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Material and Methods 
 
1. Participants and Sample Preparation 
Participants were representative of major human populations and ancestries (Supplementary 
Fig S1). The study population was not ascertained for a specific health status: 3,940 individuals 
were presumed to be healthy adults, 5,656 showed signs of common disorders (cardiovascular, 
respiratory, metabolic syndrome, neurodegenerative disorders and aging), 664 were diagnosed 
with neurodevelopmental and rare disorders, and 285 were predisposed to cancer (germinal) 
and immune disorders. New and existing IRB-approved consent forms for participation in 
research and collection of biological specimens and other data used in this publication were 
reviewed and confirmed to be appropriate for use. 
Blood specimens were collected into 4 mL EDTA Anti-Coagulant Vacutainer tubes and stored at 
2-8°C for a maximum of 5 days.  Genomic DNA extraction was carried out using a Chemagic 
DNA Blood400 kit following manufacturer’s recommendations. DNA was eluted in 50uL Elution 
Buffer (EB, Qiagen) and stored at 4°C until used. 
Double-stranded DNA was quantified with a Quant-iT fluorescence assay (Life Technologies).  
The genomic DNA was normalized and sheared with a Covaris LE220 instrument.  Next 
Generation Sequencing (NGS) library preparation was carried out using the TruSeq Nano DNA 
HT kit (Illumina Inc), essentially following manufacturer’s recommendations. Individual DNA 
libraries were characterized in regards to size and concentration using a LabChip DX One Touch 
(Perkin Elmer) and Quant-iT (Life Technologies), respectively. Libraries were normalized to 2-
3.5nM and stored at -20°C until used. 
 
2. Clustering and Sequencing 
Normalized DNA libraries were combined into 6-sample pools and clustered on cBot cluster 
stations following the manufacturer’s recommendations.  Two different versions of the 
Clustering/SBS kits were used, v1 and v2, corresponding to the original (March 2014) and its 
replacement configuration (October 2015). It is worth noting that the current version, v2, 
includes a revised version of the original clustering protocol, requiring an upfront DNA 
denaturation step and a longer clustering chemistry. All flowcells were sequenced on the 
Illumina HiSeqX sequencer utilizing a 150 base paired-end single index read format. 
 
3. Read mapping and genotyping 
Base call (BCL) files were used to map reads to a human reference sequence (hg38 build) using 
ISIS Analysis Software (v. 2.5.26.13; Illumina) (1). The hg38 reference sequence was modified by 
masking the pseudoautosomal region of chrY. The ISIS Isaac Aligner (v. 1.14.02.06) identified 
and marked duplicate reads, and these were removed from downstream analysis. The resulting 
bam files were characterized using Picard (v. 1.113-1.131), and input to the ISIS Isaac Variant 
Caller (v. 2.0.17). The Isaac Variant Caller was used with default settings, and yielded genomic 
VCF files (gVCF). For computation of accuracy, single nucleotide variants with a “PASS” flag 
were compared to GIAB (v. 2.19; ftp://ftp-
trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv2.19). The data for the GiaB 
high confidence region are derived from 11 technologies:  BioNano Genomics, Complete 

ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv2.19)
ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_HG001/NISTv2.19)
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Genomics paired-end and Long Fragment Read, Ion Proton, Oxford Nanopore, Pacific 
Biosciences, SOLiD, 10X Genomics GemCodeTM WGS, and Illumina paired-end, mate-pair, and 
synthetic long reads. 
 
4. Ancestry admixture 
The 1000 Genome Project (26 populations) (2) and Human Genome Diversity Project (HGDP, 52 
populations) (3) were used as a reference panel for ancestry admixture analysis. Admixed 
populations including African Americans or Latin Americans from the 1000 Genome Project 
were excluded from the reference panel. Shared dbSNP rsIDs were used to merge genotype 
data from HGDP and the 1000 Genome Project. SNPs with discordant forward strand alleles 
between genome build 36 and 38 were removed to avoid assembly inconsistency. SNPs with 
discordant forward strand alleles between genome build 36 and 38 were removed to avoid 
assembly inconsistency. This process resulted in 3,444 samples with 636,698 SNPs, of which 
116,990 were then pruned due to linkage disequilibrium using PLINK (1.9), leaving 519,708 
SNPs. Allele frequencies were calculated for each population, and the top 3,000 most 
informative SNPs for each population (ranked based on the absolute Z-score for each allele’s 
frequency against the whole panel of populations) were extracted. The resultant collection of 
57,214 unique, ancestry-informative SNPs was used for ancestry admixture analysis using 
ADMIXTURE (1.23) (4). Also, from the set of 519,708 SNPs, an additional set of 107,570 unique 
most variable SNPs (alt allele frequencies close to 0.5), were selected to supplement the above 
ancestry informative SNPs for PCA (performed using PLINK (1.9) (5).     
 
