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Table Sla: Threading template structures used for predicting C. elegans OCT-1

PDB Identity Identity = Normalized

a i c ind g
Rank Hito Protein name Specie 1e o 7_Score! Method
1 5¢65A GLUT3/SLC2A3  Homo sapiens 0.18 0.20 1.48 d_X—Ra_y
iffraction
MFS (major
facilitator X-Ray
2 4gbyA superf.amlly) Escherichia coli 0.20 0.17 3.09 diffraction
proton:xylose
symporter XylE
3 5c65A GLUT3/SLC2A3  Homosapiens 0.8  0.20 2.38 X-Ray
diffraction
. X-Ray
4 4pypA GLUT1 Homo sapiens 0.18 0.19 351 diffraction
. X-Ray
5 4pypA GLUT1 Homo sapiens 0.18 0.19 2.86 diffraction
6  5c65A GLUT3/SLC2A3 Homosapiens 017  0.20 2.16 X-Ray
diffraction
MFS (major
facilitator X-Ra
7 4gc0A superfamily) Escherichia coli 0.18 0.17 4.17 . y
) diffraction
proton:xylose
symporter XylE
MFS (major
facilitator X-Ra
8 4gc0A superfamily) Escherichia coli 0.18 0.17 3.40 . y
. diffraction
proton:xylose
symporter XylE
Inward-facing
9 AldsA structure of Stap_hylocgcpus 021 0.18 144 _X-Ra_y
glucose epidermidis diffraction
transporter
Inward-facing
10 A1dsA structure of Stap_hylocpc_cus 021 0.18 131 _X-Ra_y
glucose epidermidis diffraction
transporter
Table S1b: Threading template structures used for predicting C. elegans OCT-2
PDB . . Identity Identity Normalized
a c d g
Rank Hit® Protein name Specie 1e e Z_Scoref Method
1 5c65A GLUT3/SLC2A3 Homosapiens 018  0.16 153 X-Ray
diffraction
MFS (major
facilitator . X-Ray
2 4gbyA superfamily) Homo sapiens 0.18 0.18 2.92 diffraction

proton:xylose




symporter XylE

3 5c65A GLUT3/SLC2A3 Escherichiacoli 017  0.16 2.38 X-Ray
diffraction
4 4pypA GLUT1 Homo sapiens 0.18 0.16 3.46 X-Ray
PyP P ’ ' ' diffraction
MFS (major
facilitator X-Ra
5 4gc0A superfamily) Escherichia coli 0.18 0.18 2.86 . y
. diffraction
proton:xylose
symporter XylE
6  5c65A GLUT3/SLC2A3 Escherichiacoli 0.6  0.16 218 X-Ray
diffraction
MFS (major
facilitator X-Ra
7 4gc0A superfamily) Escherichia coli 0.17 0.18 4.21 . y
) diffraction
proton:xylose
symporter XylE
MFS (major
facilitator X-Ra
8 4gc0A superfamily) Escherichia coli 0.19 0.18 4.28 . y
. diffraction
proton:xylose
symporter XylE
9  5c65A GLUT3/SLC2A3 Escherichiacoli 0.8  0.16 151 X-Ray
diffraction
10 4ldsA Glucose Staphylococcus 5 5 16 255 X-Ray
transporter epidermidis diffraction

aRank of templates represents the top ten threading templates used by I-TASSER.

®PDB Hit IDs from reported protein structures used as threading templates.

¢ldentity 1 and 2 are the percentage sequence identity of the templates in the threading aligned region with
the query sequence.

*Normalized Z-score is the normalized Z-score of the threading alignments. Alignment with a Z-score >1
signifies a correct alignment.

9Method used to resolved the crystal structure.

*The top 10 alignments reported above (in order of their ranking) are from the following threading
programs: 1: MUSTER 2: FFAS-3D 3: SPARKS-X 4: HHSEARCH2 5: HHSEARCH | 6: Neff-PPAS 7:
HHSEARCH 8: pGenTHREADER 9: wdPPAS 10: cdPPAS.

