
1

Supplementary Information for

Compressive Mapping for Next-Generation Sequencing

Deniz Yorukoglu 1, Yun William Yu 1, 2, Jian Peng 1, 2, 3, and Bonnie Berger 1, 2

1 Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of
Technology, Cambridge, Massachusetts 02139, USA.

2 Department of Mathematics, Massachusetts Institute of Technology, Cambridge,
Massachusetts 02139, USA.

3 Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana,
Illinois, 61801, USA

Correspondence should be addressed to Bonnie Berger (bab@mit.edu)

2

Table of Contents

A. Methods ..15

A1. Overview of methods...15

A2. Homology table construction ...16

Exact homology table. ..17

Inexact homology table. ...19

Example homology table construction. ...20

Seed position selection scheme. ..23

Implementation details and memory use. ...24

A3. Query-side compression and coarse mapping...27

K-mer collapsing. ...27

Coarse mapping. ..31

Query-side compression enables sublinear-time coarse mapping.33

Practical observation of sublinear scaling. ..37

Implementation details and memory use. ...38

A4. Homology table traversal ...40

Traversal with indels. ...42

Mapping recovery. ...44

Implementation details and memory use. ...46

A5. Using homology table improves asymptotic complexity of seed-and-extend based

mapping. ...48

A6. Related work and novelty of CORA framework..56

A7. Software features ..60

Integration of other mapping tools into CORA. ...60

Using existing mappers within CORA framework. ..61

Integration of CORA into pipelines and other mapping tools. ...61

Distance metric options. ...62

Mapping reporting options. ...62

Future extensions to CORA framework. ...62

B. Supplementary Results ..63

B1. Datasets ..63

Real NGS datasets used. ...63

Simulated NGS datasets used. ..64

Mouse dataset. ..64

3

B2. Experiments on real NGS human data ..65

All-mapping performance comparison with existing methods. ..66

Best-mapping performance comparison with existing methods. ...68

Runtime and sensitivity analysis for varied k-mer length and error rate68

Recovery scheme analysis for varied k-mer length and error rate.70

B3. Experiments on simulated human data ...71

B4. Experiments on mouse data ..72

B5. Additional experimental results ..74

All-mapping with GEM and Masai. ...74

Oculus. ..77

B6. Further details on experimental setup ...77

Mapping criteria and evaluation of sensitivity. ..78

Experimental setup for all-mapping benchmarks. ...82

Experimental setup for best-mapping benchmarks. ..87

C. Supplementary Discussion ..92

Table of Figures

Figure S1: Comparison between conventional read mapping methods and compressively-

accelerated read mapping framework (CORA).. ... 4

Figure S2: Runtime and sensitivity comparison results for whole genome ungapped

(substitution-only) and gapped (with indels) best-mapping of 1000 Genomes Phase 1 Illumina

2x108bp paired-end read datasets ... 6

Figure S3: Compact representation of homology table with exact and inexact homologies 8

Figure S4: Seed position selection scheme for inexact homology table construction................. 9

Figure S5: Homology table traversal scheme of CORA framework ..10

Figure S6: Estimation of redundancy within read datasets in absence of sequencing error..11

Figure S7: Sublinearity analysis of CORA framework on simulated paired-end read data.12

Figure S8: An overview of CORA framework and input/output relations between different stages

of the CORA software ...13

4

Supplementary Figures

Figure S1: Comparison between conventional read mapping methods and compressively-accelerated

read mapping framework (CORA). (a) In order to generate read-mapping results, existing read mappers

compare each read to the reference or a previously-constructed index for the reference. (i) Unique-read

case: Some reads have a unique match to the reference. (ii) Multi-read case: Due to the repetitive

structure of DNA sequences, a single read can often be aligned to more than one location with high

similarity in the reference. Most existing approaches involve costly seed-extension or suffix-array traversal

stages for each of these locations, requiring additional computational time reporting multiple mappings for

each read (or comparing them to report a best mapping). Furthermore, in high depth-coverage datasets

(especially when multiple individuals are mapped together), there can often be reads that are fully or

5

partially similar to other reads in the dataset. (iii) Redundancy within reads: As existing aligners cannot

utilize inexact redundancy within reads, they process each read individually, potentially duplicating

previous computations performed for earlier reads in the dataset. This inefficiency is particularly an issue

for multi-reads sequenced from highly-repetitive regions in the genome, since they require sequence

comparisons with a large number of loci in the reference. Compressively accelerated read mapping

addresses the inefficiencies of mapping high-throughput NGS reads by capitalizing on redundancy within

both read datasets and the reference. (b) CORA capitalizes on redundancy in both reads and reference.

(1) As a preprocessing step, a high-resolution homology table is created for the reference sequence by

mapping the reference to itself. The homology table contains all homologous pairs of loci in the reference

above a similarity threshold, allowing fast direct access to similar locations in the reference during

mapping. (2) The first step in compressive read-mapping is to compress the reads in order to eliminate

full or partial redundancies across reads in the dataset. Compression is achieved through self-mapping of

the read dataset. (3) Next, an off-the-shelf aligner can be used to perform a coarse mapping from the

compressed read data—clusters of similar substrings—to the reference. (4) Each read link represents a

cluster of substrings from one or more reads in the dataset and stores their differences from a locus in the

reference. (5) Read links are further expanded to obtain final mapping results through traversal of the pre-

computed homology table, and final mapping results are reported. (6) Far fewer comparisons are required

for compressive read mapping due to efficient utilization of redundancy within read sequences as well as

the reference.

6

Figure S2: Runtime and sensitivity comparison results for whole genome ungapped (substitution-only)

and gapped (with indels) best-mapping of 1000 Genomes Phase 1 Illumina 2x108bp paired-end read

datasets of 4 Finnish individuals with ~16x read depth-coverage; similarity threshold is defined as

Hamming distance of 4 for each end for the ungapped mapping and Levenshtein (edit) distance of 4 for

each end for the gapped mapping benchmarks. Paired-end insert size interval is defined to be between

150 and 650 base pairs. We compared best-mapping runtimes of Bowtie2, BWA aln, BWA mem,

mrsFAST-ultra (only for ungapped), GEM (only for gapped) and Masai against compressively accelerated

version of BWA with two different modes: CORA-BWA and CORA-BWA-fast, which sacrifices some

sensitivity allowing for faster best-mapping. The bars in the upper panel represent mappers’ runtime

performance, whereas the bars in the lower two panels indicate sensitivity performance: percentage

sensitivity for ungapped mapping and number of mappings for gapped mapping. As BWA mem does not

accept insert size intervals, we show two different mapping sensitivity measurements for it: sensitivity

within the defined insert size interval and the increased sensitivity when mappings outside of the interval

are included as well (the difference is indicated by the hatch pattern). Some of the results are estimated

7

from a down-sampled set of reads; detailed benchmark criteria as well as mapping parameters can be

found in Further details on experimental setup. The plots indicate that compared to the fastest best-

mappers we tested against, CORA-BWA mappers are at least ~2x faster with superior or comparable

sensitivity. The only mapper that approached CORA-BWA in terms of best-mapping runtime was Masai

for the ungapped mapping experiment, albeit with drastically lower sensitivity; even then CORA-BWA-fast

was >1.4x faster than Masai using less memory. Moreover, compared to the original BWA aln, CORA-

BWA generated best-mapping results with near-identical sensitivity, but >3.2x faster for gapped and

>3.1x faster for ungapped mapping. Furthermore, comparisons with CORA’s all-mapping runtime results

in Figure 1a reveal that CORA can perform near-perfect sensitivity all-mapping faster than BWA, Bowtie2

and mrsFAST-Ultra can report best-mapping results. The peak memory usage of Bowtie2 was 3.2GB,

BWA used 4.7GB and 6.2GB respectively for aln and mem, mrsFAST-Ultra used 4.7GB, whereas GEM

and Masai’s memory usages were 4.1GB and 23.2 GB respectively. CORA-BWA, at the maximum of

collapsing, coarse-mapping, and homology table traversal stages, used 19.7GB of memory for the runs

that only utilized the exact homology table, whereas it used 64.1GB for the runs that also loaded the

inexact homology table into memory (e.g. ungapped mapping with CORA-BWA default mode).

8

Figure S3: Compact representation of homology table with exact and inexact homologies. Identical

homology blocks of a certain length are collected under the same equivalence class. Each equivalence

class has a representative locus, as well as other loci that are oriented with respect to the representative

locus. Inexact homology table is a graph with equivalence classes as nodes and partial similarities

between equivalence classes as edges. Therefore, inexact homologies can only be defined between

equivalence class representative loci. Each inexact homology edge identifies the offset from the

beginning of the first equivalence class, the offset from the beginning of the second equivalence class,

the length of the inexact homology block, forward or reverse-complement direction of homology, and the

positions of differences or base substitutions (text above bold bi-directional arrow). An inexact homology

block size indicates the final length of the inexact homology after two or more consecutive and

concordant inexact k-mer homologies are merged together. Two consecutive inexact k-mers are defined

as concordant if their target positions in the reference are also consecutive and their edit positions in the

k-mer are concordant, i.e., containing the same (k-1)-mers.

9

Figure S4: Seed position selection scheme for inexact homology table construction. This seed selection

scheme allows detection of all inexact homologies of a given k-mer length within a Hamming distance of 2

(by pigeonhole principle). For detection of higher numbers of mismatches, the number of seeds sampled

can be increased. Rather than selecting consecutive positions for each seed, spacing out seed positions

throughout the k-mer allows for more evenly-sized bins within the hash table. The positions sampled for

each seed is designed to be closed under reverse complementation, so that hash tables created for each

seed are disjoint. This allows for both space savings and easy parallelization of inexact homology table

construction.

10

Figure S5: Homology table traversal scheme of CORA framework. Each read link, representing one or

more reads, points to the genomic location determined by the coarse mapping stage in either forward or

reverse complement direction, indicating homology within a small number of edits. This locus is either

unique in the reference genome or associated with an equivalence class in the exact homology table. In

the latter case, the anchor is linked to the equivalence class in the forward or reverse complement

direction, with a block offset value indicating the starting location of a substring of the equivalence class

representative that is identical to the coarse genome target. The representative of the equivalence class

points to all members of the equivalence class for each valid offset (until the end of the block) in forward

or reverse complement direction. Furthermore, the equivalence class representative can be linked to

other equivalence classes through the inexact homology table. Each of these pointers contains the

direction of homology (forward or reverse complementary), block offset in the compressed inexact

homology block representation, and the edit script to convert one class representative to another.

Provided that the juxtaposition of the edits from a read link to the anchor and from the anchor’s class

representative to a neighboring equivalence class still contains less than or equal to the user specified

number of errors, read mappings associated with all members of these neighbor equivalence classes will

also be reported.

11

Figure S6: Estimation of redundancy within read datasets in absence of sequencing error. The plot

above demonstrates how the number of k-mers processed by the coarse mapping stage scales with

respect to total number of reads in the input dataset, for a high depth-coverage simulation of 100bp

paired-end reads on hg19 chromosome 20, with 0.1% mutation rate and 0% sequencing error. After

roughly 100 million reads in the input dataset, additional reads in the dataset do not affect the size of the

coarse mapping stage, thus resulting in sublinear mapping scalability with the CORA framework.

12

Figure S7: Sublinearity analysis of CORA framework on simulated paired-end read data from hg19

chromosome 20 with 0.1% mutation rate and 2%, 0.5%, and 0.125% sequencing errors (E2, E0.5, and

E0.125), respectively. Rate of redundancy is calculated as the total number of k-mers in the read dataset

divided by the number of k-mers processed by CORA during the coarse mapping stage. Results indicate

that rate of redundancy monotonically increases even in the presence of sequencing errors; therefore, for

all three datasets the CORA framework spends less coarse mapping time per additional read, indicating

sublinear scalability regardless of sequencing errors in practice.

13

Figure S8: An overview of CORA framework and input/output relations between different stages of the

CORA software. Green, purple, yellow and red panels describe pre-processing, k-mer collapsing, coarse

mapping and homology table traversal stages of the CORA pipeline respectively. The grey panel on the

lower right provides a legend for different types of boxes and arrows used in the diagram.

Green panel: The inputs for the preprocessing stage are a reference sequence in multi-FASTA

format, k-mer length value K, distance threshold value S, and an executable binary for an off-the-shelf

read mapper to be used in coarse-mapping. The off-the-shelf mapper’s indexing algorithm is called in

14

order to generate a reference index. Exact and inexact homology tables are constructed and compressed

to be used in the homology table traversal stage.

Purple panel: K-mer collapsing stage takes in a set of FASTQ files together with the k-mer length

value as input and generate a list of unique k-mers (with compact IDs that encode reads that contain the

extracted k-mers). An auxiliary lookup table is generated for some of the k-mer IDs that are known to

cause problems during coarse-mapping (e.g. very long IDs). Optionally, k-mer collapsing stage uses the

reference genome in order to identify k-mers that are identical to a k-mer in the reference, in which case

these k-mers will be separately reported as perfect k-mer links to the reference genome skipping the

coarse mapping stage.

Yellow panel: The coarse mapping stage requires an off-the-shelf mapper executable (which

could be built-in tools such as BWA-aln/BWA-mem, Bowtie/Bowtie2, mrsFAST/mrsFAST-Ultra but could

also be manually described through manual mode) and its reference index in order to place each of the

unique k-mers to a locus in the reference. Afterwards the coarse-mappings are converted to k-mer links

within the link construction step of CORA. In the case that k-mer collapsing was performed with the

reference sequence, the perfect k-mer links from the previous stage are merged with the k-mer links

generated from the link construction stage.

Red panel: Homology table traversal stage takes in the k-mer links from the previous stage,

reference sequence and the exact/inexact homology tables, in order to generate the final set of mapping

(in SAM format) by traversing the homology table(s) following the k-mer links. While some mapping

modes can be performed only using the exact homology table (e.g. fast best-mapping mode), other

mapping modes would require the inexact homology table as well. Optionally the original read dataset is

used in this stage, in order to print the SAM file with the original read names (as opposed to just their

order information in the input file) and/or the quality scores.

15

A. Methods

A1. Overview of methods

CORA’s acceleration relies on three key components (Figure S1): (1) identifying

redundant k-mers across reads in the input read dataset first, as opposed to mapping

each read directly to the reference; (2) mapping the reference to itself through a single

preprocessing step, in order to create a comprehensive lookup table of similarities for

fast retrieval; and (3) using a local neighborhood search in the Hamming and

Levenshtein distance space of the self-mapped reference to speed up sequence

comparison. The CORA framework is comprised of combining these advances with an

off-the-shelf mapper for identifying inexact k-mer matches in the reference.

 For preprocessing, we map the reference onto itself by building a high-resolution

homology table of the reference genome sequence. The table stores the similarity

information of all homologous or similar regions of a specified length in the reference

genome, within a predefined Hamming distance. With this table, we can directly access

all homologous or similar loci of any given locus, and thus are able to report all possible

mapping locations at low computational cost, which is particularly useful for multi-reads

(reads that map to multiple locations in the reference genome).

 For the actual read mapping stages, we first map the reads to themselves in

order to identify and compress shared k-mers, with the goal of constructing a

compressed representation of the read dataset consisting of only unique k-mers. We

then use an off-the-shelf short-read mapper (e.g., BWA 3 or Bowtie2 4) to coarsely map

this compressed k-mer dataset to k-mer matches in the reference genome; we

16

represent these matches in the form of links, or pointers, to the reference genome.

Lastly, we generate the final set of mappings through simultaneous traversal of the

homology table and multiple k-mer links of the read. We are thus able to identify all

high-quality alignment positions in the reference with near-perfect sensitivity.

 In the following sections, we present the technical details of these advances.

A2. Homology table construction

Before performing compressive read mapping, we first preprocess the reference to

generate the homology table, a high-resolution all-to-all similarity map of the reference

genome onto itself, as well as construct the corresponding reference index of the

mapper that CORA uses for its coarse mapping stage. For CORA’s k-mer based

compressive read mapping, a homology table that represents all homologies in the

reference, exact as well as inexact, is most useful, as it enables fast retrieval of

additional mappings of a k-mer once one mapping is identified in the coarse mapping

stage.

For a chosen homology block length (e.g., 33-64 base pairs) and similarity

measures (e.g., Hamming distances 0-3), the homology table of a reference genome

contains links between all homologous loci satisfying the length and similarity

requirements. In other words, instead of representing the sequences of k-mers in a

given reference genome, a homology table represents pointers for each position in the

genome indicating all of its neighboring k-mers. As such, the homology links form an

inter-web of similar loci within the reference genome that enables CORA’s k-mer-based

compressively accelerated read mapping framework. Though relatively costly to

17

generate (~18 hours for constructing a k=54bp homology table of the hg19 human

reference genome with a Hamming distance of 2 on a 12-CPU Intel Xeon X5690

machine using 24 parallel threads), both homology table and reference index need be

computed only once for a given reference genome, after which they can be repeatedly

used for further compressive mapping runs on the same reference genome.