5. Kinship analysis 
The relatedness of individuals was carried out by first extracting the genotypes for 162,997 
autosomal SNVs of each sample.  The samples were then merged and a bed file was generated 
using PLINK (1.9).  The program KING (1.4) (6) was used to determine relatedness of the 
samples. Unrelated samples were identified using the default kinship coefficient cutoff of 
0.0884. From this analysis it was determined there were 8,096 unrelated samples.    
 
6. Assessment of human sample contamination 
We used verifyBamID (7) to control for sample mixtures. At the conservative cutoff of 3%, we 
identify a 0.83% of contamination for samples processed in their entirety in our laboratory (i.e., 
from blood DNA extraction onwards), compared with 1.9% when considering all samples (i.e., 
from pre-extracted DNA).   
 
7. False discovery rate 
We estimated the false discovery rate (FDR) of our sequencing pipeline using 200 replicates of 
NA12878. Within the GiaB high confidence regions, we compared genotype calls to those 
reported by GiaB. We calculated the FDR at variant sites using the formula FDR = FP/(TP+FP). 
We also estimated the genome-wide FDR by accounting for missingness. We counted the 
number of sites where genotypes could not be called reliably (i.e. no-PASS calls) and denoted 
that as missingness (Fig. 1c). If we use 90% reproducibility as the filtering criteria, those 
positions with high (>=90%) reproducibility in NA12878 within GiaB high confidence region 
would be regarded as “positives”, while those with low reproducibility would be regarded as 
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“negatives”. We used the same FDR formula as above but with different definitions of “false 
positives” and “true positives”. For those sites within GiaB high confidence region sequenced 
with high reproducibility, they would be regarded as “false positives” if there was a wrong call 
or the call did not pass the filter (missingness). We regarded those genotype calls that were 
different from GiaB as “wrong calls” (i.e. false positive calls and false negative calls mentioned 
in Fig. 1c). Those sites with consistent calls would be regarded as “true positives”. 
 
8. NA12878 quality metrics 
We used reproducibility metrics to define regions within GiaB with high (≥90%) versus low 
(<90%) reproducibility at each position. The reproducibility metrics include the concordance in 
calls and missingness (defined in this work as a measure of low quality calls). A precise 
assessment of missingness is achieved by using a genomic variant call format file (gVCF) that 
informs every position in the genome regardless of whether a variant was identified or not. A 
total of 2,157 Mb (97.3%) of the GiaB high confidence region could be sequenced with high 
reproducibility, while 59 Mb (2.7%) were classified as less reliable (Table S1). False positive, 
false negative and missingness rates were considerably lower in the GiaB region sequenced 
with high reproducibility. At high reproducibility sites, the false discovery rate is very low (FDR = 
0.0008). Other relevant metrics include a precision of 0.999, recall of 0.994 and F-measure of 
0.996. If we use 90% reproducibility as the filtering criteria, the genome-wide false discovery 
rate is 0.0025. Other relevant metrics are a genome-wide precision of 0.998, recall of 0.980 and 
F-measure of 0.989 
 
Table S1: Whole genome sequencing quality metrics. False positive calls are concentrated in 
the region of GiaB that has <90% reproducibility of base calling. False negative calls are more 
evenly represented across GiaB, missingness (no-PASS) represents the bulk of error.  
 

 
 
9. Extent of sequencing at the level of an individual genome 
Many genome sequencing projects calculate quality statistics on a composite of all genomes 
sequenced, regardless of the depth or quality of an individual genome’s sequence. Conversely, 
we chose to sequence an individual genome many times to assess the quality of our sequencing 
capabilities and identify regions of the genome for which we could consistently make high 
confidence calls. As such, our work specifically presents the confident genome calls (“extended 
confidence regions”) for a single individual benchmarked against the complete sequence (Table 
S2). This difference between population genome level statistics and individual genome level 
statistics is significant as we move forward toward the use of an individual’s genome 
information in the clinic. 
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Table S2: Individual level whole genome sequencing. Estimates are derived from the 
sequencing of 100 NA12878 replicates using v2 chemistry. Percentage 1 is the number of bases 
divided by the total length of autosomes and chrX. Percentage 2 is the number of bases divided 
by the total number of callable bases on autosomes and chrX (I.e. Not “N”). 
 

