Supplemental information

Title: A novel approach using *C. elegans* DNA damage-induced apoptosis to characterize the dynamics of uptake transporters for therapeutic drug discoveries

Table	Table S1a: Threading template structures used for predicting C. elegans OCT-1						
Rank ^a	PDB Hit ^b	Protein name ^c	Specie ^d	Identity 1 ^e	Identity 2 ^e	Normalized Z-Score ^f	Method ^g
1	5c65A	GLUT3 / SLC2A3	Homo sapiens	0.18	0.20	1.48	X-Ray diffraction
2	4gbyA	MFS (major facilitator superfamily) proton:xylose symporter XylE	Escherichia coli	0.20	0.17	3.09	X-Ray diffraction
3	5c65A	GLUT3 / SLC2A3	Homo sapiens	0.18	0.20	2.38	X-Ray diffraction
4	4рурА	GLUT1	Homo sapiens	0.18	0.19	3.51	X-Ray diffraction
5	4pypA	GLUT1	Homo sapiens	0.18	0.19	2.86	X-Ray diffraction
6	5c65A	GLUT3 / SLC2A3	Homo sapiens	0.17	0.20	2.16	X-Ray diffraction
7	4gc0A	MFS (major facilitator superfamily) proton:xylose symporter XylE	Escherichia coli	0.18	0.17	4.17	X-Ray diffraction
8	4gc0A	MFS (major facilitator superfamily) proton:xylose symporter XylE	Escherichia coli	0.18	0.17	3.40	X-Ray diffraction
9	4ldsA	Inward-facing structure of glucose transporter	Staphylococcus epidermidis	0.21	0.18	1.44	X-Ray diffraction
10	4ldsA	Inward-facing structure of glucose transporter	Staphylococcus epidermidis	0.21	0.18	1.31	X-Ray diffraction

Arturo Papaluca and Dindial Ramotar

Table S1b: Threading template structures used for predicting C. elegans OCT-2

Rank ^a	PDB Hit ^b	Protein name ^c	Specie ^d	Identity 1 ^e	Identity 2 ^e	Normalized Z-Score ^f	Method ^g
1	5c65A	GLUT3 / SLC2A3	Homo sapiens	0.18	0.16	1.53	X-Ray diffraction
2	4gbyA	MFS (major facilitator superfamily) proton:xylose	Homo sapiens	0.18	0.18	2.92	X-Ray diffraction

		symporter XylE					
3	5c65A	GLUT3 / SLC2A3	Escherichia coli	0.17	0.16	2.38	X-Ray diffraction
4	4рурА	GLUT1	Homo sapiens	0.18	0.16	3.46	X-Ray diffraction
5	4gc0A	MFS (major facilitator superfamily) proton:xylose symporter XylE	Escherichia coli	0.18	0.18	2.86	X-Ray diffraction
6	5c65A	GLUT3 / SLC2A3	Escherichia coli	0.16	0.16	2.18	X-Ray diffraction
7	4gc0A	MFS (major facilitator superfamily) proton:xylose symporter XylE	Escherichia coli	0.17	0.18	4.21	X-Ray diffraction
8	4gc0A	MFS (major facilitator superfamily) proton:xylose symporter XylE	Escherichia coli	0.19	0.18	4.28	X-Ray diffraction
9	5c65A	GLUT3 / SLC2A3	Escherichia coli	0.18	0.16	1.51	X-Ray diffraction
10	4ldsA	Glucose transporter	Staphylococcus epidermidis	0.22	0.16	2.55	X-Ray diffraction

^aRank of templates represents the top ten threading templates used by I-TASSER.

^bPDB Hit IDs from reported protein structures used as threading templates.

^eIdentity 1 and 2 are the percentage sequence identity of the templates in the threading aligned region with the query sequence.

^fNormalized Z-score is the normalized Z-score of the threading alignments. Alignment with a Z-score >1 signifies a correct alignment.

^gMethod used to resolved the crystal structure.

*The top 10 alignments reported above (in order of their ranking) are from the following threading programs: 1: MUSTER 2: FFAS-3D 3: SPARKS-X 4: HHSEARCH2 5: HHSEARCH I 6: Neff-PPAS 7: HHSEARCH 8: pGenTHREADER 9: wdPPAS 10: cdPPAS.