 More formally, given a reference DNA sequence R, a substring of length k, and a

mismatch error threshold s, a homology table H(R, k, s) is a compact data structure that

stores the links among all similar k-base pair substrings (k-mers) of R (up to s

mismatches), including reverse complements. To efficiently construct the homology

table H, we first build an exact homology table HE(R, k) that stores the links among all

identical k-mer occurrences in the reference under reverse complementation. Based on

this exact homology table, we construct an inexact homology table HI(R, k, s) that

stores the homology links among k-mers with at least one and at most s mismatches

(Figure S3). Together, the exact homology table HE(R, k) and the inexact homology

table HI(R, k, s) form H(R, k, s). In other words, instead of storing neighborhood

information for all positions in the genome, CORA compactly represents the

neighborhood information between sets of identical k-mers.

The exact and inexact homology tables are generated, organized and stored

separately in order to optimize runtime performance and memory/disk usage. Though

we describe below a substitution-only version of the inexact homology table, it is

straightforward to extend homology tables to other types of edits such as indels.

Exact homology table. We use an unordered hash table to construct the exact

homology table. For each k-mer, we use its sequence as the key and its first occurring

18

position in the reference genome as the value in the hash table. If the k-mer appears in

other position(s) in the reference, an equivalence class is created to store all such

positions. Each equivalence class is stored as a list of genomic positions and their

directions with respect to the representative, which allows a quadratic number of exact

homology links between pairs of genomic loci to be stored within linear space. This

representation is further compacted by collapsing adjacent concordant equivalence

classes. If there are two or more adjacent concordant equivalence classes (all loci

within an equivalence class are shifted by one position with respect to another

equivalence class), they are merged in a way that only the values of the first

equivalence class with the smallest representative position are kept, with an additional

block-length value, which indicates how many adjacent concordant equivalence classes

are collapsed into a single one.

 A formal definition of the exact homology table block merging can be given as

follows: Denote ei = (ci, pi, di) as members of the equivalence class E, for i ranging from

0 to |E| - 1, ci representing the chromosome ID of the ith element, pi being a positive

integer representing the chromosome position of the ith element, and di being either 1 or

-1, respectively representing the forward or reverse complement direction of the

homology of the ith element, with respect to the representative element e0. The

representative element is required to always have forward direction (d0 = 1). Two

equivalence classes E and F are merged to create a new equivalence class E2 of block

length 2 if and only if |E| = |F| and for all ei = (ci, pi, di) ∈ E, there exists an fj = (cj, pj, dj)

∈ F, such that ci = cj, di = dj, and pj = pi + (di x dj). Blocks of length longer than 2 are

inductively defined: If E and F can be merged, F and G can be merged, then E, F, and

19

G can be merged altogether into E3, an equivalence class with a block length of 3, and

so on.

Inexact homology table. Generating the inexact homology table, HI(R, k, s), which

represents all-to-all homologies of k-length substrings in R with between 1 and s

mismatch errors involves a similar but more sophisticated approach. In order to

generate the inexact homology table HI(R, k, s), we use the exact homology table

HE(R, k), specifically the pre-computed equivalence classes, to reduce computation and

storage requirements. Instead of constructing the inexact homologies between

substrings from the reference, we need only do so among the equivalence class

representatives in the exact homology table HE(R, k). The remainder can be inferred

directly using the equivalence class members. The inexact matches between

equivalence class representatives are identified by a seed-and-extend procedure, which

first checks if there is an exact match between seeds on two given k-mers, and then

extends the remaining bases of the k-mer sequences to identify any mismatches. We

use a special spaced-seeding scheme for performance and parallelization purposes

(see Seed position selection scheme).

 To construct HI(R, k, s) for a given R, k and s, we construct s+1 auxiliary hash

tables, each corresponding to one of s+1 seeds extracted from equivalence classes

from the exact homology table. The seeds are sampled according to the position

selection scheme described above. In the hash table, we use the binary representation

of a seed as the key, and the list of positions in the reference that contain the seed

sequence as the value. Every time we find a hit, the current k-mer position in the

reference is added to the list of the corresponding key.

20

 Finally, we further compact the representation of the inexact homology table by

merging any adjacent pairs of inexact matches with consecutive mismatch positions in

forward and reverse complement alignment directions, similar to what we did for the

exact homology table, but with the added requirement of concordant mismatch positions

that are shifted by one.

Example homology table construction. In order to elucidate the structure of the

homology tables, we provide below a toy genome example with a single chromosome

and construct a homology table with a k-mer length of 4bp and a Hamming distance

threshold of 1.

ACCGCAGCGGT

We initially build an exact homology table (HE) from the genome, identifying each 4-mer

or its reverse complement, if lexicographically earlier. These correspond to, 1+:ACCG,

2+:CCGC, 3+:CGCA, 4–:CTGC, 5+:CAGC, 6+:AGCG, 7–:CCGC, 8–:ACCG, with each

number representing the position of the 4-mer in the genome and the (+)/(–) sign

indicating whether the default or the reverse complement 4-mer is considered. Note that

positions 4, 7 and 8 have a (–) sign after them since their reverse complement 4-mers

are lexicographically earlier than the forward ones.

Once the 4-mers are identified, identical 4-mers are merged into groups in order

to construct the equivalence classes. This grouping results in 1+ and 8- in one

equivalence class whereas 2+ and 7- are in another; all the remaining positions without

identical 4-mers each have their own equivalence classes, i.e., which contain only

themselves. Each equivalence class has a single representative, which is always in the

forward direction (otherwise, all elements are in reverse complement to ensure this

21

property), and other elements in the equivalence class assume directions relative to the

representative. In our toy genome example, all six equivalence classes are [1: 8–], [2:

7–], [3], [4], [5], [6], the first number indicating the representative position, and the

remaining numbers, non-representative equivalence class members with a direction in

relation to their corresponding representatives. In order to conserve space, single item

classes are not stored in the exact homology table HE, leaving [1: 8–] and [2: 7–].

To compact the exact homology table, all adjacent concordant equivalence

classes are merged into block homologies that represent intervals longer than 4-mers.

In our toy genome example [1: 8–] and [2: 7–] are adjacent (since 1 and 2 are adjacent)

and concordant (since other elements in the two equivalence classes, 8- and 7- are also

adjacent in reverse direction). We represent the merged exact homology block in the

genome with an additional block length parameter appended to the equivalence class,

in this case [1: 8–](2). The set of all compact equivalence classes of size larger than

one (with a block length 1 or longer) constitutes the exact homology table, HE.

Note that the block merge operation can also be done with forward direction

elements as well as with multiple items, as long as adjacency and concordance

properties are satisfied. For example, an equivalence class [15: 35+, 73–] can be

merged with [16: 36+, 72–] to form block equivalence class [15: 35+, 73–](2), whereas

not with [16: 36+, 74–]. Similarly, multiple equivalence classes can be merged together.

For example, [10: 20+], [11: 21+], [12: 22+] and [13: 23+] can be merged into a single

block equivalence class [10: 20+](4).

In order to construct the inexact homology table, HI, we input the set of 4-mer

equivalence classes formed during HE construction before we perform any block merge

22

operations or elimination of single-item equivalence classes, which is {[1: 8–], [2: 7–],

[3], [4], [5], [6]}. Among these, we identify all pairs of inexact homologies between class

representatives within a Hamming distance of 1. These six homologies are: [1 6+: 2]

[2 5+: 2], [3 6–: 4], [4 5–: 3], [5 7–: 2], and [6 8–: 2], where the first

number represents the source position; the second number with the appended sign, the

target and direction of homology; and the number after the semicolon, the 1-base error

positions at which the two 4-mers differ, oriented by the direction of the first 4-mer. The

reverse homologies ([6 1+: 2], [8 6–: 3], etc.) are not represented in HE, as they

are redundant.

Similar to merging adjacent equivalence classes, we can also merge adjacent

and concordant inexact homologies. In the case of inexact homologies, the

concordance property requires the error positions to be concordant as well. For

example, the homologies [3 6–: 4] and [4 5–: 3] are adjacent and concordant,

since 3 and 4 as well as 6– and 5– are adjacent, and the error positions 4 and 3 are

concordant with the adjacent 4-mers. In order to compact the inexact homology table

we can represent this inexact block homology as [36–: 4](2), where 2 refers to the

number of homologies merged. This example represents an inexact homology between

the 5-mer that starts at position 3 (CGCAG) and the 5-mer, at position 5 (CAGCG), in

reverse complement direction with a mismatch error at nucleotide 4. Similar to

compacting HE, more than two HI homologies can be compacted as well as inexact

homologies with multiple errors, as long as each error position satisfies the

concordance property.

23

Thus, the set of homologies in HI for our toy genome example will be: {[1 6+:

2], [2 5+: 2], [3 6–: 4](2), [5 7–: 2], [6 8–: 2]}. HE and HI together constitute

the homology table of the toy genome.

Seed position selection scheme. For inexact homology table construction, we use a

special spaced-seeding scheme closed under reverse complementation for

performance and parallelization purposes, as displayed in Figure S4.

When determining seeds for inexact homology table construction, we choose

seed positions to be closed under reversal for two particular reasons. First, it allows the

reverse complement of a seed to correspond to the exact same positions in the k-mer;

thus we need only store the lexicographically smaller direction of any seed in the hash

table and search for each seed once in the hash table. Second, this choice allows both

simple parallelization and multi-pass implementation of the hash table, since data

splitting can be performed easily without the need to search for a seed and its reverse

complement in different hash tables. This choice allows for both space savings and

ease of parallelization for inexact homology table construction.

Furthermore, as DNA sequences are highly repetitive, some bins in a hash table

can get very large for frequently-occurring seeds. Rather than selecting consecutive

positions for each seed, spacing out seed positions throughout the k-mer allows for

more evenly-sized bins within the hash table. For this reason, we choose a spaced

seeding scheme in which each position within a seed is sampled as far away as

possible while maintaining that the positions are closed under reversal (Figure S4).

We experimentally evaluated the fitness of our seed position selection scheme

by comparing it to a variety of schemes that are also closed under reversal. The

24

schemes were based on selecting: (a) equally-spaced nucleotides from the k-mer which

is built in CORA; (b) equally-spaced dinucleotides of a seed rather than each nucleotide

(e.g. 112233112233 instead of 123123123123); (c) equally-spaced 4-mers (e.g.

111122223333); (d) equally-spaced 8-mers; and (e) random selection of seed positions

that are not equally-spaced, satisfying only that seeds have equal length. We created

the inexact homology table for chr20 of hg19 using each scheme three times. We noted

that the slowest scheme was (d) with an average runtime of 680 seconds. As equally-

spaced seed sub-blocks got shorter, the runtime also improved resulting in 639 seconds

for (c), 568 seconds for (b), and 466 seconds for (a), which is the scheme we eventually

used for CORA’s homology table construction algorithm, which equally spaces all

nucleotides of each seed. The randomly generated schemes were faster than (b) but

slower than (a), averaging 557.6 seconds, with the best performing random scheme

taking 549 seconds.

Implementation details and memory use. For smaller genomes, CORA’s homology

table construction algorithm can be run on the entire genome, processing all k-mers of

the genome in a single pass. However, for larger genomes (e.g. mouse and human),

the memory requirements for construction is expensive. Once the homology links are

compacted, a homology table for the human genome can be reduced to a manageable

size of ~15 GB; however the memory usage for the intermediate data structures would

be on the order of several hundred GBs. In order to enable homology table construction

for smaller memory machines, CORA employs a multi-pass homology table construction

algorithm.

25

The basic idea behind the multi-pass construction of the homology table is to

separate the total k-mer space into disjoint sets that are closed under reverse

complementation, so that each pass of the multi-pass construction scheme can detect

the exact homologies within the current set. For the sake of simplicity, we separated the

set of k-mers based on the nucleotides on the two ends of the k-mer sequence. Note

that if one end is used as such a separator for subsets, the other end also needs to be

used due to reverse complementation. For instance, k-mers that start with ‘A’ should be

in the same subset as k-mers that end with ‘T’, requiring at least two nucleotides to be

used for the distribution of the k-mer. For instance, k-mers that start with ‘A’ and end

with ‘G’ (in the form [A...G]) should be processed in the same pass with the reverse

complement form [C…T]. For these k-mers, we construct the A-G hash table. In this

way, we can construct the whole table with 10 passes. Specifically, these 10 passes

include: 1) A-A and T-T; 2) A-C and G-T; 3) A-G and C-T; 4) A-T; 5) C-A and T-G; 6) C-

C and G-G; 7) C-G; 8) G-A and T-C; 9) G-C; and 10) T-A. These 10 passes were

designed to optimize empirical performance and memory usage. By incorporating more

nucleotides from both ends of the k-mers, it is possible to separate the full k-mer space

into smaller subsets and thus store the hash-table using even smaller memory size

during each pass. In our implementation, we used the aforementioned 10-pass

approach.

For the mapping of FIN datasets presented in the paper, we constructed the

inexact homology table for the hg19 reference genome with a 10-pass approach with

interleaved 24-split parallelization on 12 hyper-threaded processors. For parallelization

of split signals, two bases from the ends of each seed are used, which gives 136

26

reverse complement agnostic sets– as opposed to 10 for one base from each end.

These are collected into 24 balanced-set groups. The balancing is accomplished

according to the general human GC ratio assumption (2 * |A or T| = 3 * |C or G|).

 For generation of exact and inexact homology tables, CORA allows the user to

specify the number of passes in the multi-pass construction scheme as well as the

number of processes to be used for parallelizing each pass.

 Below is a runtime/memory tradeoff analysis for construction of the homology

table for the hg19 human reference genome for 54-mers with a Hamming distance of 2.

This is the homology table we used for the FIN1-4 read mapping experiments presented

in the main results. We carried out 5 different levels multi-pass runs comprising 6, 8, 10,

24 or 48 passes. The 6, 8 and 10-pass runs were performed using a 2-nucleotide signal

(1 from each end of the k-mer), whereas the 24 and 48-pass runs were performed using

a 4-nucleotide signal (2 from each end of the k-mer). For each run we present the peak

memory used by the operating system (maximum memory resident set size), total

process runtime (user + system), as well as the elapsed time using 12 hyper-threaded

CPUs (Table S1).

Number of
passes

Peak memory use
(GB)

Elapsed time 12-CPU
(hours)

Total CPU time (hours)

6 94.5 18.2 181.8

8 87.2 18.5 180.1

10 81.3 18.8 170.1

24 50.1 21.3 165.5

48 44.4 25.7 171.5

27

136 40.5 30.6 192.7

Table S1: Homology table construction runtime and memory costs for different multi-pass construction

schemes.

We observe that peak memory usage decreases with more passes for constructing the

homology table, since the computation is done in smaller chunks. The total process time

also decreases with the number of passes due to smaller hash-tables which are less

costly to maintain. On the other hand, the elapsed time increases as the time spent for

I/O is higher for multi-pass runs due to the requirement that both the reference genome

and the intermediate files need to be fully scanned for each pass, and these scans are

not parallelized.

A3. Query-side compression and coarse mapping

In this phase of the CORA framework, the main goal is to reduce the redundant

information within and across multiple large NGS read datasets, achieving a compact

representation of the reads in the form of k-mer links to the reference; these represent a

position in the reference genome similar to a substring within the read and the

differences of the read from it. This representation of reads allows faster sequence

matching as we need to check only corresponding edits during the homology table

traversal stage rather than performing expensive sequence comparisons. The two main

stages of the links table construction are (1) collapsing and (2) coarse mapping.

K-mer collapsing. The aim of the collapsing stage is to eliminate k-mer redundancies

in the read dataset; this stage inputs a set of FASTA/FASTQ read datasets and

converts them into a set of non-redundant k-mers.

28

 In a simple scenario in which the reads are single-end and read length is very

short (<50bp), we can assume the k-mer length to be equal to the read length. In this

simple scenario, the k-mer collapsing scheme would simply involve identification of all

identical reads (under reverse complementation) and collapse them into unique reads

with compact IDs which encode the set of reads they correspond to in the input

FASTA/FASTQ file. These IDs comprise a range of text-readable ASCII characters from

‘!’ to ‘~’ (with an alphabet size of 94), allowing off-the-shelf mappers to readily parse the

read name format without any modifications and directly operate on CORA’s compact

read representation.

A direct whole-read collapsing approach as described above can be beneficial in

terms of mapping speed for very short single-end read datasets (<60 bp) 13; however,

as the chances of a read to not contain any sequencing errors reduces drastically the

longer the reads get (~22% for 75bp and ~5% for 150bp with a 2% sequencing error

rate), the potential speed gain from whole-read compression also reduces drastically

since even a single sequencing error in the read would virtually eliminate the chances of

the read being an exact duplicate. The speed gains reduce even further when the reads

are paired-end, as whole-read compression would require both mates to be merged

together as a single k-mer for collapsing, resulting in even lower probability of the read

being an exact duplicate.