 
Number of 

bases 
Percentage1 (num 

of bases/A) 
Percentage2  

(no. of bases/(A-B)) 
Total chromosomal length of 
autosomes and chrX (A) (“reference 
genome”; hg38) 3,031,042,417   
Total number of "N" base on 
autosomes and chrX (B) (“inaccessible 
genome in reference genome”) 130,962,786   
Total number of callable bases  
(A-B) (“accessible genome in reference 
genome”) 2,900,079,631   
Average number of PASS position per 
NA12878 replicate (on autosomes + 
chrX) (“individual accessible genome”) 2,750,001,288 90.73% 94.83% 
Total length of extended confidence 
region (on autosomes + chrX) (“ECR”) 2,583,500,276 85.23% 89.08% 
 
10. Structural and copy number variation in NA12878 
To understand the performance of structural and copy number variation analysis using Illumina 
short read technology, we studied precision, recall and reproducibility in the set of 200 
NA12878 sequences. For short indels, we compared our calls to those reported in the newest 
release of GIAB (NIST v3.2.2). The average precision and recall rates achieved by ISIS Isaac 
Variant Caller (v.2.0.17) are 97.80% and 86.32% respectively, but with unsatisfactory 
reproducibility (Table S3). For SV, we compared the performance of 7 software; for deletion: 
Pindel (8), DELLY (9), GenomeSTRiP (10), BreakDancer (11), LUMPY (12), MatchClip2 (13), 
Manta (14); for insertion: Pindel (8), Manta (14). We used the list of SV from Pendleton et al. 
(15) as the reference set, and Manta performed the best among the 7 software and was used in 
the analysis of the 200 NA12878 replicas. For CNV, we compared the performance of 5 
software: cn.mops (16), CNVnator (17), GenomeSTRiP (10), MatchClip2 (13), Canvas (18). We 
used the list of CNV from Conrad et al. (19) array data as reference set, and Canvas performed 
the best among the 5 software. The performance for SV and CNV is presented in Table S3. 
Overall, the results of analyses were deemed unsatisfactory for clinical use. 
 
Table S3: Performance of SV and CNV calling in 200 runs of NA12878.  
 

 Type Precision Recall 

Average percentage 
of calls with 
reproducibility >= 
90% per sample 

Reference set 

Software 

Small indels (1-50 bp) -- 97.80% 86.32% 78.98% * NIST GIAB v3.2.2 
ISIS Isaac 
Variant 
Caller 
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(v.2.0.17) 

Small indels (1-50 bp) -- 97.21% 72.75% 78.50% * NIST GIAB v2.19 

ISIS Isaac 
Variant 
Caller 
(v.2.0.17) 

Structural variations 
(>50 bp) Deletion** 60.62% 35.86% 48.03% Pendleton et al. 

2015 (15) 
MANTA 
v0.29.4 

 Insertion*** 76.53% 10.83% 29.36% Pendleton et al. 
2015 (15) 

MANTA 
v0.29.4 

Copy number variations  
 LOSS** 71.05% 23.94% 52.49% Conrad et al. 2010 

conrad (19) 
CANVAS 
v1.3.5 

 GAIN** 3.75% 4.55% 43.65% Conrad et al. 2010 
(19) 

CANVAS 
v1.3.5 

* Restricted to calls within GIAB HC region 
** required >50% overlap 
*** any overlap with reference calls within +/-20 bp of call 

 
11. Construction of extended confidence region 
We defined an extended confidence region (ECR) that includes the high confidence GiaB 
regions and the highly reproducible regions extending beyond the boundaries of GiaB. The set 
of high-reproducibility regions on autosomes and the X-chromosome was established based on 
analysis of NA12878 replicates. Sites with ≥90% agreement/concordance in genotype calls 
among NA12878 replicates were included in the high-reproducibility set; the rest were 
regarded as low reproducibility. 
 
Suppl. Fig. S2 illustrates the noise we observed outside of the GiaB regions, both in terms of 
spurious variant calls and of apparent conservation. Of 3,088 Mb of sequence (autosomal, X- 
and Y-chromosomes), the overlap of GiaB high confidence and highly reproducible regions 
represented 69.8% of the analyzed positions. The non-GiaB regions with high variant call 
reproducibility covered an additional 14.1% of the genome. 
  