Tuble Daut Top To Rechtined Structural analogs in TDD autuouse for O OT T							
Rank ^a	PDB Hit ^b	TM-score ^c	$\mathbf{RMSD}^{\mathrm{d}}$	Identity ^e	Coverage ^f		
1	5c65A	0.713	2.15	0.172	0.756		
2	4pypA	0.689	2.00	0.184	0.723		
3	4gbyA	0.675	2.58	0.147	0.732		
4	4ldsA	0.628	2.70	0.190	0.685		
5	4j05A	0.583	3.18	0.194	0.644		
6	3wdoA	0.573	3.79	0.106	0.665		
7	4zowA	0.560	3.35	0.131	0.632		
8	1pw4A	0.553	4.17	0.102	0.663		
9	4w6vA	0.552	4.23	0.076	0.658		
10	4ikvA	0.546	4.23	0.072	0.655		

Table S2a: Top 10 identified structural analogs in PDB dat	tabase for OCT-1	
--	------------------	--

	1		0		
Rank ^a	PDB Hit ^b	TM-score ^c	$\mathbf{RMSD}^{\mathrm{d}}$	Identity ^e	Coverage ^f
1	4gc0A	0.675	1.63	0.182	0.694
2	5c65A	0.670	2.19	0.165	0.707
3	4ybqA	0.643	2.54	0.181	0.686
4	4pypA	0.593	3.54	0.151	0.675
5	4ldsA	0.564	3.62	0.175	0.646
6	3wdoA	0.556	3.43	0.122	0.624
7	4j05A	0.551	3.47	0.163	0.616
8	3o7qA	0.533	3.28	0.115	0.597
9	4zowA	0.518	3.90	0.108	0.603
10	4m64A	0.511	4.46	0.120	0.617

Table S2b: Top 10 identified structural analogs in PDB database for OCT-2

^aRank of templates represents the top ten threading templates used by I-TASSER.

^bPDB Hit IDs from reported protein structures used as threading templates.

^cTM-score is a metric for measuring the structural similarity of two protein models. It is designed to solve two major problems in the traditional metrics such as root-mean-square deviation (RMSD): (1) TM-score measures the global fold similarity and is less sensitive to the local structural variations; (2) magnitude of TM-score for random structure pairs is length-independent. TM-score has the value in [0,1], where 1 indicates a perfect match between two structures. Following strict statistics of structures in the PDB, scores below 0.17 corresponds to randomly chosen unrelated proteins whereas with a score higher than 0.5 assume generally the same fold in SCOP/CATH.

^dRMSD is the root-mean-square deviation between residues that are structurally aligned by TM-align. ^eIdentity is the percentage sequence identity in the structurally aligned region.

^fCoverage represents the coverage of the alignment by TM-align and is equal to the number of structurally aligned residues divided by length of the query protein.

Table S3: Confidence measurement of C. elegans OCT-1 and OCT-2 structures computed with I-TASSER, and after structural refinement with ModRefiner and Modeller

I-TASSER					ModRefiner		
Protein	C- score ^a	RMSD ^b	TM-score ^c	RMSD ^b	TM- score ^d	Z-DOPE ^e	
OCT-1 (F52F12.1)	-2.35	13.4±4.0Å	0.44 ± 0.14	25.78	0.24	-1.765	
OCT-2 (ZK455.8)	-2.52	14.1±3.8Å	0.42 ± 0.14	18.03	0.35	-0.472	

^aC-score is a confidence score for estimating the quality of predicted models by I-TASSER. C-score range between [-5 and 2], where a C-score of higher value signifies a model with a high confidence.

^bRMSD is the root-mean-square deviation between residues that are structurally aligned¹.

TM-score is the metric for measuring the structural similarity of two protein models. "TM-score is based on their correlation with I-Tasser's C-score, and ModRefiner ^dTM-score indicates a model of correct topology whose value range between [>0.5 and <0.17].

^eZ-DOPE is the atomic distance-dependent statistical calculation from samples of native protein structures. Protein structures computed lower than -1, score as native-like structures.