In order to improve read k-mer collapsing performance of longer NGS reads

(>70bp), as well as paired-end reads, instead of compressing the entire read sequence,

the CORA framework splits the (paired-end) read into shorter k-mers of the same length

(between 33-60 base pairs) and collapses them as independent sequences, producing

29

a set of non-redundant k-mers. This collapsing stage is applied prior to the coarse

mapping stage, and therefore the subsequent coarse mapping step is performed in a

read agnostic manner (i.e., without the knowledge of which k-mer sequences come from

which reads). For the k-mers of a read (and mates of a paired-end read) to be identified

after coarse mapping, CORA assigns corresponding IDs to the splits and mates of the

same read. Only after the coarse mapping stage are these collapsed k-mers

reorganized based on their IDs and merged into whole reads in order to produce the

final mapping results described in Homology Table Traversal. As a tool that can

rapidly identify the positions of homologous k-mers in the reference, the homology table

precisely complements the k-mer based compression of reads, together creating a very

efficient method for NGS read mapping for large datasets with high redundancy.

The length of each sequence ID in the collapsed k-mer dataset is determined by

the total number of reads to be mapped in a single mapping task. The compact

encoding scheme CORA uses allows each read in a dataset consisting of ~19.5 million

paired-end reads to be uniquely identified with 4 character sequence IDs, ~1.8 billion

paired-end reads with 5 characters, and ~172 billion paired-end reads with 6 characters.

As the sequence IDs are assigned the same order as they are listed in the input

FASTA/FASTQ files, CORA also can optionally retrieve the original read name, quality

scores, and sample information.

In addition, through the use of a database of k-mers in the reference, CORA is

able to identify exact k-mer matches to the reference during collapsing and print them to

a different output together with the chromosome and position information of the

reference k-mer match, further reducing the number of non-redundant k-mers to be

30

processed in the coarse mapping stage. This optional feature is enabled in the

experimental results presented in the paper.

 Apart from compressive-mapping speed gained from k-mer based read

compression, the flexibility of collapsing independently chosen k-mers within the read

rather than the whole read enables a number of advantageous features of CORA’s

framework. As the k-mer length is independent from the read-length, reads with different

lengths can be processed together in the same compressive mapping run.

Independently processing k-mers also allows dynamic trimming of low quality reads on-

the-fly during mapping, which further facilitates compression by reducing parts of the

reads with lower redundancy. One caveat is that when overlapping k-mers are selected,

the maximum mapping distance can be reduced if there are variants or sequencing

errors in the overlapped region in the read. One solution to this potential problem would

be to always pick non-overlapping k-mers in the reads, but leave a small number of

bases in the read that are not covered by k-mers; these bases then can be checked

during the mapping inference stage in order to verify whether the mapping similarity

requirements are satisfied when considering the uncovered bases.

Selecting fewer but longer k-mers results in lower compression in the collapsing

stage, increasing the time spent on coarse mapping; but longer k-mers decrease the

average number of neighbors each reference locus has in the homology table, enabling

faster homology table traversal. On the other hand, selecting many but shorter k-mers

results in higher compression during collapsing and less time spent on coarse mapping;

but shorter k-mers increase the number of homologies in the homology table, as well as

time spent on homology table traversal.

31

Coarse mapping. Coarse mapping is the stage in which the CORA framework utilizes

the short-read mapping capabilities of an off-the-shelf mapper. Any read mapping tool

that can report a best mapping (i.e., a mapping with a minimum Hamming or

Levenshtein (edit) distance among all possible mappings) of a read, such as BWA and

Bowtie2, can be directly adapted to the CORA framework. Theoretically, CORA does

not require a best mapping to be found. Finding any mapping within the distance

threshold would suffice to guarantee perfect sensitivity assuming the homology table

distance threshold is twice the search distance threshold. However, when the homology

table is imperfect (the distance of the homology table is less than twice the distance

threshold used for mapping), CORA benefits from coarse mapping being performed by

a best-mapper. See A5, for a detailed theoretical analysis.

For off-the-shelf aligners that do not allow a best-mapping scheme, alternative

strategies can be designed for integration with some caveats. If a mapper does not

allow best-mapping but allows a user-specified limit on the number of reported

mappings, a mapping mode that reports only a single mapping (not necessarily with

minimum error) can be integrated into CORA, with minor loss in final read-mapping

accuracy. If the off-the-shelf mapper provides user-specified limits on the number of

errors within a read, it is also possible to perform an iterative re-alignment scheme, at

each stage aligning previously unmapped reads with a higher error threshold. While this

approach will preserve final read-mapping accuracy, it will yield less compressive

acceleration due to the heavy cost of re-alignments within the coarse mapping stage.

 Unlike most read mappers, CORA’s coarse mapping stage does not aim to find

actual mapping locations for each read’s k-mers (which would ultimately provide little

32

compressive acceleration), but instead identifies only one single good ‘representative’

position in the reference that a k-mer can be mapped to and be represented in the form

of compact links (i.e. position and differences). For short k-mer sequences that are used

within the coarse mapping stage (33-64bp), it is substantially faster to find a single good

location in the reference than find all mappings within the substitution-error

neighborhood.

 For paired-end mapping, finding a proper mapping in the reference involves

finding multiple good locations for each mate and merging them according to the user-

defined allowable interval of insert size between the mates (e.g. 150-650bp). Coarse

mapping for a paired-end read consists of merely finding a good location in the

reference for each mate independently. Similarly, for reads that are divided into multiple

k-mers, each k-mer is coarse mapped independently to the reference genome.

 Through these conceptual advances in the mapping stage, the CORA framework

achieves massive speed gains (typically 1-3 orders of magnitude for all-mapping and

more than three times the speed-up for best-mapping), as compared to the original

performance of the off-the-shelf mappers.

Constructing the links table from the coarse mapping output generated by the off-

the-shelf mapper (in SAM format) involves simply scanning the SAM file and creating a

link item for the read code on each line. Each link in the table contains the read name

encoding described above, the position in the reference, as well as a list of mismatch

offset positions from the beginning of the read together with its nucleotide change in the

read. Since the links table contains the differences of each k-mer from the reference, it

33

is possible to regenerate the original read sequences in the input, and thus compression

of read data within the CORA framework is lossless.

Query-side compression enables sublinear-time coarse mapping. We described

above that query-side compression consists of grouping shared k-mers across the

multi-individual read dataset, which then are coarse mapped onto the reference

genome. In order to estimate the speed-up directly gained from k-mer compression of

reads, we analyze the number of unique k-mers present in a large set of reads drawn

from multiple individuals’ genomes. For simplicity of analysis, we will initially assume the

read dataset contains a single haploid individual and the sequencer returns k-mers

rather than full reads. We will later generalize the model to include multiple potentially

overlapping k-mers in each read from multiple diploid/polyploid individuals.

Single k-mer read model. We use a generative model for each k-mer read with a

likelihood of machine error in the base call, following the authors' previous work 24.

Let Σ = {𝐴, 𝐶, 𝐺, 𝑇} ≅ ℤ/4ℤ be the alphabet from which the k-mer bases are

drawn. Define 0.9 < p < 1 and q = 1-p, such that a base is read correctly with probability

p and incorrectly with probability q. For simplicity, we assume that a sequencing error is

equally likely among the three alternative nucleotides. Let the random variable

 𝜎: [0,1] →Σ be defined by

𝜎(𝜔) =

{

 0, if 𝜔 ∈ [0, 𝑝)

1, if 𝜔 ∈ [𝑝, 𝑝 +
𝑞

3
)

2, if 𝜔 ∈ [𝑝 +
𝑞

3
, 1 −

𝑞

3
)

3, if 𝜔 ∈ [1 −
𝑞

3
, 1]

34

Therefore, ∀𝑙 ∈Σ, 𝑙 + 𝜎 = 𝑙 with probability p. Given 𝑥 ∈Σ
𝑘
, define 𝑥𝑖 as the ith

letter (base) of x. For all 𝑥 ∈Σ𝑘
, define independently the Σ𝑘

-valued random variables

𝑅𝑥 by ∀𝑖, 𝑅𝑖
𝑥 = 𝑥𝑖 + 𝜎𝑖 where 𝜎𝑖, … , 𝜎𝑘 are independent instances of 𝜎. Thus, 𝑅𝑥 can be

thought of as a read of x, including machine errors.

We will model the sequencer by a list 𝑅𝑦1 , … , 𝑅𝑦𝑐, where c is the total number of

k-mers read and each yi is drawn uniformly randomly from the set G’ of unique k-mers in

G. We will make the simplifying assumption that elements in G’ are uniformly randomly

distributed in Σ𝑘
. We will eliminate both of these assumptions later on.

Let K be the set of unique k-mers in the list {𝑅𝑦1 , … , 𝑅𝑦𝑐}. For some particular y, if

𝛿(𝑥, 𝑦) = 𝑑, the Hamming distance of x from y, then 𝑃𝑟(𝑅𝑦 = 𝑥) = 𝑝𝑘−𝑑𝑞𝑑3−𝑑 because

each of the matched locations must be preserved, each of the mismatched locations

must be altered, and the chance of a correct alteration at each mismatched location is

1/3. Thus, if y is randomly sampled from G’, by the union bound (Boole’s inequality), we

can conclude

𝑃𝑟(𝑅𝑦 = 𝑥) ≤ ∑𝑝𝑘−𝑑𝑞𝑑3−𝑑 ⋅ 𝑃𝑟(𝛿(𝑦, 𝑥) = 𝑑)

𝑘

𝑑=0

By our assumption that non-redundant k-mers in the genome G are distributed

uniformly and continuously in k-mer space,

𝑃𝑟(𝛿(𝑦, 𝑥) = 𝑑) ≈
(𝑘
𝑑
) ⋅ 3𝑑

4𝑘

Consider now the total contribution from k-mers in the genome that are distance

d from x versus the total contribution from those that are distance d+1 from x:

35

𝑝𝑘−𝑑𝑞𝑑 ⋅ (𝑘
𝑑
)

𝑝𝑘−𝑑−1𝑞𝑑+1 ⋅ (𝑘
𝑑+1

)
= 𝑝𝑞−1 ⋅

𝑑

𝑘 − 𝑑

This implies that the contribution from k-mers further away from x decreases

exponentially with distance, so long as q < 1/k. Thus, 𝑃𝑟(𝑅𝑦 = 𝑥) ≈ 𝑝𝑘−𝑑𝑞𝑑 ⋅ (𝑘
𝑑
) ⋅ 4−𝑘,

where 𝑑 = 𝛿(𝑥, 𝐺). This implies that 𝑃𝑟(𝑥 ∈ 𝐾) is largely determined by 𝑑 = 𝛿(𝑥, 𝐺) and

by the total number c of k-mers read:

1𝑥 ≈ 1 − (1 − 𝑝
𝑘−𝑑𝑞𝑑 ⋅ (

𝑘

𝑑
) ⋅ 4−𝑘)

𝑐

where 1𝑥 is an indicator random variable for x in K. By linearity of expectation,

 𝐸[|𝐾|] = 𝐸 ∑ 1𝑥 𝑥∈Σ𝑘 ≈∑ [1 − (1 − 𝑝𝑘−𝑑𝑞𝑑 ⋅ (𝑘
𝑑
) ⋅ 4−𝑘)

𝑐
]

𝑑
⋅ |𝑥 ∈Σ𝑘: 𝛿(𝑥, 𝐺) = 𝑑|

We can bound |𝑥 ∈Σ𝑘: 𝛿(𝑥, 𝐺) = 𝑑| ≤ (𝑘
𝑑
) ⋅ 3𝑑 ⋅ |𝐺|. Additionally, if G is uniformly

distributed across Σ
𝑘
, this bound is also a good approximation when (𝑘

𝑑
) ⋅ 3𝑑 ⋅ |𝐺| <

4𝑘 because the Hamming shells of radius d around each point in G intersect minimally.

Thus, we can estimate the number of unique k-mers as

𝐸[|𝐾|] ≈∑[1 − (1 − 𝑝𝑘−𝑑𝑞𝑑 ⋅ (
𝑘

𝑑
) ⋅ 4−𝑘)

𝑐

]

𝐷

𝑑=0

⋅ 𝑆𝑑

where

𝑆𝑑 = (
𝑘

𝑑
) ⋅ 3𝑑 ⋅ |𝐺|, for 0 ≤ 𝑑 ≤ 𝐷 − 1

and

𝑆𝐷 = 4𝑘 − (𝑆1 +⋯+ 𝑆𝐷−1)

36

This bound indicates that Hamming shells with shorter radii around k-mers

sampled from the genome are saturated exponentially faster than larger radii, causing

the set of unique k-mers to grow sublinearly even in the presence of sequencing errors.

To find the coarse mapping speedup from query-side compression in the single

k-mer read scenario, we simply take 𝑐/𝐸[|𝐾|], which is equivalent to the rate of

redundancy. In the case that the non-redundant data scales sublinearly with the full

data– as it is for most real-life biological datasets–, the coarse mapping time of CORA

will also be sublinear in the number of reads.

Note that the assumptions that G’ consists of only unique k-mers and that k-mers

in G’ are uniformly randomly distributed both correspond to the worst case scenario for

the upper-bound on the number of unique k-mers:

(1) If the k-mers were drawn from a multiset of nonunique k-mers in the genome,

sequenced k-mers would have a higher likelihood to be redundant on average

compared to a set that contains the same k-mers with no duplicates.

(2) If G’ is not uniformly randomly distributed (e.g there are inexact repeats in the

genome), the shorter-radius Hamming shells of some k-mers in G’ will overlap

with an increased likelihood. Therefore the chances of each sampled k-mer

with sequencing errors to be a unique k-mer is reduced.

Multiple k-mers per read. We can generalize the single k-mer read model described

above to multiple k-mers per read, since contiguous k-mers in the read are also

contiguously sampled from the genome. In the case that two k-mers overlap in the read,

any sequencing error in the overlap region will be observed jointly in two separate k-

mers. As this reduces the combination of possible k-mers that can be drawn from these

37

two k-mers with a joint sequencing error distribution, the expected rate of unique k-mers

will also be lower compared to the scenario in which the two k-mers are disjoint with

independent sequencing error distributions.

Generalizing the model above to diploid/polyploid genomes from multiple

individuals with SNPs, indels and other variants requires altering the unique k-mer set

G’ to encompass all of the unique k-mers in the complete genomes of the individuals

sequenced. In a real biological population of genomes of the same species, it is

expected that the total number of unique genome k-mers in G’ will grow sublinearly as

new individuals are added.

Practical observation of sublinear scaling. As the theory described above suggests,

the CORA framework achieves sublinear scaling for the coarse mapping stage.

In the absence of sequencing errors, the total number of read sequences that are

processed in the coarse mapping stage is in effect constant after about 100 million

2x100bp reads (Supplementary Figure S6).

In order to illustrate the sublinear-scaling property of the CORA framework in

practice with sequencing errors present, we computed the rate of redundancy within

simulated read datasets (experimental setup details in Section B3) with various

sequencing error rates and read depth-coverage (Supplementary Figure S7). The

rate of redundancy is calculated as the total number of k-mer sequences sampled from

the reads divided by number of unique k-mers processed by CORA during the ‘coarse

mapping’ stage. Results indicate that the rate of redundancy monotonically increases,

even in the presence of sequencing errors. Moreover, the rate of increase in

redundancy often alternates between slow and fast as we increase read depth

38

coverage, which is supported by the saturation rate of various Hamming shell radii as

described above. Across different sequencing error rates, the rate of increase is slow

universally for lower coverage datasets (below 1M reads), since k-mers have not yet

fully covered the reference sequence. As read depth-coverage increases further, more

k-mers overlap with the previously encountered reads, resulting in a faster increase in

the rate of redundancy, thus allowing CORA’s compression scheme to produce fewer k-

mers to be processed by the coarse mapping stage. This feature can be observed on all

E2, E0.5, and E0.125 datasets between 10M and 100M reads. Depending on the

sequencing error rate, the rate of redundancy may flatten again at a higher depth-

coverage level (such as between 100M and 1 billion reads in E0.125 and roughly 100M

reads in E.05). This observation is due to the fact that as rate of redundancy increases,

the non-redundant k-mer set becomes dominated by k-mers containing sequencing

errors which are less likely to be encountered multiple times. Ultimately, with enough

depth-coverage, k-mers containing sequencing errors also become redundant, and the

rate of increase in redundancy becomes steep again (as observed around 1 billion

reads in E0.5).

Implementation details and memory use. We implemented read collapsing with an

unordered hash table (unordered_map class in C++ standard library), consisting of DNA

sequences (the lexicographically smaller of the forward sequence or its reverse

complement) as hash keys and a string that represents the encoded collapsed read

names as the value for each key.