We used a different strategy for defining high-reproducibility regions on the Y-chromosome 
because NA12878 is a female. Instead, we used genotype calls from 100 males among the 
10,545 samples. Sites with ≥90% genotype calls passing quality control thresholds and without 
any heterozygous calls were included in the high-reproducibility set. Sites with variants calls on 
the Y-chromosome in 100 female samples were excluded from the high-reproducibility set 
(Suppl. Fig. S3). In addition, centromeric regions and known segmental duplication regions were 
excluded from the high-reproducibility set. They were obtained from the UCSC genome 
browser 
(hg38, http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz; http://hg
download.soe.ucsc.edu/goldenPath/hg38/database/genomicSuperDups.txt.gz).  
 
Illumina short read sequencing excluded 2.7% of GiaB high confidence region. Basically, these 
regions, after excluding segmental duplications and centromere sequences represent 35,6Mb. 
Approximately one third (34.3%) of the total is called reproducibly (but below 90%) in 80-89% 
of samples, while 7.3% of the total (2.6 Mb) is never called in any of the samples. The excluded 
sequence is highly distributed in small segments of less than 2020 bp. The regions are also 

http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/cytoBand.txt.gz
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/genomicSuperDups.txt.gz)
http://hgdownload.soe.ucsc.edu/goldenPath/hg38/database/genomicSuperDups.txt.gz)
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enriched in indel calls. Only 0.48% of the region is protein-coding. Almost all (89.14%) is 
annotated as repetitive sequence. 
 
The definition of ECR allowed for more high confidence calls than those identified in GiaB (Table 
S4). 
 
Table S4. Contribution of the extended confidence region to variant identification in 10,545 
genomes. 
  Variant Sites* Var. sites in the ECR (%) Var. sites in GiaB (%) 

    165,007,222 146,693,004 (89%) 125,513,963 (76%) 

Annotation intergenic_region  62,486,344   54,347,350 (87%)   46,770,589 (75%)  

 intron_variant  58,868,383   54,328,376 (92%)   46,931,777 (80%)  

 non_coding_exon_variant  559,889   418,532 (75%)   348,897 (62%)  

 3_prime_UTR_variant  1,900,062   1,738,715 (92%)   1,427,930 (75%)  

 5_prime_UTR_variant  486,584   424,817 (87%)   328,399 (67%)  

 upstream_gene_variant  22,449,371   19,511,283 (87%)   16,271,660 (72%)  

 downstream_gene_variant  16,221,758   14,091,715 (87%)   11,953,456 (74%)  

 TF_binding_site_variant  58,852   48,664 (83%)   37,261 (63%)  

Variant Effect splice_acceptor_variant  13,793   11,687 (85%)   9,347 (68%)  

 splice_donor_variant  19,106   16643 (87%)   13481 (71%)  

 missense_variant  1,168,296   1,055,738 (90%)   853,764 (73%)  

 synonymous_variant  649,059   590,469 (91%)   476,943 (73%)  

 start_lost  3,781   3,344 (88%)   2,734 (72%)  

 stop_gained  30,292   26,925 (89%)   21,691 (72%)  

 stop_lost  1,767   1,559 (88%)   1,245 (70%)  

Pathogenicity HGMD-DM  8,611   8,198 (95%)   6,831 (79%)  

 ClinVar Pathogenic  3,390   3,191 (94%)   2,628 (78%)  

* The total number of SNVs observed at these positions is 170,113,857, including multi-allelic positions. ECR: Extended confidence region 

 
12. Reproducibility on mitochondrial DNA 
We assessed the reproducibility of sequencing calls of the mitochondrial DNA using NA12878 
replicates. For the 16,569 sites on mtDNA, 99.95% could be sequenced with high (>=90%) 
reproducibility. However, of these positions, 13,693 fell within known segmental duplication 
regions, according to the list of known segmental duplications obtained from the UCSC genome 
browser. Given this large overlap and the heteroplasmic nature of mtDNA, we excluded mtDNA 
from the ECR. 
 
13. Annotation 
ClinVar (VCF v4.0; fileDate=20150916) (20) pathogenic variants (i.e. CLINSIG=5) and HGMD 
(2015-R2) (21) disease-causing mutations (DM) were used for annotating clinically relevant 
variants. To generate the metaprofiles of the pathogenic variants, we used the SNVs from 
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ClinVar and HGMD databases. SnpEff (22) was used for genomic annotation and predicting 
effects of SNVs sites observed in the 10,545 samples (shown in Main Text Table 1). Exomic 
regions for protein-coding genes were extracted from GENCODE (Release 23) (23).  
 