0.38

		$\partial \theta = 0$	
Prot	ein	Residues	C- score ^a
007	г 1	63 , 64, 67, 72, 73, 75, 155, 162 , 219, 223, 367, 370 , 374, 375 , 379,	0.20

Table S4: Predicted amino acid positions for ligand-protein interaction:

382, 389, 392, 459, 490, 494

OCT-1

OCT-2	58, 188, 62, 270, 273, 274, 277, 389, 390, 394, 426, 482, 483, 490,	0.75
	514, 517	0.75

^aC-score is the confidence score of predicted binding site. Scores falls in between 0-1; where a score close or equal to 1 signifies a reliable prediction. Amino acids in blue are the ones forming polar contacts with doxorubicin (Fig. 4c).

Table 55. Computed figand-protein docking scores with DSI-SELIW.							
OCT-1				OCT-2			
Drug	Docking score ^a	Predicted amino acids	Docking score ^a	Predicted amino acids			
Doxorubicin	3.805	Pro63, Tyr162, Asn370, Asn375	3.993	Asn58, Tyr188, Trp273, Tyr490, Arg514			
Diclofenac	0	0	0	0			

 Table S5: Computed ligand-protein docking scores with BSP-SLIM:

^aDocking score is the confidence score of predicted ligand-protein docking. Scores higher than 1 are considered being a reliable docking.

		<u> </u>	
Ligano	d	Mechanism of action	PubChem CID
1. B02	2	RAD51 inhibitor resulting in unrepaired double strand breaks.	5738263
2. Car	mptothecin	Inhibits the nuclear enzyme DNA Topoisomerase I.	24360
3. Cis	platin	Produce intra and interstrand DNA crosslinks.	441203
4. Cyc	cloheximide	Inhibits elongation during protein synthesis.	6197
5. Dic	clofenac	Non-steroidal anti-inflammatory agent	3033
6. Do	xorubicin	Intercalates between base pairs in the DNA helix, thereby preventing DNA replication and inhibiting protein synthesis. Inhibits Topoisomerase II	31703
7. Ket	tamine	Induction of anesthesia	3821
8. Me	lphalan	Alkylates DNA at the N7 position of guanine and induces DNA interstrand crosslinkages, resulting in the inhibition of DNA and RNA synthesis and cytotoxicity against both dividing and non-dividing tumor cells	460612
9. Me	tformin	Decrease hepatic glucose production, mostly through a mild and transient inhibition of the mitochondrial respiratory-chain complex 1. Binds to and inhibits the enzyme dihydrofolate	4091
10.	Methotrexate	reductase, resulting in inhibition of purine nucleotide and thymidylate synthesis and, subsequently, inhibition of DNA and RNA syntheses. Induce oxidative DNA damage	126941
11.	Methoxyamine	Binds to apurinic/apyrimidinic (AP) DNA	4113

Table S6: Mechanism of action of the drugs used in this study

	damage sites and inhibits base excision repair	
	(BER), which may result in an increase in DNA	
	strand breaks.	
Methyl	Acts as a mutagen by altering and damaging	4156
nanesulfonate	DNA producing distinct types of lesions.	4150
	Acts as a chemo- and radio-sensitizing agent by	
	enhancing tumor blood flow, thereby reducing	
NT: / 1	tumor hypoxia. This agent also inhibits	026
Nicotinamide	poly(ADP-ribose) polymerases, enzymes	936
	involved in the rejoining of DNA strand breaks	
	induced by radiation or chemotherapy.	
4-	4-NOO and its metabolite 4-	
oquinoline N-	Hydroxyaminoquinolone-1-oxide bind to nucleic	5955
e	acids.	
	Inhibits PARP-mediated repair of single strand	
Olaparib	DNA breaks; also enhance the cytotoxicity of	23725625
1	DNA-damaging agents.	
	Catalyze the formation of reactive oxygen	
	species (ROS), more specifically, the superoxide	
	free radical. Paraguat will undergo redox cycling	
Paraquat	in vivo, being reduced by an electron donor such	15939
1	as NADPH, before being oxidized by an electron	
	receptor such as dioxygen to produce	
	superoxide, a major ROS.	
	Hypoglycemic agent closely related to	0040
Phenformin	metformin.	8249
	Acting as an analog of the 3' terminal end of	
	aminoacyl-tRNA, puromycin incorporates itself	
Puromvcin	into a growing polypeptide chain and causes its	439530
j.	premature termination, thereby inhibiting protein	
	synthesis and producing oxidative damages.	
- ·	Acts by intercalating into DNA and induces	- 1<<<0.000
Zeocin	DNA double strand breaks.	/1668282
	Methyl aanesulfonate Nicotinamide 4- oquinoline N- e Olaparib Paraquat Phenformin Puromycin Zeocin	damage sites and inhibits base excision repair (BER), which may result in an increase in DNA strand breaks.MethylActs as a mutagen by altering and damaging DNA producing distinct types of lesions. Acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy.4-4-NQO and its metabolite 4- Hydroxyaminoquinolone-1-oxide bind to nucleic acids. Inhibits PARP-mediated repair of single strand DNA breaks; also enhance the cytotoxicity of DNA-damaging agents. Catalyze the formation of reactive oxygen species (ROS), more specifically, the superoxide free radical. Paraquat will undergo redox cycling in vivo, being reduced by an electron donor such as NADPH, before being oxidized by an electron receptor such as dioxygen to produce superoxide, a major ROS.PhenforminActsing as an analog of the 3' terminal end of aminoacyl-tRNA, puromycin incorporates itself into a growing polypeptide chain and causes its premature termination, thereby inhibiting protein synthesis and producing oxidative damages. Acts by intercalating into DNA and induces DNA double strand breaks.

