCTTCCCTCCAGCCTTTCCCTCCC
	CTTTCCTGGTGGCCGCCCGGACGGGTTCTGAGCACTTAGGCGGCGGTGGCGCAGGCTTTT
	TGTAGCGAGGTTTGCGCCTGCGCAGCGCGCCTGCCTCGCC <mark>ATG</mark> AACACCCCGGGAATTAA
	CCTGATCAAGGAGGACATGCGCGTGAAGGTGCACATGGAGGGCAACGTGAACGGCCACGC
	CTTCGTGATCGAGGGCGAGGGCAAGGGCAAGCCCTACGAGGGCACCCAGACCGCCAACCT
	GACCGTGAAGGAGGGCGCCCCCTGCCCTTCAGCTACGACATCCTGACCACCGCCGTGCA
	CTACGGCAACCGGGTGTTCACCAAGTACCCCGAGGACATCCCCGACTACTTCAAGCAGAG
Dendra2	CTTCCCCGAGGGCTACAGCTGGGAGCGCACCATGACCTTCGAGGACAAGGGCATCTGCAC
sequence	CATCCGCAGCGACATCAGCCTGGAGGGCGACTGCTTCTTCCAGAACGTGCGCTTCAAGGG
Sequence	CACCAACTTCCCCCCCAACGGCCCCGTGATGCAGAAGAAGACCCTGAAGTGGGAGCCCAG
	CACCGAGAAGCTGCACGTGCGCGACGGCCTGCTGGTGGGCAACATCAACATGGCCCTGCT
	GCTGGAGGGCGGCGGCCACTACCTGTGCGACTTCAAGACCACCTACAAGGCCAAGAAGGT
	GGTGCAGCTGCCCGACGCCCACTTCGTGGACCACCGCATCGAGATCCTGGGCAACGACAG
	CGACTACAACAAGGTGAAGCTGTACGAGCACGCCGTGGCCCGCTACAGCCCCCTGCCCAG
	CCAGGTGTGG <mark>ATG</mark> CACGGGGGTGGCCCCCCCCCGG <mark>C</mark> GACAGCGCATGCCCGCT <mark>C</mark> CGCAC
	CATCAAGAGAGTGCAGTTCGGAGTCCTGAG C CCGGATGAATTGGTAAGATAGTCCGCCCG
Homology	TCTCTCTGCTATGCCTTTGGCTGATGATCCTCTGGGAAGATGGGTCAGTGATGCTGATGT
right arm	TGTGCGGGGGTCCAGCCTTCAAAAGTTAAATTATGCCAGGACTTAAACAAGCGAAATGCT
(Rnh1 gene	ATGCCTGAGATGAGTGCTTGACTGGACAGAGAAGAAGATGTTTCCATACTTGAGCATTG
sequence)	CTGCGGTTCAACGAGACAGGGTTGAAAGTTGTACAGGAAGTGGATCCCCAGTTTTAGTTC
504401100)	TTTCACCAATATTGAGCATCCTGCTATGTGACAGTAATCAGACACTAGGAACACAGCTGC
	ACAATAAATATAACAGGAATTC

* Green block : start site of Dendra2 * Yellow block : start site of *Rpb1* * Red bolded letters : silent mutations

Supplementary Table 3: PCR primers for repair DNA amplification and Dendra2 gene knock-in confirmation

PCR primers	Sequence $(5' \Rightarrow 3')$							
Dendra2 homology-	(forward) CAGCCAGTTCTCTCCTCAGAAGCG							
directed repair DNA amplification	(reverse) CAACCCTGTCTCGTTGAACCGCAGC							
Dendra2 gene knock-in	(forward) CTATCCCGGGAGGTCTTTCCTGGT							
confirmation	(reverse) TGCACTCTTTGATGGTGCGC							

Supplementary Figure 1. Schematic procedure of CRISPR/Cas9-mediated Dendra2 labeling of RNA polymerase II

(a) Designing sgRNAs in the target region minimizing off-target effect. Green bars in sgRNA represent PAM sequences. (b) Cloning each sgRNA into Cas9 expression vector with BbsI restriction enzyme digest. (c) Co-transfection of sgRNA vectors along with Dendra2 repair template to living MEF cells. (d) Sorting of fluorescent cells in 96-well plates using FACS. (e) PCR assay to confirm a target gene insertion.

Supplementary Figure 2. Fluorescence activated cell sorting (FACS) dot plots

Cells transfected with sgRNA#2-Cas9 construct along with Dendra2 repair template were sorted using FACS to identify fluorescent cells. (a) A dot plot shows measurements of side scatter (SS) and fluorescence detection through FITC filter and 488-nm excitation (FL1) for 11,693 wild type cells. (b) A dot plot shows side scattering (SS) and fluorescence intensity of pre-converted Dendra2 for 15,888 sgRNA#2-Cas9 transfected cells. We set a sorting threshold on the maximum intensity detected in wild type cells. 0.72% fluorescent cells (N=116 cells) with intensities above the threshold were collected.