14. Distribution of SNVs per element 
The annotation file for GENCODE v23 was used as the initial annotation of genomics elements 
including intergenic, protein coding and RNA coding elements. Genomic positions that did not 
overlap any annotation in the file were defined as “intergenic”. “Intronic lncRNAs” that were 
tagged with “sense_intronic” in either the gene_type and/or the transcript_type fields were 
marked as “intronic lncRNAs”, while “protein coding”, “lincRNA”, “snoRNA” and “miRNA” in 
either the gene_type and/or the transcript_type were tagged with their respective names. The 
annotation “constitutive exons” correspond to regions that are consistently exonic in all 
isoforms of a gene; “alternative exons”, to the regions that are exonic in at least 1 isoform, but 
not all; “constitutive introns”, to the regions consistently intronic in all isoforms; and 
“alternative introns”, to the regions that are consistently intronic, but are not present in all 
isoforms. When several exons/introns from different isoforms arising from the same gene were 
overlapping, only the minimum overlap of all isoforms was considered. The “origin of 
replication regions” (oriC) were obtained from a public HeLa ChIPseq dataset (accession 
number: GSM922790). Regulatory elements were obtained from the Ensembl Regulatory Build 
(24) for consistency and independence of the cell types. SNV presence was assessed at genomic 
positions overlapping the ECR. Only elements with at least 90% overlap with those regions were 
used, except for the intergenic regions, where 100% overlap was required. Values are 
summarized in Table S5. 
 
In order to compare the SNV distribution across different element types, given that their size 
distribution varies significantly, we concatenated all elements from the same type (ex: all 
intergenic regions) and then reported the overall number of SNVs per kb in the total element 
(Figure 2A). To assess the range of variation, we chopped the newly concatenated element into 
1kb windows and extracted the number of SNVs for each 1kb window (the results are shown in 
supplementary Figure S4). 
 
Table S5: Overall summary of SNVs in the various genomic elements and regions. 
Count= total number of the element. Length= overall sum of the ECR sizes of the elements. SNVs Total= sum 
of mapped SNVs in ECR. SNVs Mean= SNVs Total/Length. 
 
Element Count Length SNVs Total SNVs Mean 
oriC 11517 9433486 540262 0.0573 
intergenic 30414 1142686603 65593232 0.0574 
protCod (AE) 200494 33429295 1805563 0.0540 
protCod (CI) 21442 110966273 6033109 0.0544 
protCod (CE) 27699 8832708 488347 0.0553 
protCod (AI) 146788 629489052 34918651 0.0555 
intronic lncRNA (AI) 53 446218 24981 0.0560 
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lincRNA (AI) 4126 40803762 2290503 0.0561 
intronic lncRNA (CI) 590 2972912 168752 0.0568 
lincRNA (CI) 8881 98817557 5627274 0.0569 
intronic lncRNA (CE) 1399 708859 41130 0.0580 
miRNA 3283 295819 17184 0.0581 
lincRNA (CE) 14557 5262785 314381 0.0598 
intronic lncRNA (AE) 112 21762 1301 0.0598 
lincRNA (AE) 8107 1722275 103570 0.0601 
snoRNA 868 99090 6043 0.0610 
Enhancer 119624 64671180 3525956 0.0545 
Promoter Flanking 78183 146107431 8162054 0.0559 
CTCF 101615 54526297 3074159 0.0564 
Open Chromatin 61911 30901017 1813806 0.0587 
TFBS 21804 11194969 664475 0.0594 
Promoter 12621 24385606 1529677 0.0627 
 