Title: A novel approach using *C. elegans* DNA damage-induced apoptosis to characterize the dynamics of uptake transporters for therapeutic drug discoveries

Arturo Papaluca and Dindial Ramotar

Legends for Supplemental Figures

Figure S1. Sequence alignment of members belonging to the family of organic cation transporters from *C. elegans* (CeOCT-1 and CeOCT-2), *Homo sapiens* (hOCT1 and hOCT2) and *Mus musculus* (mOCT1 and mOCT2). Numbers indicate amino acid positions. Identical or similar amino acid residues amongst the members are shaded in black or gray, respectively. Dashes indicate gaps. The stretch of amino acid residues, PESPRW (consensus in red), is the longest identical region in all six transporters. CeOCT-2 contains the four conserved cysteine residues Cys203, 250, 280 and 302 present in the N-terminus of each member. The OCT2 from the different species lack the conserved cysteine Cys49, Cys27, and Cys27 present in the OCT1 members CeOCT-1, hOCT1 and mOCT1, respectively.

Figure S2. Relative gene expression. (A) *oct-1* and *oct-2* gene expression are downregulated by the *oct-1(RNAi)* and *oct-2(RNAi)*, respectively. (B) *pes-23* gene expression is not affected by either *oct-1(RNAi)* and *oct-2(RNAi)*. The RNA expression was measured as described in the experimental procedures.

Figure S3. *oct-1* and *oct-2* gene expression data measured (A) across all developmental stages and (B) hermaphrodite soma and hermaphrodite gonads. The *oct-1* (WBGene00003842) and *oct-2* (WBGene00003843) RNA expression data was extracted from the Wormbase/SPELL database.

Figure S4. OCT-2-dependent doxorubicin uptake into the pharynx of *C. elegans* is not affected by the eating defective *eat-2(ad453)* mutant animals. Experiment is represented by 'fire' look-up images of the pharynx from eating defective *eat-2(ad453)* untreated and doxorubicin treated animals. The respective DIC images are shown in the upper left corner of each panel. Images to the right of each pharynx depict a 3D representation of the doxorubicin (100 μ M) treatment signal intensity for the indicated genotypes. Data are representative of experiments performed in duplicates (n = 15). Enlargement of the pharynx is represented by a scale bar = 10 μ m. Fluorescence posterior to the pharynx is auto-fluorescence detected from the intestine.

Figure S5. Genetic analysis of doxorubicin- and cisplatin-induced apoptotic cell death. (A) Representative images of wild type*, *cep-1*, *egl-1*, *ced-9*, *ced-4* and *ced-3* mutant animals untreated and RNAi-driven depletion of oct-1 exposed to 100 μ M doxorubicin. Apoptotic cells were observed and quantified as described in the experimental procedures. (B) Apoptotic pathway in *C. elegans* (C) Data shown represent the average quantification of three independent experiments (n =30). *Images from Figure 2 were used for comparison purposes.