Supplementary Figure 3. PCR analysis confirms Dendra2 gene insertion

PCR primers amplify ~180bp of endogenous *Rpb1* gene around the target region. When Dendra2 gene (~690bp) is inserted properly the product of PCR should be ~870bp. In the result of PCR assay, FACS sorted cell lines show Dendra2-inserted bands unlike the wild type MEF, those are good to use for endogenous Pol II imaging.

b

Sequnecing result of Dendra2-Pol II CRISPR-MEF

5'-	TGC	CTT	CCC	CCC	CCC	TTC	CCC	ССТ	CCC	CCA	CCT	TTC	CCT	ССТ	CCA	GCC	TTT	CCC	тсс
СТА	TCC	CGG	GAG	GTC	TTT	CCT	GGT	GGC	CGC	CCG	GAC	GGG	TTC	TGA	GCA	CTT	AGG	CGG	CGG
TGG	CGC	AGG	CTT	TTT	GTA	GCG	AGG	TTT	GCG	CCT	GCG	CAG	CGC	GCC	TGC	CTC	GCC	ATG	AAC
ACC	CCG	GGA	ATT	AAC	CTG	ATC	AAG	GAG	GAC	ATG	CGC	GTG	AAG	GTG	CAC	ATG	GAG	GGC	AAC
GTG	AAC	GGC	CAC	GCC	TTC	GTG	ATC	GAG	GGC	GAG	GGC	AAG	GGC	AAG	CCC	TAC	GAG	GGC	ACC
CAG	ACC	GCC	AAC	CTG	ACC	GTG	AAG	GAG	GGC	GCC	CCC	CTG	CCC	TTC	AGC	TAC	GAC	ATC	CTG
ACC	ACC	GCC	GTG	CAC	TAC	GGC	AAC	CGG	GTG	TTC	ACC	AAG	TAC	CCC	GAG	GAC	ATC	CCC	GAC
TAC	TTC	AAG	CAG	AGC	TTC	CCC	GAG	GGC	TAC	AGC	TGG	GAG	CGC	ACC	ATG	ACC	TTC	GAG	GAC
AAG	GGC	ATC	TGC	ACC	ATC	CGC	AGC	GAC	ATC	AGC	CTG	GAG	GGC	GAC	TGC	TTC	TTC	CAG	AAC
GTG	CGC	TTC	AAG	GGC	ACC	AAC	TTC	CCC	CCC	AAC	GGC	CCC	GTG	ATG	CAG	AAG	AAG	ACC	CTG
AAG	TGG	GAG	CCC	AGC	ACC	GAG	AAG	CTG	CAC	GTG	CGC	GAC	GGC	CTG	CTG	GTG	GGC	AAC	ATC
AAC	ATG	GCC	CTG	CTG	CTG	GAG	GGC	GGC	GGC	CAC	TAC	CTG	TGC	GAC	TTC	AAG	ACC	ACC	TAC
AAG	GCC	AAG	AAG	GTG	GTG	CAG	CTG	CCC	GAC	GCC	CAC	TTC	GTG	GAC	CAC	CGC	ATC	GAG	ATC
CTG	GGC	AAC	GAC	AGC	GAC	TAC	AAC	AAG	GTG	AAG	CTG	TAC	GAG	CAC	GCC	GTG	GCC	CGC	TAC
AGC	CCC	CTG	CCC	AGC	CAG	GTG	TGG	<mark>ATG</mark>	CAC	GGG	GGT	GGC	CCC	CCC	TCC	GGC	GAC	AGC	GCA
TGC	CCG	CTC	CGC	ACC	ATC	AAG	AGA	GTG	CAG	TTC	GGA	GTC	CTG	AGC	CCG	GAT	GAA	TTG	-3'

Supplementary Figure 4. Sequencing confirms integration of Dendra2 in the target locus

(a) Reads of Dendra2 sequences (green start site), upstream of *Rpb1* gene (yellow start site), are only detected in CRISPRed MEF and not in wild type MEF. Remarkably, silent mutations (red dashed box) that we input on the repair template, were fully confirmed on the exon 1 of *Rpb1* only in CRISPRed cell line, and not in wild type MEF. The corresponding sequencing result for the region in CRISPRed MEF is represented in panel (b). The sequence is perfectly conserved from that expected of our repair template (see **Supplementary Table 2**) after genome integration. We note that we also checked copy number variation (CNV) for WT MEF and CRISPRed MEF since that The SV40 immortalized cell lines used are inherently prone to chromosomal instability. For chromosome 11 where the RPB1 gene is located, ploidy was normal in wild type, while in the CRISPRed MEF loss of chromosome occurred in some cells, likely in a sub-population of the initially sorted monoclonal cells. This suggests that even in an initially monoclonal homozygous cell line, genome instability resulting from cellular immortalization may lead to loss of genomic label in a subpopulation of cells.

Supplementary Figure 5. Fluorescent In Situ Hybridization (FISH) for β-actin gene

(a) A representative image of a fixed wild type MEF cell with FISH. Yellow arrows indicate fluorescence signals of fluorescein (FITC) labeled FISH probes at β -actin gene loci under 488-nm illumination. (b) Intensity profile of β -actin gene foci over time after serum-stimulation in fixed wild type MEF cells. (c) A representative image of a fixed Dendra2-Pol II CRISPRed MEF cell with FISH. Yellow arrows indicate fluorescence signals of fluorescein (FITC) labeled FISH probes at β -actin gene loci under 488-nm illumination. Note that background of nucleus in CRISPRed cells is higher than wild type because of preconverted Dendra2 excitation under 488-nm illumination. (d) Intensity profile of β -actin gene foci over time after serum-stimulation in Dendra2-Pol II CRISPRed cells. Both results, for wild type and CRISPRed cell lines, of transcription bursting for β -actin gene are in a good agreement with previous observation with MS2-tagged β -actin mRNA in living cells^{1,2}. This implies that transcription function of Dendra2-labeled RNA-Pol II in CRISPRed cell line is normal.

Supplementary References

- 1 Cho, W. K. *et al.* RNA Polymerase II cluster dynamics predict mRNA output in living cells. *Elife* **5**, doi:10.7554/eLife.13617 (2016).
- 2 Lionnet, T. *et al.* A transgenic mouse for in vivo detection of endogenous labeled mRNA. *Nat Methods* **8**, 165-170, doi:10.1038/nmeth.1551 (2011).