15. Creation of metaprofiles 
A schematic description of the generation of metaprofiles is presented as Suppl. Fig S9. To 
assess SNV metaprofiles, GENCODE v23 was used as the starting gene annotation for the six 
genomic landmarks in protein coding genes (transcription start site, TSS; start codon; splice 
donor site, SD; splice acceptor site, SA; stop codon; polyadenylation site, pA). TSS and pA were 
defined as the first or last nucleotide of a transcript, respectively, start and stop codons were 
tagged with the same nomenclature in the annotation file, SA and SD were defined as the first 
nucleotide of the exon and one nucleotide after the last nucleotide of the exon, respectively. 
For SA/SD, exons were excluded if they were annotated as the first exon in an isoform or the 
last exon, respectively. To have a clean set of elements that could be aligned reliably, several 
filters were applied. The genomic position(s) of the genomic landmark itself had to be in the 
ECR. In addition, the exons selected for SA/SD metaprofiles had to have the same start or end 
coordinate, respectively, in all isoforms where they were present. Finally, the flanking introns of 
the exons selected for SA/SD had to end/start with the consensus sequence AG or GT, 
respectively. Redundant annotations at a given position were removed so as to avoid 
overcounting. To build metaprofiles, the SNV presence and frequency information was 
extracted for each element that passed these filters, along with every nucleotide 100 bps up 
and downstream of the genomic landmark. To avoid confounding effects from different 
genomic landmarks or low confidence regions, only positions that were at least 5 bp from 
another annotated genomic landmark and in the ECR were used. To compare variability across 
all six genomic landmarks tested, for each of the 200 positions surrounding the six genomic 
landmarks, the percent of elements with SNVs (number of elements with a SNV / the number of 
assessable elements at a given position) was divided by the mean percentage obtained across 
the 6 genomic landmarks (1200 bp), so that the mean normalized score across the six genomic 
landmarks would be equal to 1. For each of the 1200 bp the percent of SNVs present at an 
allelic frequency higher than 1 in a 1000 alleles was extracted. 



 10 

 
Transmembrane domain amino acid coordinates were obtained from Uniprot 
(http://www.uniprot.org/) and were mapped back to genomic coordinates using UCSC 
knownGene table (https://genome.ucsc.edu/cgi-bin/hgTables). The elements and assessable 
positions were filtered with the same criteria as used for protein coding genes. The percentage 
of elements with SNVs was divided by the mean percentage obtained across the 6 protein 
coding genomic landmark for easier comparison. 
 
Transcription factor binding sites (TFBS) genomic coordinates were obtained from Jaspar 
(http://jaspar.genereg.net/). The elements and assessable positions were filtered with the 
same criteria as used for protein coding genes. The percentage of elements with SNVs was 
divided by the mean percentage obtained across the 6 protein coding genomic landmark for 
easier comparison. 
 
16. Identification of non-reference sequences 
Sequencing read pairs with one or both reads not mapped to the hg38 reference assembly 
were extracted and annotated as “unmapped reads” if they showed both high sequencing 
quality and non-repetitiveness. Samples with more than 10% unmapped reads were excluded 
from analysis. Unmapped reads were then assembled using SOAPdenovo2 (v2.04) (25) with 
kmer size 91 for each sample. Assembled contigs longer than 200bp were mapped against the 
hg38 assembly to remove contigs that can map to the reference with >90% identity on >30% 
length. The remaining contigs were then mapped to the hg38 regions that were masked as 
repeat in UCSC goldenPath (26) using BLASTN (27) without low complexity filtering to remove 
contigs that contains >20% repeat sequences. The contigs passing the above filtering steps 
were clustered into a non-redundant set using CD-Hit (v4.6) (28) with 90% global identity 
threshold. In order to filter out contigs that are of non-human origin, we compared the non-
redundant contig set against the NCBI protein database nr using DIAMOND (v0.7.9) (29), and 
against NCBI nucleotide database nt using DNA aligner SASS (v0.3.2, Unpublished, part of the 
winning solution to the DTRA Algorithm Challenge) (30). Contigs with non-mammal matches 
were considered contamination and removed from analysis. Contigs that did not match to nt or 
nr were included if their GC content was between 30 and 50% and their dinucleotide bias was 
less than 15% (31). The remaining contigs were considered non-reference contigs. Those 
contigs were compared against the alt and patch sequences in GRCh38.p5, and contigs that 
mapped to the alt or patches were considered positive controls. The remaining set of contigs 
were classified as putative novel human sequences. 
 
Neanderthal (32) and Denisovan (33) sequence data were downloaded from 
http://cdna.eva.mpg.de. Sequencing reads were mapped to hg38 assembly using BWA. The 
unmapped Neanderthal and Denisovan reads were then mapped to the Human non-reference 
contigs to calculate the overlap of novel human contigs with archaic genomes. 
 
17. Data access 
We have provided FDA with 325 vcf files for the NA12878 replicates that we sequenced.  We 
also provided them with 6 pairs of fastq files corresponding to 3 of the replicates.  This is 

http://www.uniprot.org/)
https://genome.ucsc.edu/cgi-bin/hgTables)
http://jaspar.genereg.net/)
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basically the raw data that can be run on any bioinformatics pipeline for testing and comparison 
purposes.  Access to these replicates can be provided by PrecisionFDA on their cloud based 
platform upon request to the FDA.  
 