Figure S6. Methyl methanesulfonate and Gamma rays (γ -rays)-induced germ cell apoptosis are independent of OCT-1 and OCT-2 function. (A and C) Box and whisker plots depict quantification of apoptotic cell corpses upon MMS (0.25 μ M) and γ -rays (75 grays) treatment, respectively. (B) Representative images of right gonad arms after exposure to γ -rays. Posterior is right. The results are the averages from three independent experiments (n = 30) Mann-Whitney U-test (*P<0.05; **P<0.01; ***P<0.001; ****P<0.001; ****P<0.001 and N.S. = Non Significant).

Figure S7. RNAi-driven downregulation of *oct-1* upregulates *oct-2* expression and sensitizes C. elegans DNA repair deficient mutants to drug-induced apoptotic cell death. (A) Wild type. (B and C) The homologous recombination mutant rad-51(ok2218) downregulated for oct-1 shows stimulated doxorubicin-induced apoptotic cell death. (D and E) The base excision repair mutant *apn-1(tm6691)* downregulated for *oct-1* displays enhanced spontaneous, as well as doxorubicin-induced apoptotic cell death. (F and G and H and I) The nucleotide excision and mismatch repair defective mutants, xpa-1(ok698)and msh-2(ok2410), respectively, downregulated for oct-1 exhibit enhanced cisplatininduced apoptotic cell death. Treatment with doxorubicin (100 μ M, red boxes) and cisplatin (100 µM, blue boxes) started with L1-staged animals. Apoptotic cell corpses were analysed in young adult staged animals. Untreated animals are depicted as white boxes. The results are the averages from three independent experiments (n = 30 each). Mann-Whitney U-test of mean difference (*P<0.05; **P<0.01; ***P<0.001 and ****P<0.0001) was calculated. (J - M) RNAi-driven downregulation of *oct-1* upregulates oct-2 in the wild type and the DNA repair defective mutants. The Y-axis represents the same scale for *oct-1* and *oct-2* gene expression in all genotypes.

Figure S8. Structural modeling prediction of (A) OCT-1 and (B) OCT-2 computed with ResQ. The predicted Normalized B-factor and estimated residues accuracy in Ångstrom

were computed based on the I-TASSER models. The twelve transmembrane domains are represented as red bars at the bottom of each panel.

Figure S9. Apoptotic cell corpses as a function of cisplatin concentrations. At 25 μ M of cisplatin, apoptotic cell corpses were induced in the *oct-1(ok1051)* mutant, but not in the wild type.

Title: A novel approach using *C. elegans* DNA damage-induced apoptosis to characterize the dynamics of uptake transporters for therapeutic drug discoveries