Table S2a: Top 10 identified structural analogs in PDB database for OCT-1

Rank? PDBHit® TM-score® RMSDY Identity*  Coverage'

1 5C65A 0.713 2.15 0.172 0.756
2 4pypA 0.689 2.00 0.184 0.723
3 4gbyA 0.675 2.58 0.147 0.732
4 4ldsA 0.628 2.70 0.190 0.685
5 4j05A 0.583 3.18 0.194 0.644
6 3wdoA 0.573 3.79 0.106 0.665
7 420WA 0.560 3.35 0.131 0.632
8 1pwaA 0.553 4.17 0.102 0.663
9 AWBVA 0.552 4.23 0.076 0.658
10 4ikvA 0.546 4.23 0.072 0.655




Table S2b: Top 10 identified structural analogs in PDB database for OCT-2

Rank? PDBHit®  TM-score® RMSDY Identity®  Coverage’

1 4gCOA 0.675 1.63 0.182 0.694
2 5C65A 0.670 2.19 0.165 0.707
3 4ybgA 0.643 2.54 0.181 0.686
4 4pypA 0.593 3.54 0.151 0.675
5 41dsA 0.564 3.62 0.175 0.646
6 3wdoA 0.556 3.43 0.122 0.624
7 4j05A 0.551 3.47 0.163 0.616
8 3070A 0.533 3.28 0.115 0.597
9 470WA 0.518 3.90 0.108 0.603
10 4mMB4A 0.511 4.46 0.120 0.617

4Rank of templates represents the top ten threading templates used by I-TASSER.

®PDB Hit IDs from reported protein structures used as threading templates.

“TM-score is a metric for measuring the structural similarity of two protein models. It is designed to solve
two major problems in the traditional metrics such as root-mean-square deviation (RMSD): (1) TM-score
measures the global fold similarity and is less sensitive to the local structural variations; (2) magnitude of
TM-score for random structure pairs is length-independent. TM-score has the value in [0,1], where 1
indicates a perfect match between two structures. Following strict statistics of structures in the PDB, scores
below 0.17 corresponds to randomly chosen unrelated proteins whereas with a score higher than 0.5 assume
generally the same fold in SCOP/CATH.

dRMSD is the root-mean-square deviation between residues that are structurally aligned by TM-align.
®ldentity is the percentage sequence identity in the structurally aligned region.

fCoverage represents the coverage of the alignment by TM-align and is equal to the number of structurally
aligned residues divided by length of the query protein.

Table S3: Confidence measurement of C. elegans OCT-1 and OCT-2 structures
computed with I-TASSER, and after structural refinement with ModRefiner and
Modeller

I-TASSER ModRefiner Modeller
Protein - . RMSD® TM-score® RMSDP TM'd Z-DOPE®
Score score

OCT-1 (F52F12.1) 235  13.4+4.0A 0.44+£0.14  25.78 0.24 -1.765
OCT-2 (ZK455.8) 2,52 14.1+3.8A  0.42+0.14  18.03 0.35 -0.472

aC-score is a confidence score for estimating the quality of predicted models by I-TASSER. C-score range
between [-5 and 2], where a C-score of higher value signifies a model with a high confidence.

PRMSD is the root-mean-square deviation between residues that are structurally aligned®.

TM-score is the metric for measuring the structural similarity of two protein models. “TM-score is based on
their correlation with I-Tasser's C-score, and ModRefiner “TM-score indicates a model of correct topology
whose value range between [>0.5 and <0.17].

¢Z-DOPE is the atomic distance-dependent statistical calculation from samples of native protein structures.
Protein structures computed lower than -1, score as native-like structures.

Table S4: Predicted amino acid positions for ligand-protein interaction:

Protein Residues ¢ .
score
OCT-1 63,64, 67,72,73,75, 155,162, 219, 223, 367, 370, 374, 375, 379, 0.38

382, 389, 392, 459, 490, 494




OCT-2 2212%62, 270, 273,274,277, 389, 390, 394, 426, 482, 483, 490, 0.75

3C-score is the confidence score of predicted binding site. Scores falls in between 0-1; where a score close
or equal to 1 signifies a reliable prediction. Amino acids in blue are the ones forming polar contacts with
doxorubicin (Fig. 4c).

Table S5: Computed ligand-protein docking scores with BSP-SLIM:

OCT-1 OCT-2
Drug Dockn:g Predlctgd amino Docklr;g Predicted amino acids
score acids score
. Pro63, Tyrl62, Asn58, Tyrl88, Trp273,
Doxorubicin - 3.805 Asn370, Asn375 03 Tyr490, Args14
Diclofenac 0 0 0 0

aDocking score is the confidence score of predicted ligand-protein docking. Scores higher than 1 are
considered being a reliable docking.