 We would like to note that, for simplicity of implementation, the initial version of

the CORA framework software employs a relatively restricted k-mer selection scheme,

39

requiring the k-mer length to be chosen as either full or half the read-length, with k-mers

fully covering the bases of each mate of the read. The software will soon be updated to

implement the flexible k-mer selection model described above.

For large datasets with many unique sequences, which would cause the hash

table to exceed the memory limit, we use a multi-pass approach to keep the size of the

in-memory hash table within specified memory bounds. This approach is akin to the

multi-pass one we used in order to compute the exact homology table. The amount of

memory used during the collapsing stage is directly dependent on the number of passes

performed within the multi-pass hashing scheme.

Below we demonstrate the memory/runtime trade-off of CORA’s collapsing stage

for the human FIN1 dataset from the 1000 Genomes Project with paired-end 108bp

reads and 54bp k-mer length, using a 4-nucleotide splitting scheme (e.g. AA-CT),

ranging from 12 to 96 passes (Table S2).

Number of passes Peak memory use (GB) Total runtime for collapsing (sec)

12 54.19 5464.97

18 39.25 4783.58

24 31.61 4592.06

32 25.87 4565.42

40 23.39 4604.68

48 19.68 4635.77

96 19.68 5288.44

Table S2: Runtime and memory cost of CORA’s collapsing stage for the FIN1 dataset with 54bp k-mer

length for different multi-pass collapsing schemes.

40

Memory/runtime trade-off results indicate that memory use for the collapsing

stage can be reduced by increasing the number of passes. Note that for the 4-

nucleotide splitting scheme, there is no further memory reduction after 48 passes.

However, the memory can be further reduced by using a 6-nucleotide splitting scheme

instead (e.g., ATA-GGT with 3 nucleotides at each end of the k-mer), resulting in a

slightly higher total runtime cost. In terms of runtime, too few passes are not desirable

due to the incremental cost of hash-table operations for larger tables. On the other

hand, too many passes are not desirable either, due to the overhead cost of I/O

handling. We show that roughly 32 passes is ideal in terms of the runtime optimization

for human datasets, resulting in less than 26GB memory use. However, the CORA

software allows users to increase the number of collapsing stage passes in order to

meet their runtime or memory use preferences.

 As the CORA framework utilizes an off-the-shelf aligner (mapper) for its coarse

mapping stage, the memory cost is directly dependent on memory needs of the aligner

used. In the cases of BWA and Bowtie2, the memory cost of coarse mapping is

dominated by the k-mer collapsing stage. Since the link construction stage involves

scanning only a SAM file to generate the read links, its memory consumption is

negligible.

A4. Homology table traversal

The main goal of this phase is to infer final paired-end read mapping results, making

use of the pre-computed homology table of the reference, as well as the compact links

table representing the read dataset.

41

 As links and homology tables are all represented in terms of positions in the

reference and the differences from it, rather than the read sequence itself, almost all of

the computation in this phase of the CORA framework is performed in terms of edit

operations rather than direct sequence comparison. Since a link generally has much

fewer edits than the number of bases in the read, utilizing algebraic relations within this

‘edit space’ results in a much more efficient sequence comparison method than the

base-to-base comparison approach used in conventional read mapping.

 A schematic representation of the homology table traversal for a single read link

is provided in Figure S5. Each link connects one or more k-mers to a position in the

reference (the anchor of the link) in forward or reverse complement direction, indicating

homology within a small number of edits. This anchor is either a unique k-mer in the

reference genome or associated with an equivalence class within the exact homology

table. In the latter case, the anchor is linked to the equivalence class in the forward or

reverse complement direction, with a block offset value indicating the starting location

(say offset = p) of a substring of the equivalence class representative that is identical to

the anchor sequence. If an anchor does not belong to any existing equivalence class, it

is considered to be the representative of its own single-item equivalence class.

 A representative of an equivalence class points to all members of the

equivalence class for each valid offset (until the end of the block) in the forward or

reverse complement direction as described above. Among these pointers, only the ones

with the offset p are relevant to the read link, and solely for these will the inferred

mapping result be reported. Furthermore, the equivalence class representative of the

anchor can be linked to other class representatives through the inexact homology table.

42

Each of these pointers contains the direction of homology (forward or reverse

complement), block offset in the compressed inexact homology block representation,

and the edit script to convert one k-mer to another. Provided that the juxtaposition of the

edits from a read link to the anchor and from the anchor’s class representative to the

neighboring equivalence class still contains less than or equal to the Hamming distance

threshold, read mappings associated with all members of this neighbor equivalence

class will be reported.

 For single k-mer reads (e.g., ≤ 64bp) that are collapsed as a whole read into read

links, the final mapping output can be generated by the procedure described above. For

paired-end and/or longer reads that contain multiple k-mers, all links relevant to the read

are traversed to generate the final mapping(s). CORA achieves this traversal by loading

the links table in multiple passes to avoid exceeding the memory limit. These links are

then independently converted into mappings. In the end, these mappings are merged in

order to generate the final set of paired-end mappings.

Traversal with indels. Even if the homology table data structure is built using a

Hamming distance metric that only allows substitutions, it is possible to report gapped

final mappings with indels (insertions and deletions), given that the coarse mapping is

performed using an off-the-shelf tool that can perform gapped mapping and the error

penalty assigned to insertions and deletions is greater than or equal to the penalty

assigned to substitutions (e.g., Levenshtein distance that assigns identical penalties for

substitutions, insertions, and deletions).

The homology table is initially built to provide Hamming neighbors of a k-mer in

the reference for a fixed error distance threshold, E. However, it is also possible to

43

recover homologies of (k-e)-mers in the reference (e ≤ E), which is guaranteed to

discover all homologies within a Hamming error distance threshold of E-e, ignoring the

matches/mismatches in the last e bases of homology table k-mers. Since e is often

much smaller than k, most of the E-distance homologies of (k-e)-mers will also be

recovered. This ability to search for (k-e)-mers in the homology table enables

neighborhood search of k-mers that are coarse mapped with insertions in them. In the

case that a k-mer is coarse mapped with a single base insertion in the k-mer link (which

corresponds to a single base deletion from the reference), the k-mer is aligned to a (k-

1)-mer in the reference. Using the above approach, CORA can recover most of the

homologous regions of the (k-1)-mer.

In the case of a single nucleotide deletion in the k-mer link (insertion in the

reference), the k-mer corresponds to a (k+1)-mer in the reference. In this case, the

homology table can enumerate the k-mer homologies for any k-mer contained within

this (k+1)-mer and then determine whether the (k+1)-mer homology is within the valid

error distance threshold by checking the similarity of the last base in the (k+1)-mer.

 For multiple insertions and deletions in the k-mer link, the homology table

traversal strategy is determined by t = #deletions - #insertions. If t < 0, the first strategy

employed ignores the last t bases in the k-mer homologies; if t > 0, the second strategy

employed checks for t additional bases at the end. If t = 0, the initial version of the k-mer

based homology table traversal is performed, while handling shifted bases due to

insertions and deletions within the k-mer when juxtaposing k-mer homology edits with

the edits from the k-mer link. The t value is also important when merging multiple k-mer

link mappings into a whole read during the final mapping stage. If one of these k-mers

44

have a positive or negative t value, k-mer merging is performed between accordingly

adjusted mapping positions.

Mapping recovery. Although the links table is a lossless representation of the read

sequences in the original dataset, there are three main reasons why a particular read

mapping may be missed during standard traversal of the homology table: (a) Using an

inexact homology table with a distance threshold lower than twice the mapping error is

used; and (b) loss of sensitivity during coarse mapping due to imperfect sensitivity of the

coarse mapper or (c) non-uniform distribution of errors among k-mers sampled from the

read during collapsing. In order to achieve near-perfect sensitivity, CORA employs a

recovery scheme which recovers a portion of the missed mappings.

 In order to recover mapping locations of reads with unmapped k-mers during

coarse mapping, CORA keeps track of all k-mers that are unmapped during the coarse

mapping stage. Then the homology table traversal generates all mapping loci for the

other k-mers of the read. If more than a certain percentage (e.g., 75%) of its k-mers

constitute a viable mapping (i.e., only missing the unmapped k-mers but satisfy the error

distance and min/max read insert length conditions for the others), each unmapped k-

mer is extended using a base-by-base comparison method. In the case of gapped

mapping base-by-base comparison is replaced by a banded dynamic programming

algorithm in order to detect indels.

As the mapping recovery stage is performed independently from homology table

traversal, the dynamic programming algorithm within this stage can handle larger error

distances than the homology table allows for (e.g. 10 or more mismatches), as well as

45

affine gap penalties to allow for dynamic trimming of reads (when the k-mer is at the

end) or alternatively capture indels longer than the error distance threshold.

When constructing a homology table, in order to guarantee perfect sensitivity for

obtaining all matches of a k-mer in the reference genome within a Hamming distance of

D, the homology table should ideally use a distance threshold of 2D. This is due to the

fact that, even when a read k-mer is within distance D of both the coarse mapping locus

and final mapping locus, the distance between the final mapping locus and the coarse

mapping locus could be as large as 2D, if the set of edits from the read to the coarse

mapping locus and the read to the final mapping locus are disjoint. However, as

homology tables with large error rates take substantially longer to construct and

consume larger memory, for practical performance reasons, the threshold of the

homology table can be chosen to be less than 2D (such as D, which is used for the

main experimental results in the paper), resulting in imperfect sensitivity. In order to

recover mappings that have distance higher than D to the coarse mapping, CORA again

employs a nucleotide-level string comparison given that a large percentage of the

remaining k-mers constitute a viable mapping. In Section B2, we provide an

experimental analysis on the runtime and sensitivity trade-off of the recovery scheme for

a variety of homology table distance thresholds and perform a comparative analysis on

experiments when the recovery scheme is enabled and disabled.

In Section B2, we provide an experimental analysis on the runtime and sensitivity

trade-off of the recovery scheme for a variety of homology table distance thresholds and

perform a comparative analysis on experiments when the recovery scheme is enabled

and disabled.

46

Implementation details and memory use. For the human (hg19) read-mapping

experiments presented in this study for a k-mer length of 54bp, the exact homology

table requires ~0.8 GB of memory, whereas the inexact homology table that represents

all reference homologies of Hamming distance 2 requires ~22.2GB of space in memory.

For CORA’s fast best-mapping mode, only the exact homology table is required,

whereas for all-mapping mode or a more sensitive best-mapping mode, CORA requires

both exact and inexact homology tables to be represented in the memory. Apart from

the homology table, CORA also utilizes lookup tables for the reference in order to

identify the nucleotide at each locus in the reference as well as corresponding indices in

the homology tables. This table requires an additional 2.4 GB of memory for best

mapping modes that do not utilize the inexact homology table and 24.8 GB for other

mapping modes (the higher memory usage is due to index values needed for the

inexact homology table). Among the best mapping modes, when the inexact homology

table is used, both sensitivity and runtime is slightly higher than the modes that do not

utilize the inexact homology table (Figure S2).

Finally CORA allocates an adjustable amount of memory to represent the read

links in RAM for fast access. For the FIN1 dataset, the maximum memory size needed

for allocation is 2.76 GB (as opposed to 29.1 GB, which is the original FASTQ file size).

However, this amount can be reduced by a factor of X through a multi-pass option that

scans the read link file X times.

For speed optimization on high-coverage read datasets, CORA uses a

memoization scheme. Memoization is a widely-used optimization technique in computer

science that aims to gain speed through storing the output of expensive function calls.

47

For the read links that represent more than a certain number of k-mers in compressed

form, CORA traverses the homology table once and saves the inferred genomic

positions for the link in a lookup table. Then for each of the k-mers within the link, this

lookup table is used instead of re-computing the genomic neighbors using the homology

table. In whole genome real-data experiments (Figures 1 and S2), we chose this

threshold to be 20 which resulted in a good balance between runtime improvement and

additional memory required for the lookup table. Below we present a breakdown of

runtime and peak memory usage (maximum resident set size) of homology table

traversal for best- and all-mapping, as well as a variety of memoization threshold

values. While CORA’s memoization scheme results in moderate speed gains for best-

mapping with a negligible increase in peak memory usage, it provides drastic speed

gains for all-mapping (when the threshold is set to 10 or 20) with a relatively small

increase in peak memory use (Table S3). All experiments reported on human datasets

(Figures 1 and S2) with memoization threshold 20 can be run on a machine with

~64GB of free RAM.

 Memoization Threshold
No
memoization

20 10 5

Mapping mode

Best
mapping
(Fast mode)

Runtime (seconds) 1331 1200 1125 1191

Peak memory 8.90 GB 9.29 GB 9.30 GB 9.67 GB

All-mapping
Runtime (seconds) 11260 7743 7797 7134

Peak Memory 48.3 GB 51.3 GB 54.3 GB 72.3 GB

Table S3: Runtime and memory cost of CORA’s homology table traversal stage on FIN1 dataset for best

and all-mapping for different memoization thresholds.

48

A5. Using homology table improves asymptotic complexity of seed-

and-extend based mapping.

We now show that pairing a seed-and-extend based mapping method with a homology

table reduces the asymptotic complexity of mapping on average by a factor of the

redundancy of the reference genome with respect to the read sequence. Note that this

complexity analysis is independent of the size of the read dataset or the redundancy

within. As shown earlier, in the case of coarse mapping in CORA, the asymptotic

complexity is further reduced by a factor of the redundancy within the read dataset itself

due to k-mer compression of reads. Furthermore, even though the measure of

redundancy of the genome with respect to the read is correlated with the redundancy

within the reference genome, the former is lower in cases such as uniquely mapped or

unmappable reads as we quantify later.

Though we initially assume an ungapped all-mapping model, we extend this

analysis later to the gapped mapping scenario. The complexity analysis also holds in

the best-mapping version of the problem, except a corner case which we elaborate on

later. We always consider the perfect sensitivity versions of the problem in our

complexity analysis, and therefore exclude heuristic or greedy algorithm based mappers

that generate imperfect sensitivity mapping results. We also assume a strict seed-and-

extend mapping model, where each seed is separately searched in the reference

genome, without any precomputation on the read dataset (such as CORA’s k-mer

compression scheme) and all different seed hit loci are extended.

49

For our analysis below, we need to define a mapping method that reports an

arbitrary mapping locus in the reference genome within a specified distance threshold of

the read without any preference for its locus or actual distance, or none if there is no

mapping locus within the distance threshold. We will call this an ‘any-mapper.’ For the

following analysis, we will assume that we will be pairing a seed-and-extend based any-

mapper with the homology table in order to build an all-mapper, and compare its

runtime complexity to a seed-and-extend based all-mapper. We will assume that the

underlying complexity of seed-and-extend operations are consistent across the

mappers.

We define the seed operation as sampling a shorter substring from the read and

mapping it exactly (i.e. with no errors) to all matching locations in the reference genome

which then become candidate loci for the extend stage. The extend stage is defined as

identifying which of the candidate loci are valid mappings within the similarity threshold

(in the case of all mapping) or identifying the locus with the highest similarity score (in

the case of best mapping). To achieve this, the seeds are extended towards either

direction of the reference match.

For ease of analysis, we assume that the read is single-end and is of fixed length

k. We will refer synonymously to a read and the k-mer it represents from here on.

Let us define R(q, d) = {p ∈ G:δ(p, q) ≤ d}, the local k-mer neighborhood in our

genome G of the query k-mer q for Hamming distance d>0. Note that |R(q, d)| serves

also as a good measure of the redundancy of the reference genome with respect to the

read q. This aligns with our natural intuition for redundancy as describing the self-

similarity of G with respect to q, as |R(q, d)| is also the output size of a perfectly sensitive

50

all-mapper that maps q to G with a distance threshold of d. We exclude unmappable

reads from this complexity analysis as |R(q, d)| = 0; however, since the use of an any-

mapper or a homology table in the case of unmappable reads will not have an effect on

the runtime, its asymptotic complexity behavior is similar to the uniquely aligned reads

with |R(q, d)| = 1.

Consider an all-mapper τ employing the seed-and-extend strategy as follows to

return R(q, d) with guaranteed perfect sensitivity:

(1) Break the read q of length k up into length s seeds.

(2) Find all locations in the genome that match these seeds in order to

enumerate tentative mapping locations.

(3) Extend each seed hit to check if the tentative mapping location is within

distance d of q.

(4) Report positions of the mapping locations within distance d.

Note that the read q must be broken up into at least d+1 seeds to ensure that at least

one seed will have a perfect match to the reference index 25. Thus, a seed length s ≤

⌊k/(d + 1)⌋ is required in order to guarantee perfect sensitivity assuming uniform seed

lengths.