Arturo Papaluca and Dindial Ramotar

CeOCT-1 CeOCT-2 hOCT1 hOCT2 mOCT1 mOCT2 consensus	1 1 1 1 1 1	MSFQAMETFAEISQEILMSATKPP-DFDFVLEQVGNY MN-QHYQKQKQYASTKETRAKRLTDIDFGILQLTGGC M
CeOCT-1	37	GTYQIVFFFIICLPTSLPSAFSAFNIPFVVGNPPHTCHIPEGKEYLRPL
CeOCT-2	38	SYWQIIVYLIISVQQV-PHAMFN_SVVYMYQPDHWCGIPFFNEESFSAELGYTNYTWDQ
hOCT1	15	GNFQKQAFLILCLLSA-AFAPICVGIVFLGFTPDHHCQSPGVAELSQRCGWSPAE
hOCT2	16	HFFQKQMFFILALLSA-TFAPIYVGIVFLGFTPDHRCRSPGVAELSLRCGWSPAE
mOCT1	15	GNFQKQAFLILCLISA-SLAPIYVGIVFLGFTPDHHCRSPGVAELSQRCGWSPAE
mOCT2	15	HLFQKQTFFILALLSC-AFTPIYVGIVFLGFTPNHHCRSPGVAELSQRCGWSPAE
consensus	61	gyfQkq f ilcllsa fapiyvgivflgftPdHhCrsPgvaElsqr cgws pae
CeOCT-1 CeOCT-2 hOCT1 hOCT2 mOCT1 mOCT2 consensus	86 97 69 70 69 69 121	TND T-Q LSCKQYNETQINVFRAFTSAPVDTYSDRISLVPCVLNSTIAFPRIFNKQRNEL-HHDQCYFERDYVHIKLSPWAQVKDMNATGKINRCELNYTVPGLGPAGEA-FLGQCRRYEVDWNQSALSCVDPLASLATNRSHLPLGPCELNYTVPGPGPAGEA-SPRQCRRYEVDWNQSTFDCVDPLASLDTNRSRLPLGPCELNYTVPGLGSAGEA-SFLSQCMKYEVDWNQSTLDCVDPLSLAANRSHLPLSPCELNYTVPGLGSAGEVSFLSQCMRYEVDWNQSTLDCVDPLSSLAANRSHLPLSPCelnytvpglgtagea fl qCkryevdwnqstldcvdplaslatnrshlpl pC
CeOCT-1	126	QNGWDYDNSTYLDSIVTEFNLVCDQAWIEISTISFYVGSFIGNCFGYVAD&FGRRRSF
CeOCT-2	151	K-EWEYDTSVMDRIVTENNRVCDNNWSRAHVHMSYSIGILGCFVGGFISDRYGRKTA
hOCT1	122	QDGWYDTPGSSIVTEFNLVCADSWKLDLFQSCINAGFLFGSIGVGYFADRFGRKLCL
hOCT2	123	RDGWYFTPGSSIVTEFNLVCANSWMLDLFQSSVNVGFFIGSNSIGYIADRFGRKLCL
mOCT1	123	EHGWVYDTPGSSIVTEFNLVCCDAWKVDLFQSCVNLGFFIGSLVVGYIADRFGRKLCL
mOCT2	123	EHGWVYDTPGSSIVTEFNLVCAHSWMLDLFQSLVNVGFFIGAVGIGYADRFGRKFCL
consensus	181	gWvYdtp gssiVTEfNLVCAqswldlfqssvnvGffiGsllvGyiaDrfGRklcl
CeOCT-1	186	FVI TVLIVCGTASSFAK IESFI LRFFTGLAFPALFQTPFI CMEFMGNSGRIFSGLM
CeOCT-2	210	TGFGI TM FGFL TYSKEFEIFL VRFTLAATNEAADLAAYVLCMEVTGIKYRSIVGSL
hOCT1	180	LGTVLVNAVSGVLMAFSPNYMSML FRLLQGLVSKCNWAGYTLITEFVGSGSRTVAIM
hOCT2	181	LTTVLNAAGVLMAISFTYTWMLIFRLQGLVSKACWLIGYILITEFVGRYRRTVGIF
mOCT1	181	LVTTLVTSISGVLTAVAFYTSMLIFRLQGNVSKGSWVSGYTLITEFVGSGYRRTTAIL
mOCT2	181	LVTILNA SGVLMAISPNYAWMLYFRFLQGLVSKACWLIGYILITEFVGGGYRRTVGIC
consensus	241	lvtllvnavsGvlma spdy smlifr lqglvskaawligyilitEfvGtgyRrtvgim
CeOCT-1	246	TSLFFGAAMALLGVVAMFIRRWROLTFFCNAPFAFYIIYYFFIPESPRWSVSVGKWADAK
CeOCT-2	270	IQAPWACGYAFLALTAYLTKSWTMIHLICVLLHIISLMLLYFIPESPRWLILNNKTKQAE
hOCT1	240	YQMAFTVGLVALTGLAYALPHWRWLQLAVSLPTFIFLLYYWCVPESPRWLISQKKNTAI
hOCT2	241	YQVAYTVGLVLAGVAYALPHWRWLQFTVSLPNFFFLLYYWCVPESPRWLISQNKNAAM
mOCT1	241	YQVAFTVGLVGLAGVAYAPDWRWLQLAVSLPTFIFLLYYWFVPESPRWLISQKKNAAM
mOCT2	241	YQIAFTVGLILAGVAYALPNWRWLQFAVILPNFCFLLYFWCVPESPRWLISQNKNAKAM
consensus	301	YqlaftvglvlLagvAyalprWrwlq avslp fifllyyw 1 PESPRW LisqnknadAi
CeOCT-1	306	KOLKKIAKMNGKSN-VDVDELVDSMKNHQNAAEE-KETKRSHNVTDLFKTPNLRRKTL
CeOCT-2	330	KIIREACHYNKSRIPSDIGVRHAEKKKWMKHNEKPSYFHLFRSSELRFRNV
hOCT1	300	KIMDHIAQKNGKLPPADLKMLSLEED-VTEKLSPSFADLFRTPRLRKRTF
hOCT2	301	RIIKHIAKKNGKSIPASIQRLRLEE-TGKKINPSFLDLVRTPOIRKHTM
mOCT1	301	RIMEQIAQKNRKVPPADLKMCLEED-ASERSPSFADLFRTPSLRKHTL
mOCT2	301	KIIKHIAKKNGKSVPVSLQSLTADED-TGMKLNPSFLDLVRTPOIRKHTL
consensus	301	kiikhiakkNgkslpadl l leEd klspsfdLfrtpnlRkhtl