Table S6: Mechanism of action of the drugs used in this study

Ligand Mechanism of action (Iil:gChem

1 BO2 RAD®SL1 inhibitor resulting in unrepaired double 5738263
strand breaks.

2. Camptothecin Inhlb!ts the nuclear enzyme DNA 24360
Topoisomerase |.

3. Cisplatin Produce intra and interstrand DNA crosslinks. 441203

4. Cycloheximide Inhibits elongation during protein synthesis. 6197

5. Diclofenac Non-steroidal anti-inflammatory agent 3033
Intercalates between base pairs in the DNA

6. Doxorubicin helix, thereby preventing DNA replication and 31703

inhibiting protein synthesis. Inhibits

Topoisomerase 1.

7. Ketamine Induction of anesthesia 3821
Alkylates DNA at the N7 position of guanine
and induces DNA interstrand crosslinkages,

8. Melphalan resulting in the inhibition of DNA and RNA 460612
synthesis and cytotoxicity against both dividing
and non-dividing tumor cells.
Decrease hepatic glucose production, mostly

9. Metformin through a mild and transient inhibition of the 4091
mitochondrial respiratory-chain complex 1.
Binds to and inhibits the enzyme dihydrofolate
reductase, resulting in inhibition of purine

10. Methotrexate nucleotide and thymidylate synthesis and, 126941
subsequently, inhibition of DNA and RNA
syntheses. Induce oxidative DNA damage.

11. Methoxyamine Binds to apurinic/apyrimidinic (AP) DNA 4113
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12. Methyl
methanesulfonate

13. Nicotinamide

14. 4
Nitroquinoline N-
oxide

15.  Olaparib

16.  Paraguat

17. Phenformin

18.  Puromycin

19. Zeocin

damage sites and inhibits base excision repair
(BER), which may result in an increase in DNA
strand breaks.

Acts as a mutagen by altering and damaging
DNA producing distinct types of lesions.

Acts as a chemo- and radio-sensitizing agent by
enhancing tumor blood flow, thereby reducing
tumor hypoxia. This agent also inhibits
poly(ADP-ribose) polymerases, enzymes
involved in the rejoining of DNA strand breaks
induced by radiation or chemotherapy.

4-NQO and its metabolite 4-
Hydroxyaminoquinolone-1-oxide bind to nucleic
acids.

Inhibits PARP-mediated repair of single strand
DNA breaks; also enhance the cytotoxicity of
DNA-damaging agents.

Catalyze the formation of reactive oxygen
species (ROS), more specifically, the superoxide
free radical. Paraquat will undergo redox cycling
in vivo, being reduced by an electron donor such
as NADPH, before being oxidized by an electron
receptor such as dioxygen to produce
superoxide, a major ROS.

Hypoglycemic agent closely related to
metformin.

Acting as an analog of the 3' terminal end of
aminoacyl-tRNA, puromycin incorporates itself
into a growing polypeptide chain and causes its
premature termination, thereby inhibiting protein
synthesis and producing oxidative damages.
Acts by intercalating into DNA and induces
DNA double strand breaks.
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Legends for Supplemental Figures

Figure S1. Sequence alignment of members belonging to the family of organic cation
transporters from C. elegans (CeOCT-1 and CeOCT-2), Homo sapiens (hOCT1 and
hOCT2) and Mus musculus (mOCT1 and mOCT2). Numbers indicate amino acid
positions. Identical or similar amino acid residues amongst the members are shaded in
black or gray, respectively. Dashes indicate gaps. The stretch of amino acid residues,
PESPRW (consensus in red), is the longest identical region in all six transporters.
CeOCT-2 contains the four conserved cysteine residues Cys203, 250, 280 and 302
present in the N-terminus of each member. The OCT2 from the different species lack the
conserved cysteine Cys49, Cys27, and Cys27 present in the OCT1 members CeOCT-1,

hOCT1 and mOCTL, respectively.

Figure S2. Relative gene expression. (A) oct-1 and oct-2 gene expression are
downregulated by the oct-1(RNAi) and oct-2(RNAI), respectively. (B) pes-23 gene
expression is not affected by either oct-1(RNAI) and oct-2(RNAI). The RNA expression

was measured as described in the experimental procedures.

Figure S3. oct-1 and oct-2 gene expression data measured (A) across all developmental
stages and (B) hermaphrodite soma and hermaphrodite gonads. The oct-1
(WBGene00003842) and oct-2 (WBGene00003843) RNA expression data was extracted

from the Wormbase/SPELL database.