Let us define the complexity function of this seed search operation (2) of the

seed-and-extend based read mapper to be f(s,|G|). When considering all of the seed

search operations, the complexity of the seed stage overall will be O(d × f(s,|G|)). If we

assume that the data structure used will allow accessing each additional seed hit in the

51

genome in constant time, the time required to access all additional seeds will be

dominated by the extend stage time, thus we can ignore it.

The computational cost in step (3) is finding whether each seed match in the

reference is a valid read mapping with at most d mismatches. Let us define the

complexity function of this extend operation to be g(k,|G|,d). In the case of a hash table

implementation, the runtime complexity of the extend operation will be O(k) as we need

to compare k-s bases between the read and the reference locus. As we need to perform

the extend stage for each seed hit, the total complexity of this stage is O(#of seed

matches × g(k,|G|,d)). The cost of reporting the mapping positions will be dominated by

#of seed matches, thus we can ignore it for the all-mapper.

Now let us consider pairing an any-mapper m with a homology table H to build an

all-mapper. Given a query string q, m(q) returns either the location of some substring of

G within distance d of q, or that there is no such location. We construct the any-mapper

similarly to the seed-and-extend all-mapper above, except that we short-circuit the

extend stage once a location within distance d of q is found. In expectation, the runtime

of this any-mapper will be O(
#of seed matches × g(k,|G|,d)

|R(q,d)|
), assuming we process the seed

hits in a randomized order.

Now, let us consider the computational cost of using a homology table to

generate all of the mappings of q to the reference within distance d, given m(q) from the

any-mapper. Below, we redefine the homology table in a slightly different way than the

description in Section A2. This change is due to the fact that, here we are concerned

solely about the asymptotic complexity of the problem rather than practical concerns

52

when building the CORA framework, such as memory/disk-space or preprocessing time

costs. For example, we exclude here the block-merging step of the actual homology

table used in the CORA framework, which in practice saves a lot space with little or no

effect on real runtime, but might increase the worst case complexity of search.

We will construct the homology table for distance 2d as follows:

(1) Bin the locations in the genome together by exact k-mer matches. Because

each bin contains all locations with a particular k-mer, we will refer

synonymously to the bin and the k-mer it represents.

(2) For every pair of bins b1 and b2, create a link between them if the distance

between their k-mers is ≤ 2d. In that link, store the position of the

mismatch(es).

Then our homology-table augmented all-mapper algorithm will be as follows:

(1) Use the any-mapper to get m(q), which is within distance d of q.

(2) Look up m(q) in the homology table.

(3) In the homology table, for every link from m(q)'s bin, check if following that

link will lead to a bin with k-mers within distance d of q.

(4) Traverse the appropriate links and return R(q,d).

By the triangle inequality, we are guaranteed to get all of R(q,d) using this scheme, so

long as the homology table has all links with distance ≤2d. Note that because homology

table links store the positions of the mismatches, we need only check the mismatches to

determine the Hamming distance between the new bin and q. Thus, homology table

traversal takes O(d × |R(m(q),2d)|) time. Total runtime for the homology-table

53

augmented all-mapper is thus O(d × f(s, |G|) +
#of seed matches × g(k,|G|,d)

|R(q,d)|
+ d ×

|R(m(q), 2d)|).

 This complexity can be further reduced if we modify the homology table to have a

precomputed mismatch table for each bin, that specifies which other bins will be within

distance d, depending on the locations of differences between m(q) and q. For example,

a bin can point towards different sets of neighboring bins, in the case that the 5th

position in the k-mer has a mismatching base ‘G’ versus the 26th position has a

mismatching base ‘T’. In the naïve version, this would require us to have a table of size

(k
d
) × 3d for each bin, even though more space efficient data structures are possible

that exploit the sparsity of this table. With this expanded homology table, total runtime

complexity reduces to O(d × f(s, |G|) +
#of seed matches × g(k,|G|,d)

|R(q,d)|
+ |R(q, d)|), assuming

output costs consist of reporting only the position in the genome in constant time for

each mapping.

 The initial complexity of the all-mapper is O(d × f(s, |G|) + #of seed matches ×

 g(k, |G|, d)). We did not add an additional term for the output cost |R(q,d)| as #of seed

matches = Ω(|R(q,d)|). If d × f(s,|G|) = O(g(k,|G|,d)) as well as |R(q,d)|2 = O(#of seed

matches × g(k,|G|,d)), we can claim that an any-mapper paired with the homology table

is faster than an all-mapper by a factor of |R(q,d)|, which corresponds to the redundancy

of the reference with respect to the read. Assuming that f(s,|G|) = O(s = ⌊
k

d+1
⌋) and

g(k,|G|,d) = Ω(k), the first condition is satisfied. Both of these assumptions are valid,

since a hash-table is able to satisfy the first condition; and since we assume no pre-

54

computation on the read dataset, the remaining bases in the read, apart from the seed

loci, and error positions are unknown prior to the extend stage, thus requiring Ω(k)

operations for a k-mer with a seed hit.

 For the second condition, we need to show that #of seed matches = Ω (|R(q,d)|2).

In the generalized case, where we have d+1 seeds of length s = ⌊k/(d + 1)⌋, the

maximum number of unique d-away k-mers we can construct from q is (k
d
) × 3d.

Whereas the total number of possible unique k-mers that contain at least one exact

seed in their corresponding k-mer position is 4k − (4⌊
k

d+1
⌋ − 1)

d+1

= Ω (4
𝐤

𝟐). If the

reference is assumed to be constructed in a non-adversarial way by selecting k-mers

from a unique k-mer list with repetitions, by expectation the second type of k-mers will

appear exponentially more often than the first type of k-mers, for 0 < d <
k

2
. In this model,

it is easy to show that the #of seed hits grows faster than quadratic in the number of

valid mappings, satisfying our second condition.

 By using the homology table, if the runtime is dominated by the number of seed

matches, we are able to get acceleration proportional to the local redundancy of our

query in the genome. Amortized across all reads and their seeds, this runtime will by

expectation correspond to the average redundancy of the reference genome with

respect to the read dataset. This quantity is a function of the similarity between the

donor genome and the reference genome as well as the sequencing error rate.

In the perfect sensitivity version of the best-mapping problem, in which a best

mapping with minimal distance to the reference genome is guaranteed to be found

provided that one exists within the predetermined distance threshold d, the seed stage

55

will be performed as earlier for both best-mapper and any-mapper. The extend stage

will also still be the same for an any-mapper. If we make sure that the precomputed

mismatch table in the homology table points to the interval of minimal distance mapping,

the traversal stage can find a random best-mapping in constant time. In the case that

there are no perfect matches, the complexity of the extend stage will not be changed as

each seed hit needs to be extended to make sure that there is not a mapping with a

lower number of errors. In the case that there is no more than a constant number of

perfect matches for the read in the reference, the complexity of the extend stage for

perfect sensitivity best-mapping will be the same as perfect sensitivity all-mapping, as

the expected number of seed hits that need to be extended is not changed. Even in the

presence of relatively frequent perfect matches, the any-mapper will be faster, but not

necessarily as much as a factor of |R(q,d)|.

In the gapped mapping version of the problem the extend stage will be more

costly due to the detection of insertions and deletions while extending. However, the

seed stage will stay the same as we are still guaranteed to find all read mappings if d+1

disjoint seeds are sampled from the read of length s ≤ ⌊k/(d + 1)⌋. Since the cost of the

gapped extend stage is lower bounded by the ungapped extend stage, our analysis still

holds in the gapped all-mapping and gapped perfect sensitivity best mapping problems.

Note that for uniquely aligned reads as well as unmappable reads, we do not

expect any speedup of more than a constant factor. However, even in these cases

compressive acceleration is possible due to k-mer compression of reads in the CORA

framework.

56

Moreover, in our asymptotic analysis in this section, we did not include mapping

methods based on greedy algorithms that only check a subset of the seed hits for

mapping (in particular best-mapping), resulting in imperfect sensitivity mapping results.

Thus, other practically useful speed improvements of methods that cannot guarantee

perfect sensitivity (e.g. Bowtie2, BWA, Masai, GEM, etc.) are left outside of this

complexity analysis.

A6. Related work and novelty of CORA framework

Here we describe existing work and how each differs from CORA’s compressive read-

mapping framework.

In their pioneering work, Veeneman et al.13 describe a read-mapping

methodology, Oculus, which wraps an existing aligner and aims to accelerate read

mapping via elimination of duplicate reads in the input read dataset prior to mapping;

the method reconstructs final mappings by regenerating additional mapping results for

the unmapped, eliminated reads using results from their mapped copies. In essence this

approach is similar to a primitive version of CORA’s single-end read-mapping without

using a homology table, sampling only a single whole read for the collapsing stage.

Though a simplistic approach like this can provide modest compressive acceleration for

highly redundant read datasets that are single-end and have short read-length, it

strikingly fails to provide any meaningful acceleration for longer read-length paired-end

read datasets, such as the 2x108bp read datasets from 1000 Genomes Project used in

FIN1, FIN2, FIN4 experiments presented in this study. In contrast, CORA can provide

orders of magnitude speed increase over existing aligners on the FIN4 dataset,

whereas the total number of duplicate paired-end reads in this dataset is less than 3%,

57

which represents a hard upper bound on the acceleration Oculus can provide.

Moreover, Oculus requires time to de-duplicate the input and expand the output

mappings for eliminated reads, resulting in even smaller margins for acceleration, which

is roughly 2%. As opposed to Oculus, CORA’s acceleration stems from the fact that k-

mers shorter than read length are used for compression (with exponentially increased

odds for duplicates), splitting a longer read into multiple smaller chunks and

constructing the whole paired-end read mapping results after coarse mapping through

the use of the homology table rapidly enumerating multiple mapping positions for each

k-mer in the reference genome. Without the use of a homology table, such a k-mer

based compressive mapping approach would be prohibitively costly.

Apart from identifying exact duplicates, Mahmud and Schliep explored wrapping

existing aligners using a whole-read clustering scheme (TreQ-CG) where reads that are

similar within a distance threshold are clustered together 32. While some level of

acceleration is gained from this approach, it comes with a significant loss in mapping

sensitivity. Furthermore, whole-read inexact clustering is a costly solution, causing

CORA to be able to run its entire mapping pipeline several times over before TreQ-CG

completes even its initial read clustering stage.

In addition to end-to-end compression of reads through de-duplication or

clustering, some read-mappers 10,11,12 have explored the idea of jointly representing

seeds or putting them in a compact data structure, in order to accelerate the seed-

matching stage of mapping. Below we summarize the idea of clustering seeds prior to

seed-matching step and describe the conceptual and practical differences between the

CORA framework and joint seed-matching approaches.

58

Inspired by the efficient seed-and-extend alignment algorithm of BLAST26, almost

all short-read mapping algorithms are designed with two main computational stages: the

seed stage and the extend stage. The seed stage can be broadly described as

sampling a short subsequence (or multiple subsequences) of the read and matching it

exactly (or with very high similarity) to multiple tentative locations in the reference

genome which then become candidate loci for the extend stage. The main

computational cost of the seed stage is searching for seed sequences in a data

structure that represents the reference genome (e.g. a hash table or suffix array). The

extend stage can be broadly described as identifying which of the candidate loci are

valid mappings within the similarity threshold (all mapping) or identifying the locus with

the highest similarity score (best mapping) through extending the seeds towards either

direction of the reference match (as well as filling in gaps in the case of spaced seeds).

The main computational cost of the extend stage is to perform similarity comparisons

between the reference and the bases in the reads that are not contained in the seed,

which quite often corresponds to the majority of the bases in the read, as well as the

majority of the computational cost of read-mapping. Most read mapping methods

already employ a preprocessed reference index that allows fast identification of seed

matches in the reference genome, thereby speeding-up the seed stage of mapping.

Furthermore, some methods such as mrsFAST-Ultra, Masai and BWA-SW employ a

seed clustering scheme that also process the seed-set on-the-fly in order to reduce

redundancy in seed-matching comparisons across multiple seeds from different reads,

which aim to further accelerate seed matching stage.

59

Conceptually, there are three key differences between CORA’s k-mer read

compression scheme and joint seed-matching schemes that exist in the literature.

Firstly, the length of the k-mers that CORA collapses are chosen to be significantly

longer (40-60bp) than the seed lengths that are typically used by read-mappers (8-

20bp). Therefore, the type of redundancy that CORA leverages is based on longer

homologous regions across both the reference genome and the reads sequenced from

these regions across multiple individuals; on the other hand, existing methods rely on a

large number of spurious hits that short seeds would normally produce, often increasing

the computational cost of the extend stage. Longer k-mer lengths are essential to the

CORA framework, as CORA’s k-mer read compression scheme is complemented by a

homology table that enables very efficient all-mapping via rapid enumeration of

homologous regions in the reference genome. Building a homology table with such

short seeds would be intractable, as it would be infeasible to pre-process, store and

enumerate the exponentially larger number of homologies. Secondly, by joint seed-

matching, read mappers aim to accelerate only the seed stage of mapping (which

requires relatively less costly computations in the form of data structure access

operations compared to costly nucleotide-level comparisons of the extend stage),

whereas CORA’s k-mer read compression accelerates the entirety of the coarse

mapping stage, which includes both the seed stage and the costlier extend stage.

Thirdly, while the seed-matching stage requires identifying many regions in the

reference genome in order to produce candidate mapping loci for the extend stage

(otherwise the sensitivity of mapping would suffer), it suffices for CORA’s coarse

mapping stage to only produce any single region in the reference genome, that is, within

60

a specified distance of the compressed k-mer. As we analyzed above, the asymptotic

complexity of this search operation is lower than seed-and-extend based inexact

mapping by a factor of the redundancy in the reference genome with respect to the

reads.

In practice CORA’s runtime performance is superior to mrsFAST-Ultra with near-

perfect sensitivity and to Masai with much better sensitivity. BWA-SW is primarily

designed to efficiently map longer reads (>200bp) and costlier than other BWA methods

for FIN1-4 datasets.

Overall CORA’s k-mer based read compression, complemented by its

compressive homology table, represents a novel methodological advance in read

mapping. This advance is also apparent in the superior practical performance, in terms

of both speed and sensitivity, of our implementation of the CORA compressive read-

mapping acceleration framework as compared to existing tools.

A7. Software features

We provide an implementation of CORA at http://cora.csail.mit.edu, which can readily

perform rapid gapped read-mapping for paired-end Illumina read datasets, given a

FASTA/FASTQ input file, reporting a SAM format mapping output file. We discuss

features of our implementation below.

Integration of other mapping tools into CORA. For easy integration of other

mapping tools into the CORA framework, we implemented a manual coarse mapping

mode: Users can give a series of commands to run for the coarse mapping stage of

CORA (specifying the executable files, input, output and reference), and CORA

http://cora.csail.mit.edu/

61

automatically calls these commands to perform the coarse mapping stage, without

requiring any code changes in the mapper or CORA framework.

Using existing mappers within CORA framework. We implemented the CORA

framework in the C++ programing language. It does not have any dependencies apart

from the user-specified coarse mapping tool to be incorporated into the framework.

Virtually all short-read mapping tools can be plugged into the CORA framework with

minimal or no changes to the implementation. Currently integrated tools and mapping

modes include BWA3 aln and mem, Bowtie24, mrsFAST5, and mrsFAST-Ultra10.

 The current implementation of CORA can perform mappings of paired-end read

datasets with uniform read-lengths (between 2x36bp and 2x150bp) within a Hamming

distance threshold. In addition, users specify an allowable insert length interval for

mate-pairs. CORA performs end-to-end mapping of reads, which corresponds to the

global alignment of each read to a locus in the reference. The current implementation of

CORA does not make use of quality scores within the alignment (all substitutions or

indels have equal weight within the Hamming/Levenshtein distance metric); however,

quality scores can optionally be printed for downstream use in a sequence analysis

pipeline.

Integration of CORA into pipelines and other mapping tools. CORA can be readily

integrated into NGS processing pipelines that work with the commonly used SAM

format for representing read mappings. However, it is also possible to integrate key

components of CORA, such as k-mer based read compression and/or homology table

traversal, into other mapping tools through the CORA framework libraries. For example,

through the use of CORA’s libraries, an external method can perform k-mer based

62

compression on a set of sequences or can access the homology table in order to query

the homologous locations of a k-mer in the reference genome directly without the need

to run the entire CORA pipeline.

Distance metric options. CORA allows the user to specify the distance metric used for

mapping, Hamming or Levenshtein (edit) distance, without any modification needed to

the homology table. Current version of CORA software allows the user to set the

distance threshold up to 6 edits/substitutions all and best-mapping. For best-mapping,

the CORA package has available mapping inference modes that can also handle

distances higher than 6.

Mapping reporting options. CORA allows the user to specify whether he/she wishes

to output all-mappings, best-mappings, unique-mappings or best stratum mappings, the

latter of which corresponds to outputting all mappings within the highest tier.