CeOCT-1 CeOCT-2 hOCT1 hOCT2 mOCT1 mOCT2 consensus	362 382 349 350 350 350 421	IVTYIWVMNAIIYNGLTINVSNLPVDDYWSEIINGAVELPGYEVVWPLQCA VLFIVWIAIALVYYGMVIALSDQSSPGRRVFDGNFELNNAMAGAIELPTLVF-CVFLLRM ILMYLWFTDSVLYQGLILHMGATSGNIYLDFLYSALVEIPGAFIALITIDRV ILMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAFMIIITIDRI ILMYLWFSCAVLYQGLIMHWGATGDNIYLDFFYSSLVEFPAAFIILVTIDRI ILMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSSLVEFPAAFIILVTIDRI ILMYNWFTSSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAFIIITIDRI ILMYNWFTSVLYQGLIMHMGLAGDNIYLDFFYSALVEFPAAFIILVTIDRI ILMYNWFTSVLYQGLIMHMGLAG
CeOCT-1 CeOCT-2 hOCT1 hOCT2 mOCT1 mOCT2 consensus	414 441 401 402 402 402 481	GRR T AA M VCGICCVSAMEME-DGYPWLVASASFICKEGVGSGAVIYIFACELYPT GRKRSQMLVLFGSGLFLLTSVV VYRKQSTLA IFMLLS ACIQGSFNIYIFACELYPT GRIYPWAMSNI AGAACLVM FIS-PDLHWLNIIMCVGRMGITIAIOM CLVNAELYPT GRRYPWAASNVVAGAACLASVFIP-GDLQWLKIIISCLGRMGITVAYEIVCLVNAELYPT GRIYPWAVSNVVAGAACLLM FIP-HELHWLNVTIACLGRMGATIVLOMVCLVNAELYPT GRRYPWAVSNVVAGAACLASVFIP-DDLQWLKITVACLGRMGITIAYEMVCLVNAELYPT GRRYPWAVSNVVAGAACLASVFIP-DDLQWLKITVACLGRMGITIAYEMVCLVNAELYPT
CeOCT-1 CeOCT-2 hOCT1 hOCT2 mOCT1 mOCT2 consensus	473 501 460 461 461 461 541	VVRAIGNGNSSMVAGSGLLIABHIV-NLGKIVK-ILPLLIMGLMALSAGILTFFLPETLG VVRNSAVGISSMVARMGAGASGYIA-ILSDVTMPLVPMTIFACFSLAGCLVLLLPETQG FVRNLGVMVCSSICDIGGITPFIVFRLREVWQ-ALPLIIFAVLGLAAGMTLLLPETKG FIRNLGVHICSSMCDIGGITPFIVFRLMEVWQ-ALPLIIFGVLGLAAGMTLLLPETKG FIRNLGMMVCSALCDIGGITPFIVFRLMEVWQ-ALPLIIFGVLGLSAGAVTLLLPETKG YIRNLAVIVCSSMCDIGGITPFIVFRLMEVWQ-ALPLIIFGVLGLSAGAVTLLLPETKG fvRnlgvmvcSsvcdiGgiltpfivfrLsdiwm lPllifgvlgLlAggl llLPETkG
CeOCT-1 CeOCT-2 hOCT1 hOCT2 mOCT1 mOCT2 consensus	531 560 519 520 520 520 601	APLEMTIEDAENFGKK-PEEDSGMFTQ-AAKKRESQPLLE PLPDTILDSVQMVKRNTKPCGTLSGTLGGIDDDA-QPYGGK PPRVSSDDEEEEEED VALPETMKDAENIGRK-AKPKENTIYL-KVQTSEP
CeOCT-1 CeOCT-2 hOCT1 hOCT2 mOCT1 mOCT2 consensus	569 619 552 553 554 553 661	EHEPMDRRRRSSRLMNI SEESIEEKTA SGE