Figure S4. OCT-2-dependent doxorubicin uptake into the pharynx of C. elegans is not
affected by the eating defective eat-2(ad453) mutant animals. Experiment is represented
by ‘fire’ look-up images of the pharynx from eating defective eat-2(ad453) untreated and
doxorubicin treated animals. The respective DIC images are shown in the upper left
corner of each panel. Images to the right of each pharynx depict a 3D representation of
the doxorubicin (100 uM) treatment signal intensity for the indicated genotypes. Data are
representative of experiments performed in duplicates (n = 15). Enlargement of the
pharynx is represented by a scale bar = 10 um. Fluorescence posterior to the pharynx is

auto-fluorescence detected from the intestine.

Figure S5. Genetic analysis of doxorubicin- and cisplatin-induced apoptotic cell death.
(A) Representative images of wild type*, cep-1, egl-1, ced-9, ced-4 and ced-3 mutant
animals untreated and RNAi-driven depletion of oct-1 exposed to 100 uM doxorubicin.
Apoptotic cells were observed and quantified as described in the experimental
procedures. (B) Apoptotic pathway in C. elegans (C) Data shown represent the average
quantification of three independent experiments (n =30). *Images from Figure 2 were

used for comparison purposes.

Figure S6. Methyl methanesulfonate and Gamma rays (y-rays)-induced germ cell
apoptosis are independent of OCT-1 and OCT-2 function. (A and C) Box and whisker
plots depict quantification of apoptotic cell corpses upon MMS (0.25 uM) and y-rays (75
grays) treatment, respectively. (B) Representative images of right gonad arms after

exposure to y-rays. Posterior is right. The results are the averages from three independent



experiments (n = 30) Mann-Whitney U-test (*P<0.05; **P<0.01; ***P<0.001,

****p<(0.0001 and N.S. = Non Significant).

Figure S7. RNAIi-driven downregulation of oct-1 upregulates oct-2 expression and
sensitizes C. elegans DNA repair deficient mutants to drug-induced apoptotic cell death.
(A) Wild type. (B and C) The homologous recombination mutant rad-51(ok2218)
downregulated for oct-1 shows stimulated doxorubicin-induced apoptotic cell death. (D
and E) The base excision repair mutant apn-1(tm6691) downregulated for oct-1 displays
enhanced spontaneous, as well as doxorubicin-induced apoptotic cell death. (F and G and
H and 1) The nucleotide excision and mismatch repair defective mutants, xpa-1(0k698)
and msh-2(ok2410), respectively, downregulated for oct-1 exhibit enhanced cisplatin-
induced apoptotic cell death. Treatment with doxorubicin (100 uM, red boxes) and
cisplatin (100 uM, blue boxes) started with L1-staged animals. Apoptotic cell corpses
were analysed in young adult staged animals. Untreated animals are depicted as white
boxes. The results are the averages from three independent experiments (n = 30 each).
Mann-Whitney U-test of mean difference (*P<0.05; **P<0.01; ***P<0.001 and
****P<(0.0001) was calculated. (J - M) RNAI-driven downregulation of oct-1 upregulates
oct-2 in the wild type and the DNA repair defective mutants. The Y-axis represents the

same scale for oct-1 and oct-2 gene expression in all genotypes.

Figure S8. Structural modeling prediction of (A) OCT-1 and (B) OCT-2 computed with

ResQ. The predicted Normalized B-factor and estimated residues accuracy in Angstrom



were computed based on the I-TASSER models. The twelve transmembrane domains are

represented as red bars at the bottom of each panel.

Figure S9. Apoptotic cell corpses as a function of cisplatin concentrations. At 25 uM of
cisplatin, apoptotic cell corpses were induced in the oct-1(ok1051) mutant, but not in the