HLI is providing access to the data in aggregate form through a public browser (link provided at 
publication). HLI supports the effort of making genetic data broadly available to further 
scientific research, but believes that controls over access will help ensure protection of the 
privacy of those individuals who have agreed to have their genomic sequencing data placed in 
the HLI database, as well as that of their family members.  
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Supplementary Figures 
 
Suppl. Fig S1. Principal component analysis of study populations.  
The 1000 Genome Project and Human Genome Diversity Project were used as a reference 
panel for ancestry admixture analysis. PCA analysis was performed using PLINK (1.9) on 162,997 
ancestry informative markers. (A) PC1 and PC2. (B) PC1 and PC3. (C) PC3 and PC4. Genomes are 
colored, based on the largest admixture ancestry. The super-populations described by the 1000 
Genome Project are: EUR= European, AFR= African, SAS= South Asian, EAS= East Asian, AMR= 
Native American, OTH= others including Siberian, Middle Easterner and Oceania; numbers are 
shown in the table below.  (D) Because of the evidence in the PCA of extensive admixture, we 
alternatively assigned individuals to five superpopulations as described by The 1000 Genomes 
Project, or to an admixed population group (ADMIX, grey) on the basis of genetic ancestry. 
Ancestry admixture were performed using ADMIXTURE (1.23). 
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Suppl. Fig S2. Impact of sequencing depth on variant calling. 
Depicted is the number of true positive SNVs detected in NA12878 replicates with different 
mean genome-wide coverages. Only SNV calls in both ECR and GiaB high confidence regions 
were considered (total number of true positives = 2,618,794). Genome-wide coverages of 7X 
and 30X are indicated by the vertical grey dash lines. For a genome sequenced at mean 30X, 
around 99% of the SNVs are detected. However, for a genome sequenced at mean 7X coverage, 
less than half of the true positive SNVs are detected. 
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Suppl. Fig. S3. Sequence reliability and rates of variation in 10,545 genomes.   
Genome view of two representative autosomal chromosomes; (A) Chr.1 as the longest and (B) 
Chr. 22 with the lowest proportion of sequenceable bases with the technology used. Each 
datapoint represents a 1kb window; the Y axis represents the number of SNVs per 1kb; dark 
blue are high confidence windows (the overlap of GiaB high confidence regions and regions 
with >=90% reproducibility in NA12878 replicates); light blue are extended confidence windows 
outside of GiaB; pink are GiaB only (low reproducibility with current technology); grey dots are 
regions outside of GiaB and extended confidence regions. (C) Summary statistics for all the 
chromosomes, using the same color coding as in previous panels. 
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Suppl. Fig S4. Sequence reliability and rates of variation on the Y-chromosome.   
Upper panel, Genome view of the Y-chromosome. Each dot represents a 1kb window; the Y 
axis represents the number of SNVs per 1kb; light blue are regions sequenced with high 
reproducibility; grey dots are regions sequenced with low reproducibility. Lower panel, number 
of females having variant at each position. We compared the ECR on Y chromosome to the list 
of euchromatin regions identified by Poznik et al.(34). Their list of euchromatin regions 
(converted from hg19 to hg38, 10Mb in total) contains 8.6Mb that are outside of segmental 
duplications. The ECR covers 89.7% (7.7Mb) of those regions. 
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Suppl. Fig S5. Single nucleotide variant distribution in the coding and non-coding genome.  
Distribution of SNVs in selected genomic elements (genomic, protein coding, RNA coding and 
regulatory elements. The distribution of each 1kb window from the total size concatenated 
element are represented in a violin plot.  Elements are reported in the same order than in the 
main text Figure 2A, and the dot in the violin correspond to the SNVs per kb value computed 
from the total size concatenated element. 
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Suppl. Fig S6. Single nucleotide density across the chromosomes. 
Smoothened SNV density across the genome (colored line). The line (dotted grey line) 
represents the median SNV density per 1kb window. Telomere regions are known for inflated 
rates of polymorphism. Deep valleys reflect regions that are not amenable to sequencing. 
Chromosomes 8 and 16 display reliable long regions of hypervariability that were the object of 
detailed analyses (Suppl. Fig. S7).  
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Suppl. Fig S7. Genetic hypervariability in regions lacking topological domains. 
We identified 3 hypervariable megabase-long regions on autosomes based on the SNV density: 
one region on 8p23.2 spanning 1.3 Mb (A), and two regions spanning 1.45 Mb to 1.68 Mb on 
chromosome 16 (B). These hypervariable regions were identified based on the locally weighted 
LOESS fitting of the SNV density on each chromosome (coordinates in Table below). We used 4-
Mb overlapping windows to identify a peak. A site would be regarded as peak if it has most 
SNVs within the 4Mb window (spanning 2Mb upstream and 2Mb downstream of the site of 
interest) and the number of SNVs is 3 standard deviations more than the mean of the 
autosomal SNV density (i.e. 98.15). We then defined the hypervariable regions by walking 
upstream and downstream away from the peak until the difference in number of SNV between 
adjacent sites was less than the median difference across the chromosome.  
The density of multiple histone marks within these hypervariable regions, in particular the 
enhancer associated histone marks (H3K4me1, H3K4me2, H3K4me3, H3K27me3 and H3K27ac), 
are all depleted in the hypervariable regions (C-E). The coding/gene/exon densities were also 
significantly reduced in the identified hypervariable regions. The gene content of these regions 
is shown in the Table below. Both the exomic and the intronic regions present an elevated 
density of variants; therefore, the hypervariability is not just the reflection of a long stretch of 
gene-poor sequence.  
We used the recently published chromatin loop anchors by Rao el 2014 (35) to determine the 
distribution of the SNVs across the genome topological domains. We observed depletion in 
anchors within the hypervariable regions, suggesting lack of chromatin loops in these regions. 
Because enhancers are typically located on the boundaries of loops, the depletion in loop 
anchors from the Hi-C data agrees with the observed decline in the enhancers from the 
ENCODE ChIP-seq data in the hypervariable regions. 
Repeats, structural variations (including deletion, duplication and inversion) and segmental 
duplications are not enriched in these hypervariable regions based on data from RepeatMasker, 
Database of Genomic Variants and UCSC genome browser. We also confirmed that reads could 
be uniquely mapped to more than 99.8% of these regions based on simulation.  
 