Figure S1. Sequence alignment of members belonging to the family of organic cation transporters from *C. elegans* (CeOCT-1 and CeOCT-2), *Homo sapiens* (hOCT1 and hOCT2) and *Mus musculus* (mOCT1 and mOCT2). Numbers indicate amino acid positions. Identical or similar amino acid residues amongst the members are shaded in black or gray, respectively. Dashes indicate gaps. The stretch of amino acid residues, PESPRW (consensus in red), is the longest identical region in all six transporters. CeOCT-2 contains the four conserved cysteine residues Cys203, 250, 280 and 302 present in the N-terminus of each member. The OCT2 from the different species lack the conserved cysteine Cys49, Cys27, and Cys27 present in the OCT1 members CeOCT-1, hOCT1 and mOCT1, respectively.

Figure S2. Relative gene expression. (A) *oct-1* and *oct-2* gene expression are downregulated by the *oct-1(RNAi)* and *oct-2(RNAi)*, respectively. (B) *pes-23* gene expression is not affected by either *oct-1(RNAi)* and *oct-2(RNAi)*. The RNA expression was measured as described in the experimental procedures.

Figure S3. *oct-1* and *oct-2* gene expression data measured (A) across all developmental stages and (B) hermaphrodite soma and hermaphrodite gonads. The *oct-1* (WBGene00003842) and *oct-2* (WBGene00003843) RNA expression data was extracted from the Wormbase/SPELL database.

Figure S4. OCT-2-dependent doxorubicin uptake into the pharynx of *C. elegans* is not affected by the eating defective *eat-2(ad453)* mutant animals. Experiment is represented by 'fire' look-up images of the pharynx from eating defective *eat-2(ad453)* untreated and doxorubicin treated animals. The respective DIC images are shown in the upper left corner of each panel. Images to the right of each pharynx depict a 3D representation of the doxorubicin (100 μ M) treatment signal intensity for the indicated genotypes. Data are representative of experiments performed in duplicates (n = 15). Enlargement of the pharynx is represented by a scale bar = 10 μ m. Fluorescence posterior to the pharynx is auto-fluorescence detected from the intestine.

Figure S5. Genetic analysis of doxorubicin- and cisplatin-induced apoptotic cell death. (A) Representative images of wild type*, *cep-1*, *egl-1*, *ced-9*, *ced-4* and *ced-3* mutant animals untreated and RNAi-driven depletion of oct-1 exposed to 100 μ M doxorubicin. Apoptotic cells were observed and quantified as described in the experimental procedures. (B) Apoptotic pathway in *C. elegans* (C) Data shown represent the average quantification of three independent experiments (n =30). *Images from Figure 2 were used for comparison purposes.

Figure S6. Methyl methanesulfonate and Gamma rays (γ -rays)-induced germ cell apoptosis are independent of OCT-1 and OCT-2 function. (A and C) Box and whisker plots depict quantification of apoptotic cell corpses upon MMS (0.25 μ M) and γ -rays (75 grays) treatment, respectively. (B) Representative images of right gonad arms after exposure to γ -rays. Posterior is right. The results are the averages from three independent experiments (n = 30) Mann-Whitney U-test (*P<0.05; **P<0.01; ***P<0.001; ****P<0.001; ***P<0.001;

cisplatin (100 μ M, blue boxes) started with L1-staged animals. Apoptotic cell corpses were analysed in young adult staged animals. Untreated animals are depicted as white boxes. The results are the averages from three independent experiments (n = 30 each). Mann-Whitney U-test of mean difference (*P<0.05; **P<0.01; ***P<0.001 and ****P<0.0001) was calculated. (J - M) RNAi-driven downregulation of *oct-1* upregulates *oct-2* in the wild type and the DNA repair defective mutants. The Y-axis represents the same scale for *oct-1* and *oct-2* gene expression in all genotypes.

Figure S8. Structural modeling prediction of (A) OCT-1 and (B) OCT-2 computed with ResQ. The predicted Normalized B-factor and estimated residues accuracy in Ångstrom were computed based on the I-TASSER models. The twelve transmembrane domains are represented as red bars at the bottom of each panel.

Figure S9. Apoptotic cell corpses as a function of cisplatin concentrations. At 25 μ M of cisplatin, apoptotic cell corpses were induced in the *oct-1(ok1051)* mutant, but not in the wild type.