Furthermore, CORA enables reporting of the original read names and quality scores

from the input read dataset, or alternatively assigns numbers to the reads that represent

their order in the read dataset.

Future extensions to CORA framework. In future updates to the CORA framework,

we will be extending the k-mer based compression of the read dataset, with a flexible k-

mer selection scheme independent of read length, allowing varied read lengths in the

input datasets as well as soft clipping (dynamic trimming) for reads with low-quality

ends. Finally, we will be adding support for multi-reference alignment (mapping) by

augmenting the homology table with links to individuals’ variants within user-specified

VCF (Variant Call Format) files.

63

B. Supplementary Results

B1. Datasets

Real NGS datasets used. For the experimental results shown in this paper (Figure 1,

Figure S2), we used three real-life whole-genome sequencing datasets (mentioned

below as FIN1, FIN2 and FIN4) with varying depth-coverage obtained from the 1000

Genomes Project 27. These datasets include Illumina sequencing reads from 7 Finnish

individuals: HG00173, HG00174, HG00176, HG00177, HG00178, HG00179, and

HG00180. Among these, FIN1 contains only HG00173, FIN2 contains two individuals,

HG00174 and HG00176, and FIN4 contains the remaining 4 individuals HG00177,

HG00178, HG00179, and HG00180. Finnish individuals were selected from the 1000

Genomes Project due to the availability of long and uniform length paired-end read sets

with good coverage. For the experiments, we have only used reads from the 7 Finnish

individuals, which are paired-end and 108 base pairs on each end. The depth of

coverage of FIN1 is 4.25x, FIN2 is 8.04x and FIN4 is 15.87x. The hg19 human

reference genome multi-fasta dataset is used as the reference with the default

reference indexing scheme used in all comparisons between mapping tools. The hg19

reference genome dataset we used contained contigs for all autosomes and sex

chromosomes, chromosome M as well as 29 alternative contigs for various

chromosomes and 39 additional “chrUn” haplotypes that were not placed in any

reference chromosome.

Chromosome 20 read datasets used in the experiments in B2 are from 32

Finnish individuals in the 1000 Genomes Project, with their reads restricted to

chromosome 20. The individuals included are: HG00171, HG00173, HG00174,

64

HG00176, HG00177, HG00178, HG00179, HG00180, HG00182, HG00183, HG00185,

HG00186, HG00187, HG00188, HG00189, HG00190, HG00266, HG00267, HG00269,

HG00270, HG00272, HG00306, HG00311, HG00312, HG00357, HG00361, HG00366,

HG00367, HG00369, HG00372, HG00373, and HG00377. The original read datasets all

contained paired-end 108bp long reads. For the experiments with the paired-end read

lengths of 70bp, 80bp, 90bp and 100bp, we trimmed each mate from the end that is

closer to the fragment center. The total number of reads in these 32 datasets is ~37.27

million, with total depth coverage of 127.7x, 118.3x, 106.5x, 94.6x, 82.8x for the

2x108bp, 2x100bp, 2x90bp, 2x80bp and 2x70bp datasets, respectively.

Simulated NGS datasets used. For the simulation results shown in Figure 1c, S6 and

S7, we used the human reference genome (hg19) with a fixed mutation rate of 0.1%, in

order to capture the k-mer redundancy profile of the diploid human genome in the

presence of mutations. Using this mutated reference, we simulated 20 million paired-

end reads (2x100bp) from chromosome 20 with varying sequencing error rates: 2%,

1%, 0.5%, 0.25%, and 0.125%. We used SAMtools wgsim tool28 for simulating reads.

Mouse dataset. In addition to human read mapping experiments, we also present

supplementary results on the mouse genome. For mouse experiments, we used the

original mm9 reference genome (NCBI build 37) as downloaded from UCSC genome

bioinformatics site. Our mouse read datasets are taken from the Mouse Genomes

Project 29: ERR118246, ERR118251, ERR118256, and ERR118261, which each

consist of paired-end 100bp Illumina HiSeq 2000 reads. The accession code for the

datasets is ERA123494. The merged dataset, including all four datasets, contains ~122

million reads with ~9x depth coverage.

65

B2. Experiments on real NGS human data

We implemented compressively-accelerated versions of BWA aln and Bowtie2 (denoted

as CORA-BWA and CORA-Bowtie2). We chose BWA and Bowtie2 for our experiments

because they are widely used and also the primary means by which many

biotechnology labs map large NGS read datasets. We also perform runtime and

sensitivity comparisons to other mapping tools, including mrsFAST-Ultra, BWA mem,

GEM30, and Masai. All mapping experiments are run on a single CPU of a 12-CPU Intel

Xeon X5690 machine with 94GiB RAM.

 To determine whether compression yields acceleration, we compared the read

alignment performance of our CORA-based compressively-accelerated mappers

against other methods using 1000 Genomes sequencing datasets from multiple

individuals. These datasets consist of paired-end reads (108 bp) from the 1000

Genomes Phase 1 Illumina sequencing read data (see Datasets). Three of these

datasets contain respectively 1, 2, and 4 different Finnish individuals with roughly 4x, 8x

and 16x depth-coverage. We mapped these three read datasets onto the whole human

reference genome (hg19) with four different alignment strategies: all-mapping with

indels (Levenshtein distance), all-mapping without indels (Hamming distance), best-

mapping with indels, and best-mapping without indels. We tested eight read mapping

methods (BWA, CORA-BWA, Bowtie2, and CORA-Bowtie2, BWA mem, mrsFAST-

Ultra, GEM and Masai) and measured their runtime and sensitivity. While we excluded

Masai and GEM from the all-mapping experiments in the main text due to their very low

sensitivity (~10%) as compared to other tools, we do however provide a detailed

analysis of their all-mapping performance in Additional experimental results.

66

Whereas all CORA runtimes are reported on the full datasets, some of the other

runtime and sensitivity results were estimated using downsampled read sets (see

Further details on experimental Setup).

All-mapping performance comparison with existing methods. CORA’s compressive

mapping framework achieved from 6 times to 3 orders of magnitude speed-up

compared to existing all-mappers with comparable sensitivity (Figure 1).

For the gapped alignment of the FIN1 dataset with roughly 4x coverage, we

estimated that BWA aln would take more than 21 days to find paired-end all-mappings

within a Levenshtein distance of 4 for each end, whereas CORA-BWA took less than 10

hours, more than 54 times faster than the original BWA mapper. For the FIN4 dataset,

CORA-BWA was more than 62 times faster than BWA aln, indicating that CORA’s

compressive acceleration increases with higher read-depth coverage. For the ungapped

mapping of FIN4, CORA-BWA was still faster by an order of magnitude compared to

BWA. CORA-BWA achieved these massive accelerations of BWA while also

substantially improving the sensitivity of gapped and ungapped all-mapping (Figure 1b).

 For the gapped alignment of the FIN1 dataset, we estimated that finding all-

mappings using Bowtie2 would require several years to complete, whereas our

compressively-accelerated version of Bowtie2 was able to complete within 10 hours,

effectively boosting Bowtie2’s all-mapping efficiency by three orders of magnitude, while

again improving sensitivity.

 For ungapped all-mapping on the FIN4 dataset CORA-BWA achieved ~6 times

the speed up as compared to mrsFAST-Ultra, with near-perfect sensitivity. CORA-BWA

reported mappings ~3.5 times faster even when mrsFAST-Ultra printed read mappings

67

in an unordered fashion, creating computational debt for the downstream analysis.

Furthermore, CORA’s acceleration as compared to mrsFAST-Ultra is significantly

greater for higher redundancy reference genomes (e.g. mouse), effectively producing

all-mapping results about an order of magnitude faster (see Experiments on mouse

data). CORA’s superior all-mapping speed as compared to mrsFAST-Ultra is

remarkable, given that mrsFAST-Ultra is cache-optimized for all-mapping and the

current implementation of CORA-framework does not employ any machine architectural

optimizations.

Sensitivity results for BWA, Bowtie2, mrsFAST-Ultra, CORA-BWA, and CORA-

Bowtie2 are given in Figure 1b for the all-mapping alignment strategy. For ungapped

all-mapping, sensitivities are computed with respect to the complete all-mapping

datasets accepted as ground-truth, generated by exhaustive search5. CORA-based

versions of BWA and Bowtie2 achieved almost perfect sensitivity, whereas the original

mappers exhibited a significant loss in sensitivity. For gapped all-mapping, as no

method could be used as a perfect sensitivity ground truth, we compared the number of

gapped mapping results different mappers reported. Both CORA-BWA and CORA-

Bowtie2 have significantly higher sensitivity than BWA and Bowtie2’s gapped all-

mappers. This improvement is due to CORA’s high-resolution homology table,

particularly its representation of all reference-related homologies relevant to read-

mapping, as well as its recovery scheme for missing ‘read links’ (Supplementary

Methods).

We did not include Masai and GEM mappers in our main all-mapping

comparisons as they reported all-mapping results with extremely low sensitivity (~10%)

68

on the FIN4 dataset. See Additional experimental results for a detailed comparative

analysis of GEM and Masai’s gapped and ungapped all-mapping performance with

CORA-BWA.

Best-mapping performance comparison with existing methods. While relatively

modest compared to its acceleration of all-mapping, CORA still achieved substantial

best-mapping performance improvements compared to existing state-of-the-art best-

mappers for both gapped and ungapped mapping in terms of speed, sensitivity or both

(Figure S6).

Remarkably even CORA’s all-mappers (Figure 1a) reported mapping results

faster than BWA, Bowtie2 and mrsFAST-Ultra’s best-mappers. This is a considerable

strength of the CORA framework, as it enables NGS analysis pipelines based on all-

mapping that are even faster than existing pipelines based on best-mapping.

Runtime and sensitivity analysis for varied k-mer length and error rate. We

performed additional experiments on real NGS data in order to demonstrate mapping

runtime and sensitivity performance of CORA for varied k-mer lengths and error rates.

We aligned chromosome 20 reads for 32 Finnish individuals from 1000 Genomes

Project onto hg19 chromosome 20 with a Hamming distance of 2, 4, and 6. The paired-

end read lengths used were 108bp, 100bp, 90bp, 80bp and 70bp. For these error rates

and read lengths, we constructed homology tables with the corresponding k-mer lengths

of 54bp, 50bp, 45bp, 40bp and 35bp, with a Hamming distance threshold of 1, 2, and 3,

respectively. Table S4 shows the runtime of these experiments in seconds.

69

 2 x 70bp 2 x 80bp 2x 90bp 2 x 100bp 2 x 108bp

Hamming 2

Full
runtime

779.02 843.40 905.61 954.09 1101.18

Coarse
mapping

237.10 314.26 369.37 462.74 560.19

Hamming 4

Full
runtime

1977.11 1863.28 1775.27 1920.49 1895.81

Coarse
mapping

994.67 1065.52 1095.38 1298.04 1390.94

Hamming 6

Full
runtime

3698.55 3395.73 3391.54 3541.02 3471.02

Coarse
mapping

1306.36 1795.29 2305.34 2597.97 2799.05

Table S4: All-mapping and coarse mapping runtimes of CORA-BWA when mapping paired-end 70-108bp

read-length NGS datasets onto hg19 chromosome 20 within a Hamming distance of 2, 4, and 6.

 We also estimated the mapping sensitivity for a subset of the experiments above,

for the paired-end 90bp, 100bp and 108bp read datasets across Hamming distance

thresholds of 2, 4 and 6 (Table S5).

Homology table
distance threshold

Search distance
threshold

2 x 90bp 2 x 100bp 2 x 108bp

Hamming 2 Hamming 2 99.523% 99.433% 99.289%

Hamming 4
Hamming 2 99.996% 99.996% 99.997%

Hamming 4 99.506% 99.380% 99.218%

Hamming 6

Hamming 2 99.999% 99.999% 99.999%

Hamming 4 99.910% 99.857% 99.791%

Hamming 6 99.421% 99.250% 99.024%

Table S5: All-mapping percentage sensitivity results of CORA-BWA when mapping paired-end 90-108bp

read-length read datasets onto hg19 chromosome 20 within a Hamming distance of 2, 4, and 6. For

mapping experiments with Hamming distance 4 and 6, we also measured the percentage sensitivity of

70

CORA when recovering mappings with a Hamming distance of 2. For experiments with Hamming

distance 6, we also looked at the sensitivity of mapping with Hamming distance 4.

For the experiments in which the homology table distance thresholds were twice

or more than the search distance threshold, CORA performed mapping with almost

100% sensitivity. This observation is in accordance with the mathematical proof given

earlier. In practice, a small sensitivity loss of <0.004% is observed due to potential

misses in the coarse mapping stage using BWA aln.

Recovery scheme analysis for varied k-mer length and error rate. We also ran

CORA without the recovery scheme for the original 108bp paired-end read dataset in

order to analyze the tradeoff between runtime and sensitivity in comparison to the runs

above with the recovery scheme enabled (Table S6).

Homology table distance
threshold

Performance measurement 2 x 108bp

Hamming 2

Hamming 2 search sensitivity 96.323%

Full runtime (seconds) 1082.37

Hamming 4

Hamming 2 search sensitivity 99.930%

Hamming 4 search sensitivity 89.485%

Full runtime (seconds) 1854.053

Hamming 6

Hamming 2 search sensitivity 99.982%

Hamming 4 search sensitivity 97.922%

Hamming 6 search sensitivity 84.123%

Full runtime (seconds) 3410.816

Table S6: Runtime and sensitivity results of all-mapping with CORA-BWA when mapping a paired-end

2x108bp NGS read dataset onto hg19 chromosome 20 when recovery scheme is disabled for Hamming

distance thresholds of 2, 4 and 6.

71

 Performance results indicate that the recovery scheme becomes more important

as the homology table distance threshold increases, especially if the search distance

threshold is larger than half the homology table distance threshold. The runtime was

nominally improved when the recovery scheme was disabled.

B3. Experiments on simulated human data

For the runtime results that demonstrate CORA’s enhanced performance with

improvements in quality of sequencing (Figure 1c), we simulated 20 million paired-end

reads (2x100bp) from chromosome 20 of the human reference genome (hg19) with a

fixed mutation rate of 0.1% and varying sequencing error rates of 2%, 1%, 0.5%, 0.25%,

and 0.125%. We used SAMtools wgsim tool for simulating paired-end reads.

 For sequencing read simulation, we employed SAMtools version 0.1.19 with

default insert size and distribution parameters –d 500 –s 50, as well as –R 0 –X 0

parameters in order to simulate read errors within the Hamming distance metric.

 To demonstrate CORA’s sublinear coarse mapping scaling property, we further

simulated four datasets with one billion paired-end reads from chromosome 20 with 2%,

0.5%, 0.125%, and 0% sequencing error rates (denoted as E2, E05, E0125, and E0

datasets).

 Even though any read-mapping method must scale at least linearly with the

number of lines in the input dataset as well as the output, between the input reading and

output writing stages, the CORA framework achieves sublinear scaling for costly

sequence similarity computations. In fact, in the absence of sequencing errors, the total

number of read sequences that are processed in the coarse mapping stage is in effect

72

constant above 500x read depth-coverage (Supplementary Figure S6). Notably, the

rate of redundancy in read k-mers monotonically increases even in the presence of

sequencing errors (Supplementary Figure S7).

B4. Experiments on mouse data

We benchmarked CORA-BWA in comparison to mrsFAST-Ultra and BWA aln/mem for

substitution-only all-mapping and best-mapping for mouse read datasets using a single

CPU of a 20-CPU Intel Xeon E5-2650 (2.3GHz) machine with 384GB 2133MHz RAM.

For all-mapping, we ran CORA-BWA on the full read dataset, whereas we ran

mrsFAST-Ultra on a 1/10 downsampled dataset due to prohibitive runtime. All-mapping

sensitivity comparisons were measured on the downsampled dataset, based on the

assumption that mrsFAST-Ultra produces mappings with perfect sensitivity.

For best-mapping, we ran CORA-BWA on the full dataset with both fast best-

mapping mode, which uses only the exact homology table, and original best-mapping

mode, which makes use of both exact and inexact homology, whereas we ran BWA aln

and BWA mem on the 1/10 subsampled dataset.

The mouse read dataset consisted of 4 individuals with 100bp paired-end read

datasets with a total of 8.96x depth coverage. We mapped these read datasets onto the

mm9 mouse reference genome within a Hamming distance of 4 for each end and with

an allowed insert size interval of 150-650bp. CORA’s homology table of mm9 reference

genome was constructed with a k-mer length of 50bp and a Hamming distance

73

threshold of 2. As the homology table is precomputed, its runtime requirement is not

included in our comparisons.