wild type.
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Figure S1. Sequence alignment of members belonging to the family of organic cation
transporters from C. elegans (CeOCT-1 and CeOCT-2), Homo sapiens (hOCT1 and
hOCT2) and Mus musculus (mMOCT1 and mOCT2). Numbers indicate amino acid
positions. Identical or similar amino acid residues amongst the members are shaded in
black or gray, respectively. Dashes indicate gaps. The stretch of amino acid residues,
PESPRW (consensus in red), is the longest identical region in all six transporters.
CeOCT-2 contains the four conserved cysteine residues Cys203, 250, 280 and 302
present in the N-terminus of each member. The OCT2 from the different species lack the
conserved cysteine Cys49, Cys27, and Cys27 present in the OCT1 members CeOCT-1,
hOCT1 and mOCT1, respectively.
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Figure S2. Relative gene expression. (A) oct-1 and oct-2 gene expression are
downregulated by the oct-1(RNAI) and oct-2(RNAI), respectively. (B) pes-23 gene
expression is not affected by either oct-1(RNAI) and oct-2(RNAi). The RNA expression
was measured as described in the experimental procedures.
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Figure S4. OCT-2-dependent doxorubicin uptake into the pharynx of C. elegans is not
affected by the eating defective eat-2(ad453) mutant animals. Experiment is represented
by “fire’ look-up images of the pharynx from eating defective eat-2(ad453) untreated and
doxorubicin treated animals. The respective DIC images are shown in the upper left
corner of each panel. Images to the right of each pharynx depict a 3D representation of
the doxorubicin (100 pM) treatment signal intensity for the indicated genotypes. Data are
representative of experiments performed in duplicates (n = 15). Enlargement of the
pharynx is represented by a scale bar = 10 um. Fluorescence posterior to the pharynx is
auto-fluorescence detected from the intestine.
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Figure S5. Genetic analysis of doxorubicin- and cisplatin-induced apoptotic cell death.
(A) Representative images of wild type*, cep-1, egl-1, ced-9, ced-4 and ced-3 mutant
animals untreated and RNAI-driven depletion of oct-1 exposed to 100 uM doxorubicin.
Apoptotic cells were observed and quantified as described in the experimental
procedures. (B) Apoptotic pathway in C. elegans (C) Data shown represent the average
quantification of three independent experiments (n =30). *Images from Figure 2 were
used for comparison purposes.
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Figure S6. Methyl methanesulfonate and Gamma rays (y-rays)-induced germ cell
apoptosis are independent of OCT-1 and OCT-2 function. (A and C) Box and whisker
plots depict quantification of apoptotic cell corpses upon MMS (0.25 uM) and y-rays (75
grays) treatment, respectively. (B) Representative images of right gonad arms after
exposure to y-rays. Posterior is right. The results are the averages from three independent
experiments (n = 30) Mann-Whitney U-test (*P<0.05; **P<0.01; ***P<0.001,;
****P<(0.0001 and N.S. = Non Significant).
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Figure S7. RNAI-driven downregulation of oct-1 upregulates oct-2 expression and
sensitizes C. elegans DNA repair deficient mutants to drug-induced apoptotic cell death.
(A) Wild type. (B and C) The homologous recombination mutant rad-51(ok2218)
downregulated for oct-1 shows stimulated doxorubicin-induced apoptotic cell death. (D
and E) The base excision repair mutant apn-1(tm6691) downregulated for oct-1 displays
enhanced spontaneous, as well as doxorubicin-induced apoptotic cell death. (F and G and
H and 1) The nucleotide excision and mismatch repair defective mutants, xpa-1(ok698)
and msh-2(ok2410), respectively, downregulated for oct-1 exhibit enhanced cisplatin-
induced apoptotic cell death. Treatment with doxorubicin (100 uM, red boxes) and
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cisplatin (100 pM, blue boxes) started with L1-staged animals. Apoptotic cell corpses
were analysed in young adult staged animals. Untreated animals are depicted as white
boxes. The results are the averages from three independent experiments (n = 30 each).
Mann-Whitney U-test of mean difference (*P<0.05; **P<0.01; ***P<0.001 and
****P<(0.0001) was calculated. (J - M) RNAI-driven downregulation of oct-1 upregulates
oct-2 in the wild type and the DNA repair defective mutants. The Y-axis represents the
same scale for oct-1 and oct-2 gene expression in all genotypes.
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Figure S8. Structural modeling prediction of (A) OCT-1 and (B) OCT-2 computed with
ResQ. The predicted Normalized B-factor and estimated residues accuracy in Angstrom
were computed based on the I-TASSER models. The twelve transmembrane domains are
represented as red bars at the bottom of each panel.
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Figure S9. Apoptotic cell corpses as a function of cisplatin concentrations. At 25 uM of
cisplatin, apoptotic cell corpses were induced in the oct-1(ok1051) mutant, but not in the

wild type.
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