 When scaled to the whole read dataset from the 1/10 downsampled runs,

mrsFAST-Ultra’s runtime corresponds to 63.4 hours for mapping and 72.2 hours for

sorting the dataset; 135.6 hours for the full mapping pipeline for the all-mapping reads

to be used for downstream analysis. Scaling for mapping and sorting components were

performed separately as described in B6. In terms of sensitivity, we assumed mrsFAST-

Ultra’s ungapped all-mapping sensitivity to be 100%. In comparison, CORA-BWA

performed all-mapping on the full dataset in 14.8 hours (readily in read sorted order),

capturing 99.64% of the mappings mrsFAST-Ultra produced. This result indicates that,

CORA can produce read sorted all-mapping results ~9.2x faster than the full mrsFAST-

Ultra pipeline with near-perfect sensitivity (~4.3x faster if sorting is not included).

 For the 1/10 downsampled run, BWA aln completed reporting substitution-only

best-mapping results in 181 minutes and 55 seconds (BWA mem took 348 minutes and

6 seconds), corresponding to 30.3 hours when scaled to the full run. In comparison,

CORA completed performing best-mapping on the full dataset in 12.7 hours for the

original best mapping mode and 6.78 hours for its fast best-mapping mode. BWA aln

reported best-mapping results with ~95.02% sensitivity in the downsampled read

dataset, whereas CORA-BWA’s original best-mapping mode reported mappings with

99.41% sensitivity for the same set of reads, ~2.4x times faster than BWA aln. CORA’s

fast best-mapping mode, which does not make use of the inexact homology table,

reported mapping results with 92.5% sensitivity, ~4.47x times faster than BWA aln. In

comparison, BWA mem’s sensitivity was much lower at ~83.1%.

74

B5. Additional experimental results

In the main experimental results provided for real NGS datasets, we compared CORA

mappers with the state-of-the-art mappers in terms of runtime and sensitivity. A number

of results were excluded from the main all-mapping results for fairness of comparison,

as they reported very low sensitivity mapping results compared to other tools included

and also consistently crashed on the datasets we tested other tools on. We also

excluded tools that did not have a command-line option for the type of mapping

performed. In this section we list such results or experiments we excluded from the

main set of results.

 First, mrsFAST-Ultra was excluded from gapped mapping experiments as it is a

substitution-only mapping that cannot detect read mappings with insertions and

deletions. Similarly, BWA-mem was excluded from all-mapping experiments as it does

not have an all-mapping mode. Moreover, GEM was excluded from ungapped mapping

experiments as it does not have a user option for limiting non-mismatch edits.

All-mapping with GEM and Masai. GEM and Masai’s all-mapping results were

excluded from the main result plots, both due to the fact that they consistently crashed

on the 1000 genomes datasets used in our main experimental results, making

benchmarking challenging, and their all-mapping sensitivity was substantially lower than

comparative tools in the maximum sensitivity all-mapping mode; thus a fair head-to-

head comparison was not feasible at a practically useful sensitivity level. We provide

detailed results here for both Masai and GEM’s all-mapping performance and compare

them to CORA’s all-mapping results.

75

 For our benchmarking experiments with Masai, we used version 0.7.1 for Linux

x86_64. As precomputation, we indexed the hg19 reference genome using Masai’s

default indexing algorithm. We used the command line arguments ‘–mm all’ for all

mapping, ‘-e 4’ for mapping with distance 4 for each end, and ‘-ll 400 –le 250’ which

determines the valid paired-end insert size interval as [150,650]. For the ungapped

(substitution-only) experiments, we declared the flag ‘-ng’; for gapped mapping

experiments we did not declare this flag. The remainder of the parameters were chosen

by default.

 Similar to BWA, Masai requires three separate executions for paired-end

mapping: single-end mapping for each end and a third execution for inferring paired-end

mappings from the two intermediate files. Masai crashed during each of these 3 stages

on the full FIN4 dataset, for both substitution-only and gapped mapping runs, throwing

‘std::bad_alloc’ errors. While the last stage crashed after saturating the entire 96GB of

memory, the first two stages crashed after using ~60 GB of memory.

 For this reason, we uniformly downsampled the FIN4 dataset in order to gauge

Masai’s all-mapping speed and sensitivity. When we ran it on a 1/100 downsampled

dataset for ungapped (substitution-only) all-mapping, Masai was able to successfully

report mapping results in 33 minutes and 51 seconds, corresponding to 56.4 hours for

the full run. The percentage sensitivity of Masai for the downsampled set was 10.1%. In

comparison, CORA-BWA takes 14.4 hours to run on the full dataset while producing

mappings with 99.7% sensitivity. For ungapped mapping, Masai produces ~10% of the

ungapped mappings that CORA-BWA reports while taking ~3.9x times the time CORA

takes to report the mappings.

76

For gapped all-mapping on the 1/100 downsampled dataset, Masai produced

mapping results in 67 minutes and 27 seconds, which corresponds to 114 hours for the

full run. Strikingly, Masai’s sensitivity at detecting alignments was substantially lower

than other all-mappers we benchmarked in that it produced 4.57 million valid mappings

for the 1/100 dataset (with the criteria of valid gapped mappings defined earlier in B2).

In comparison, CORA-BWA takes 30.95 hours for mapping the full FIN4 dataset and

produces 45 million valid mappings for the same set of reads included in the

subsampled Masai run. Overall, Masai produces 10.1% of the mappings CORA-BWA

produces while taking ~3.68x times the time to compute the mappings.

 For our benchmarking experiments with GEM, we used GEM-mapper build

1.376. As precomputation, we indexed the hg19 reference genome using GEM’s default

indexing algorithm. We consecutively ran gem-mapping and gem-2-sam algorithm to

create a pipeline that takes in FASTQ read input and reports SAM mapping output. We

used command line arguments ‘-E 4’ for setting the edit distance threshold to 4 for each

end, ‘-b’ to align both ends, and ‘-s 4’ for the mapper to recover all possible mapping

edit distance strata that cover 4 edits. We also defined ‘--min-insert-size 150’ and ‘--

max-insert-size 650’. Our full FIN4 data runs as well as subsampled runs consistently

crashed using the GEM mapper, reporting a ‘wrong alignment’ crash error after

processing ~1% of the reads. Fortunately, the GEM mapper reports mapping results for

each read as it computes mapping loci, so it is possible to give a rough estimate of its

sensitivity and runtime on the full dataset. Our estimated runtime of the GEM mapper on

the full FIN4 dataset is 81.7913 hours. The number of valid gapped mappings GEM

produces for the processed reads is 3.385 million. In comparison, CORA-BWA

77

produces 37.185 million valid gapped mappings for the same dataset. Overall, GEM

produces 9.1% of the mappings that CORA-BWA reports while taking ~2.64x times

more time.

 Note that for seed-and-extend read mapping algorithms, improving sensitivity

affects runtime superlinearly31, as increasing sensitivity requires sampling shorter seeds

from the read with drastically higher chance occurrences. Thus, we can suppose that a

more sensitive Masai algorithm, using similar data structures but performing a deeper

index search with shorter seeds, would be at least ~36x slower than CORA-BWA for a

similar level of sensitivity; a more sensitive GEM algorithm would be at least ~29x

slower for gapped all-mapping. Moreover, it is likely these tools would be substantially

slower.

Oculus. Results from Oculus, a mapping acceleration tool that wraps off-the-shelf

aligners and leverages compression of fully identical reads, were excluded from the

main results. This decision was due to the fact that Oculus’ requirement that paired-end

reads be fully identical to be compressed prevents any meaningful acceleration to be

gained for the datasets we presented. We tested Oculus on the FIN1 dataset with BWA

aln. The total runtime was 31.4 hours with 16 minutes spent within Oculus. The

estimated saved time reported by Oculus was 37.8 minutes, which corresponds to a

<2% runtime improvement. Note that the number of duplicate reads in the dataset was

3%, which represents a hard upper bound on the rate of acceleration that can be

achieved by Oculus for any mapping tool or mode.

B6. Further details on experimental setup

78

We compared mapping speed and sensitivity of BWA, Bowtie2, compressively

accelerated BWA (CORA-BWA) and compressively accelerated Bowtie2 (CORA-

Bowtie2) for the all-mapping and best-mapping alignment strategies. For our

comparisons, we used Bowtie2 version 2.1.0, BWA version 0.7.5a, mrsFAST-Ultra

version 3.3, GEM version 1.376, Masai version 0.7.1 and Oculus version 0.1.2.

Mapping criteria and evaluation of sensitivity. For mapping benchmarks presented,

we used the Hamming distance (substitution distance) threshold of 4 for ungapped and

Levenshtein distance (edit distance) threshold of 4 for gapped. We required both mates

of the paired-end reads to be aligned end-to-end with an insert size interval between

150 and 650 base pairs, which specifies the distance from the beginning position of the

first mate in the reference to the second’s (i.e. the alignment gap length between mates

+ single read length).

 We specified this alignment criteria for both best-mapping and all-mapping, so

that we can compare CORA’s all-mapping performance not only with other all-mapping

methods but also the best-mapping performance of existing tools.

 For the all-mapping benchmarks, we measured each mapper’s ability to report all

of the mappings that satisfy the criteria given above. For example, any paired-end read

alignment with an insert size between 150bp and 650bp and with 4 substitutions for

each end is a valid alignment to be reported for ungapped all-mapping (or x insertions, y

deletions and z substitutions for gapped all-mapping, such that x+y+z = 4).

 Note that in our gapped mapping experiments the penalty for each mismatch and

each base of a deletion/insertion is chosen to be equal, as specified by the Levenshtein

distance metric, which is both the most basic gapped distance metric and the only one

79

uniformly supported by the mappers we tested. In the cases where the default gapped

mapping mode of a mapper did not exactly correspond to Levenshtein distance metric,

we specified a gap opening penalty of 0 and a gap extension penalty equal to the

mismatch penalty for the mappers to ensure a consistent comparison across different

methods. While this is a fair comparison benchmark that evaluates a desired property of

mappers –the ability to sensitively detect high-quality mappings of reads within a

specified distance threshold– it does not evaluate different mappers’ ability to detect

mappings outside of the specified distance threshold (mappings containing more

mismatches or covering indels longer than the threshold value). In order to have an

estimate of what percentage of variants this would exclude from our analysis, we

recomputed the NA12878 genotyping sensitivities presented in Yu et al.33 for both

GATK and SAMtools pipelines (GATK ‘best-practices’ bundle used as gold-standard)

6,28. When genotyping performance of BWA’s default mapping results was compared to

the subset of these mappings within Levenshtein distance of 4—our gapped mapping

benchmark criteria—we see that 2.7% of the SNPs as well as 7.5% of the indels in the

gold-standard change from true-positive calls in the former to false-negative calls in the

latter. However, the decrease in sensitivity caused by excluding mappings outside of

Levenshtein distance of 4 also result in a substantial increase in precision: False

discovery rate within the top 2.5 million SNP calls is 24.6% higher in the full mapping

dataset compared to the filtered—in the case of top 150 thousand indels, this increase

in FDR is 16.1%. In other words, by selecting a Levenshtein distance threshold of 4, our

benchmarks restrict the solution space to a smaller yet higher quality set of mappings

that result in higher precision but lower recall variant calls.

80

 Sensitivity for ungapped all-mapping results is calculated as the percentage of

these valid paired-end read alignments that are correctly reported by the mapping

method. Note that sensitivity for all-mapping is equivalent to the accuracy, as read

mapping tools in general (including CORA-accelerated versions) do not falsely report a

mapping within the specified similarity threshold. For ungapped all-mapping sensitivity

benchmarks, mapping results of mrsFAST-Ultra is accepted as ground truth as it can

perform ungapped mapping with perfect sensitivity.

Sensitivity for gapped all-mapping results is not calculated as percentage results

as none of the mappers we tested were able to give all-mapping results with perfect

sensitivity for a gapped alignment strategy. For that reason, we compared the number

of valid non-redundant mappings that each gapped mapper was able to map within the

specified insert length interval and error distance. We define a mapping to be redundant

if there is another mapping for the same read at the same loci for both mates with a

potentially different traversal of the dynamic programming matrix for either end. For

example, if there is a read mapping with no errors at position x, any other mapping for

the same read at position x is considered redundant. Moreover, mappings for the same

read that start at position x+k with k inserted bases (or k silenced bases) at the

beginning of the read are also considered redundant. Furthermore, if an insertion or

deletion sequence spans a micro-repeat region in the read or the reference, indels

spanning different instances of the repeat are all considered redundant apart from one

of them with a minimal error distance. Since there can be many non-trivial

configurations of these redundant mapping variants as well as their combinations, we

employed a simpler scheme to obtain a non-redundant all-mapping set.

81

1) Each reported paired-end mapping was merged into a single line in the SAM

output.

2) Merged SAM output was sorted by read name, then chromosome, then first

mate mapping position and finally second mate mapping position in the same

chromosome.

3) Starting from the second line of the sorted file, if the previous line’s read

name and chromosome are identical with the current line, the positions of the

first mates are at most d apart between the two lines, and the positions of the

second mates are also at most d apart (d being the Levenshtein distance

threshold of mapping), the mapping in the current line is considered

redundant and eliminated.

Though this simple elimination scheme does not necessarily pick the lowest distance

mapping, it is adequate for measuring the total number of non-redundant all-mappings.

In very few cases, this elimination scheme can cause false elimination of non-redundant

mappings. However, we estimated this effect to be negligible (<0.001%).

The ungapped best-mapping read alignment scheme is defined as reporting only

one of the valid paired-end mappings with the lowest cumulative Hamming distance with

respect to both ends. In the case of multiple valid paired-end mappings with the lowest

Hamming distance, any one of the mappings with the lowest distance can be selected

as a valid best-mapping output. Sensitivity for ungapped best-mapping results is

calculated as the percentage of reads that have at least one valid mapping to the

reference, and one of the lowest Hamming distance mappings is reported by the

alignment method. For ungapped best-mapping sensitivity benchmarks, the lowest

82

Hamming distance tier of mrsFAST-Ultra’s mapping results is accepted as ground truth

as it can perform ungapped mapping with perfect sensitivity.

Sensitivity for gapped best-mapping results is not calculated as percentage

results as none of the mappers we tested were able to give best-mapping results with

perfect sensitivity for a gapped alignment strategy. For this reason, sensitivity results

are reported as the total number of reads that the mappers reported a valid paired-end

mapping for within the specified Levenshtein distance threshold and insert size interval.

In the specific case of BWA mem—as it does not allow the user to specify an

insert size interval—we measured the sensitivity for two sets of criteria: (1) using the

default criteria described above and (2) including additionally mappings BWA mem

reported outside of the insert size interval so long as other tools also found a mapping

for the same read within the insert size interval. The reason for this two-tiered sensitivity

analysis is that, while our original benchmark provides a head-to-head comparison of all

tools according to the same mapping criteria it also indirectly penalizes BWA mem’s

lack of a user option for insert size intervals. As a way to ameliorate this situation, our

second sensitivity analysis aims to be more generous to BWA mem by incorporating its

mappings outside of the insert size interval to the analysis as well, while still being fair to

other mappers by not incorporating mappings where there are no mappings for the

same read within the paired-end insert size interval (please see Experimental setup

for best-mapping benchmarks for details).

Experimental setup for all-mapping benchmarks.

The all-mapping scheme for BWA is employed as follows:

83

0) Reference genome is indexed using default parameters of BWA.

1) First mate of the paired-end read is aligned with the “bwa aln” program using

parameters “–n 4” (specifying the maximum Hamming/Levenshtein distance

for each valid read alignment as 4), and “-N” for identification of all possible

valid alignments for each mate. For ungapped mapping, “–o 0” was specified

for preventing gap openings and indels. For gapped mapping “-d 0 –i 0” was

defined in order to sensitively detect all indel mappings for the entire read.

2) Second mate is aligned using the same command and parameters.

3) Paired-end alignments are found with the “bwa sampe” program using

parameters “-s” for disabling Smith-Waterman for the unmapped mate in

order to restrict the reported mappings to a pre-defined Hamming or

Levenshtein distance threshold for both mates, “-c 0” for eliminating chimeric

read mappings, “-a 650” for reporting paired-end read alignments with at most

650 base pairs insert size (bwa sampe does not support a lower bound for

insert size), and “-n 1M -N 1M –o 100M” for enabling maximum possible

sensitivity of read mappings (M stands for one million).

 In addition to these three stages, as BWA sampe reports only a single paired-end

mate in its output and the remaining read mappings are reported as single-end

mappings without any pair information, we implemented a paired-end read mapping

extraction tool for BWA that efficiently parses the locations reported by sampe in XA

field for each end, sorts each list of single-end mappings and performs a linear scan to

report all pairs of locations with matching chromosomes and with mates within the user-

specified insert size interval. In our reported runtimes, we indicated the cost of this

84

paired-end mapping extraction tool with the lighter color on top of the BWA bars. We did

not include its costs for indexing the genome. For downsampled runs, we extrapolated

the full runtime of BWA assuming linear scaling with the read dataset size.

 The all-mapping scheme for Bowtie2 is employed as follows:

0) Reference genome is indexed using default parameters of Bowtie2.

1) Bowtie2 aligner is run to perform paired-end alignment of the read dataset

onto the reference genome using parameters “--no-mixed” in order to

suppress alignments that are not paired-end, “-a --end-to-end --ignore-quals”

in order to find end-to-end mappings of each mate using the Hamming or

Levenshtein distance metric and report all paired-end mappings, “--np 6 --

mp 6 --score-min L,0,-0.25” for limiting the maximum number of allowed

number of substitutions/insertions/deletions to only 4 bases for each 108bp

long mate, and “--minins 150 --maxins 650” specifying the insert size interval.

For ungapped mapping, “--rdg 1000,1000 --rfg 1000,1000” was defined in

order to eliminate all indels. For gapped mapping “--rdg 0,6 --rfg 0,6” was

defined to set equal weight between indels and substitutions corresponding to

Levenshtein distance.

In our reported runtimes for Bowtie2, we have not included its cost for indexing the

genome. For downsampled runs, we extrapolated the full runtime assuming linear

scaling with the read dataset size.

 The ungapped all-mapping scheme for mrsFAST-Ultra is employed as follows:

0) Reference genome is indexed using default parameters of mrsFAST-Ultra.

85

1) Parameters ‘-e 4 --min 150 --max 650’ are specified for the insert length

interval for the paired-end mapping as well as Hamming distance of 4 for

each read end.

mrsFAST-Ultra reports all-mappings in an unsorted order (w.r.t. read or

chromosome order) whereas all other tools we benchmarked, including CORA, report

read-ordered mappings. Printing all-mapping results in an unsorted order creates

computational debt for the downstream analysis tools, as they have to directly or

indirectly perform a sorting task in order to identify all of the mappings of each read. We

sorted mrsFAST-Ultra’s output by read names using linux sort. In order to perform

efficient sorting we used the local temporary directory and declared LC_ALL=C

environment variable, which dramatically improves performance for sorting files with

ASCII characters. For downsampled runs, we extrapolated the mapping portion of

mrsFAST-Ultra’s runtime linearly; the sorting portion of its runtime has complexity Θ

((N/M)logR(N/M)) for the R-Way merge sort algorithm that linux sort implements, where

N and M correspond to data and memory size, respectively, and R is the number of files

the merge operation is performed on simultaneously. As we did not measure the

constants in the complexity function, including R, M or the constant factor before the

complexity function, we estimated the cost of sorting for two separate file size as two

independent data points for extrapolation. These two files were 1/10 downsampled and

1/20 downsampled mapping output files, both of which are larger than the RAM size of

the machine. If X is the cost of sorting the 1/20 downsampled file and Y is the cost of

sorting the 1/10 downsampled file, the cost of sorting the full file is estimated to take

20X + 10 (Y-2X) log220, which is independent from R, M or the constant factor before

86

the complexity function. In the main figure plots we indicated the cost of this sorting

process with the lighter color on top of the mrsFAST-Ultra runtime bars.

Note that this sorting operation merely positions the all-mappings of each read to

be adjacent in the file and does not preserve the original order of the read names or

perform any sorting on the chromosome or the positions. Ideally a mapper should also

preserve the order of the original reads as well as print the mappings of each read in

proper order (with respect to chromosomes and positions); however, we assume

resolving these will not incur significant computational costs for downstream analyses.

Furthermore, we ignore any potential super-linear disk-operation costs that might arise

from disk inefficiencies due to reading/writing larger files on disk. We also attempted to

convert the sam file into bam format first and sort using samtools, but obtained a larger

runtime cost even without extracting the sorted bam file.

Details of the all-mapping scheme employed for GEM and Masai experiments

are given in B5.

 For compressively-accelerated versions of BWA and Bowtie2, we generated the

hg19 homology table using 54bp k-mers. We specified that compression is performed

using 54bp k-mers (corresponding to half of each mate) and coarse mapping, using

BWA aln and Bowtie2. We specified the homology table traversal stage to output all

mappings within the Hamming distance limit of 4 for substitution-only mapping and the

Levenshtein (edit) distance limit of 4 for gapped mapping. In reported runtimes, we have

not included the preprocessing cost for homology table creation, nor the reference

indexing costs incurred by BWA aln and Bowtie2. The runtime cost of k-mer based read

compression is included in the total runtimes reported.

87

While all of the CORA all-mapping runtimes were measured from full dataset

runs, some of the other tools were estimated using a downsampled read set.

Downsampling was performed uniformly and consistently throughout the experiments:

All 1/10 downsampled read sets are identical for the same dataset across different

mapping experiments and the 1/10 downsampled read set is a superset of the 1/100

downsampled read set and so on.

Both Bowtie2’s gapped and ungapped runtimes were estimated using a 1/1000

downsampled read set due to prohibitive runtime cost. BWA’s gapped runtimes were

estimated using 1/100 downsampled read sets. The number of mappings for the

gapped all-mappers was estimated from the same 1/1000 downsampled read set for

FIN4.

The runtime of mrsFAST-Ultra mapping and sorting was measured using a 1/10

downsampled read set. Sensitivity percentages and runtimes for BWA’s ungapped all-

mapping were measured from a 1/10 downsampled read set, whereas Bowtie2’s

ungapped all-mapping was measured from a 1/1000 downsampled read set. CORA

mappers’ ungapped sensitivity percentages were measured from the full read set.

Experimental setup for best-mapping benchmarks.

The best-mapping scheme for BWA aln is employed as follows:

0) Reference genome is indexed using default parameters of BWA.

1) First mate of the paired-end read is aligned with “bwa aln” program using

parameters “–n 4” (specifying the maximum Hamming distance for each valid

read alignment as 4). For ungapped mapping strategy “–o 0” was used in

88

order to prevent gap openings and indels. For gapped mapping we defined “-

d 0 –i 0”.

2) Second mate is aligned using the same command line parameters as the first

mate.

3) Paired-end alignments are found with “bwa sampe” program using

parameters “-s” for disabling Smith-Waterman for the unmapped mate in

order to restrict the reported mappings to pre-defined Hamming distance

threshold for both mates, “-a 650” for reporting paired-end read alignments

with at most 650 base pairs insert size (sampe does not support lower bound

for insert size), and “–n 0 –N 0” in order to report only one paired-end

mapping per read.

The best mapping scheme for BWA mem is employed as follows:

0) Reference genome is indexed using default parameters of BWA.

1) BWA mem aligner is run with parameters “-A 1 -B 1 -O 0 -E 1 -L 1 -U 1000 -T

100” for gapped mapping, which assigns a penalty of 1 for each edit

operation, a score of 1 for each match operation, and a threshold score of

100 corresponding to Levenshtein distance of 4. For ungapped mapping, “-A

1 -B 1 -O 1000 -E 1000 -L 1000 -U 1000 -T 100” is defined in order to prevent

any insertions and deletions and set the distance threshold as Hamming

distance of 4. For both alignment strategies, mate rescuing is disabled by

specifying “-S” which results in a major increase in speed with negligible loss

in sensitivity, “-t 1” is defined to run BWA mem on a single processor, and all

other parameters were selected as default.

89

As BWA mem does not provide a user option for specifying paired-end insert size

interval, we measured and reported two levels of sensitivity for it (Figure S2). BWA

mem’s base sensitivity—which is lower—was measured using the default criteria

employed to evaluate the other best mappers, whereas a second sensitivity measure—

more tolerant for mappings outside the specified insert size interval—was computed by

also taking into account BWA mem’s mappings outside of the [150,650] insert size

interval so long as the edit distance of the mapping reported—summation of both mates’

edit distances—was within the distance threshold of the original benchmarks and other

tools also found a mapping for the same read within the [150,650] insert size interval. In

the case of ungapped mapping, we used the set of reads with valid mrsFAST-Ultra

mappings for this comparison since mrsFAST-Ultra reports ungapped mappings with

perfect sensitivity. In the case of gapped mapping, the union of the set of reads with

valid BWA aln, Bowtie2 or mrsFAST-Ultra mappings were used.

 The best-mapping scheme for Bowtie2 is employed as follows:

0) Reference genome is indexed using default parameters of Bowtie 2

1) Bowtie2 aligner is run to perform paired-end alignment of the read dataset

onto the reference genome using parameters “--no-mixed” in order to

suppress alignments that are not paired-end, “--end-to-end --ignore-quals” in

order to perform end-to-end mapping of each mate using Hamming or

Levenshtein distance metric for mapping similarity, “--np 6 --mp 6 --score-min

L,0,-0.25” for limiting the maximum number of allowed number of substitutions

to only 4 base-pairs for each 108bp long mate, “--minins 150 --maxins 650”

specifying the insert size interval. For ungapped mapping “--rdg 1000,1000 --

90

rfg 1000,1000” parameters were used. For gapped mapping, the same

parameters were defined as “--rdg 0,6 --rfg 0,6”.

The ungapped best-mapping scheme for mrsFAST-Ultra was performed as

follows:

0) Reference genome is indexed using default parameters of mrsFAST-Ultra.

1) Parameters ‘-e 4 --min 150 --max 650 --best’ are specified for best-mapping

with the specified insert length interval for the paired-end mapping as well as

Hamming distance of 4 for each read end.

As mrsFAST-Ultra prints best-mapping output in read sorted order, there is no

sorting cost added for best-mapping.

 The best-mapping scheme for Masai was performed as follows:

0) Reference genome is indexed using default parameters of Masai.

1) The FASTQ file containing the first mates are aligned with masai_mapper

algorithm was call with ‘-e 4’ parameter that specifies Hamming/Levenshtein

distance threshold. In the case of ungapped mapping we additionally

specified parameter ‘-ng’ which prevents indels.

2) The FASTQ file containing the second mates is aligned using the same

command line parameters as the first FASTQ file.

3) Paired-end alignments are found using masai_output_pe algorithm, with the

arguments ‘-ll 400 –le 250’ which specify the insert size interval as [150,650].

91

For both gapped and ungapped alignments, Masai crashed with a bad_alloc

error on the full FIN4 dataset after using 144.2GB memory in stage 3. For this reason,

we performed downsampled runs for Masai, extrapolating full runtime.

The gapped best-mapping scheme for GEM was performed as follows:

0) Reference genome is indexed using default parameters of GEM.

1) gem-mapper algorithm was called with the command-line arguments “-E 4 –

b” to map both ends within a Levenshtein distance of 4 , “-T 1” for restricting

GEM to a single processor, --min-insert-size 150 --max-insert-size 650” in

order to specify the insert size interval.

2) gem-2-sam algorithm was called in order to convert the mappings from

GEM’s internal format to SAM format.

 For best-mapping runs, the CORA-bwa framework is run with the same

parameters as the all-mapping runs except for the last stage where the final mappings

are inferred and only a single mapping with the lowest Hamming or Levenshtein

distance is reported. For ungapped best-mapping, we performed runs with two separate

speed levels: fast mode for which only the exact homology table is traversed; the default

mode for which both exact and inexact homology tables are traversed. For gapped best-

mapping, we also performed runs with two separate speed levels: fast sensitivity mode

for which only the exact homology table is traversed and the banded dynamic-

programming algorithm is not employed; default mode for which the banded dynamic-

programming algorithm is also employed.

92

All best-mapping runtimes were measured from full dataset runs, apart from

GEM and Masai which consistently crashed on the full dataset. We estimated Masai

runtimes from a 1/10 uniformly downsampled read.

Similar to the all-mapping runs, best-mapping runs with GEM also crashed early

in the read list, throwing a “wrong alignment” error. We removed a portion of the reads

that GEM could not process and reran GEM, but it crashed again soon after. For this

reason, we extrapolated the full runtime and sensitivity of GEM from only the mapped

portion of the dataset until the first crash, which corresponds to ~1% of the full read

dataset.

All sensitivity percentages for ungapped best-mapping were estimated from the

1/10 downsampled FIN4 dataset. While all sensitivity results for gapped best-mapping

were estimated from the 1/100 downsampled read set apart from GEM. We estimated

GEM’s sensitivity on the read set that it mapped and compared its sensitivity to CORA-

BWA’s sensitivity on the same set of reads. We assumed this sensitivity ratio to be fixed

when we estimated GEM’s sensitivity for the full dataset.

C. Supplementary Discussion

CORA’s relative runtime advantage over existing mappers increases substantially with

both read depth-coverage and additional individuals in the dataset because the

compressive representation enables much less time to be spent per read and sublinear

runtime in practice (Supplementary Figures S6 and S7). In particular, if multiple

individuals are included within a dataset, CORA’s compressive framework ensures their

reads can be processed all at once, as opposed to separately for each individual. In this

93

instance, CORA can reuse mapping computations performed for previous individuals in

the dataset in order to avoid redundant calculations. Furthermore, CORA’s runtime will

substantially improve as sequencers generate higher-quality reads, as its compressive

framework achieves gains inversely related to the sequencing error rate (Figure 1c),

which decreases as higher-quality sequencing technologies emerge.

 The CORA pipeline has been tested with BWA aln, BWA mem, Bowtie2, GEM,

Masai and mrsFAST-Ultra without any modification to their code, but can be readily

used with other off-the-shelf mappers as well. CORA's speed and accuracy is loosely

tied to the performance of the off-the-shelf tool used in its coarse mapping stage.

However, CORA is expected to give substantial speed gains for other existing short-

read mappers as well. In the future, we also plan to combine mrsFAST-Ultra’s cache-

oblivious architecture with the full acceleration capabilities of CORA.

 As read mapping is typically the most costly step in NGS analysis pipelines (e.g.,

GATK 6), any improvement to existing mappers will immediately accelerate sequence

analysis studies on large read datasets. CORA’s faster and more accurate alignments

for all-mapping allow for similar improvements in genotyping (repeat region analysis,

structural variation and SNP detection, and copy-number variation analysis). Though we

demonstrate the capabilities of the CORA framework on genome sequencing data, it

can readily be used to accelerate mapping of exome and metagenome sequencing

datasets, though larger metagenome references will require additional computational

resources. CORA’s underlying compressive acceleration principles can also benefit

RNA-seq mapping pipelines.

94

 Though CORA is designed to accelerate mapping paired-end Illumina

sequencing reads with relatively low sequencing errors, it is possible to extend the

framework for sequencing technologies with higher error rates (e.g. PacBio

sequencing), using three different strategies: introducing higher error rate homology

blocks in the homology table, approximate compression of k-mers in the read dataset,

or sampling shorter and more k-mers per read.

The flexibility of the CORA framework enables it to adopt the functionalities of the

coarse mappers that it uses. For example, CORA can perform alignment with indels,

provided that the coarse mapper used within CORA is able to report coarse mappings

with indels. Other coarse mapper functionalities can also be incorporated into the CORA

framework without a large code update to CORA framework, such as SNP-aware

alignment algorithm of mrsFAST-Ultra, which reduces reference mapping bias, or

dynamic trimming of read ends that allow low quality reads to be trimmed during

alignment. Similarly, CORA’s indel detection capabilities can be improved by utilizing

other mappers’ capabilities to capture longer indels in the coarse mapping stage.

Given the sheer quantity and variety of read-mapping tools and their non-basic

functionalities, it is intractable to incorporate all of them into the CORA framework, even

though the mappers themselves can be incorporated to CORA framework as the coarse

mapping stage using the manual coarse mapping mode without any code changes.

However, we will also periodically release updates incorporating additional important

functionalities to CORA. Full CORA software will also be released with open source

license together with developer libraries for incorporation of CORA’s k-mer read

compression and homology table components to the newly developed methods and

95

pipelines, enabling biomedical developer community to incorporate key functionalities of

CORA into their methods as well as their custom functionalities into the CORA pipeline.

 As state-of-the-art NGS technologies continue to improve and generate ever-

increasing quantities of data, we expect CORA to produce even more substantial

acceleration, becoming a key component in revolutionizing how the biomedical

community handles sequencing data in the upcoming years.

Supplementary References

24. Yu, Y.W. et al. Research in Computational Molecular Biology, 285-399 (2014).

25. Baeza-Yates, R.A. & Perleberg, C.H. Information Processing Letters, 59(1), 21-27

(1996).

26. Altschul, S.F. et al Journal of Molecular Biology, 215(3), 403-10 (1990).

27. The 1000 Genomes Project Consortium. Nature 491, 56-65 (2012).

28. Li, H. et al. Bioinformatics 25(16), 2078-2079 (2009).

29. Keane T.M. et al. Nature 477; 7364;289-94 (2011).

30. Marco-Sola, S., et al. Nature Methods 9(12), 1185-1188 (2012).

31. Schatz M. Bioinformatics 25(11):1363-1369 (2009).

32. Mahmud P. & Schliep A. arXiv, 1404.2872 (2014).

33. Yu, Y.W. et al. Nature Biotechnology 33, 240-243 (2015).