 
Coordinates (in hg38) and total length of uniquely mapped regions within the hypervariable regions 

Chr Start End Length 

Total length of 
uniquely mapped 

region 

Density 
per kb 

of exome 
content 

Density 
per kb 

of intron 
content 

Gene 
content 

8 3,200,000 4,500,000 1,300,000 1,297,600 (99.82%) 94.50 153.19 CSMD1 
16 6,400,000 7,850,000 1,450,000 1,448,967 (99.93%) 89.50 120.94 RBFOX1 

16 77,900,000 79,583,500 1,683,500 1,682,850 (99.96%) 

 
 

112.49 

 
 

112.19 

WWOX, 
VAT1L, 
CLEC3A 
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C (Chr. 8) 

 
 
D (Chr. 16 First region) 

 
 
E (Chr. 16 Second region) 
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Suppl. Fig S8. Generation of metaprofiles 
Elements sharing a common function, structure or sequence are aligned at their 5’, 3’ or middle 
nucleotide. The presence of variation and allelic frequency is recorded for each position 
surrounding the aligned position. Coloring of each square (position) reflects the allelic 
frequency of variation at that site. The matrix is analysed vertically: the count score is the 
fraction of positions with af > 0 (example in the red box : 3/N). The count score is further 
divided by the mean count score obtained across protein coding surroundings. The frequency 
score is the fraction of SNV with af > 0.001 (example in the red box : 2/3). The tolerance score is 
the product of both scores. Af, allelic frequency. 
 
 
 

 
  



 26 

Suppl. Fig S9. Metaprofile of essential genes. 
Essential genes, as defined by Bartha et al. (36), exhibit a different metaprofile pattern across 
the coding region. The figure depicts the transition between introns and exons. The y axis 
describes the enrichment/depletion of SNVs occurrence per position. In red, the metaprofile of 
essential genes (n=2,999, essentiality>0.9); in grey, the metaprofile of the remaining genes with 
available score (n=13,163, essentiality <0.9). The x axis represents the distance from the 
genomic landmark. 
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Suppl. Fig S10. Relationship of a metaprofile tolerance score with CADD score.  
Represented on X axis are the mean TS values for the coding region (+ 10 bp of intergenic or 
intronic boundaries), each dot represents the mean of 10 positions. The Y axis presents the 
mean CADD score for each bin.  The LOESS curve fitting is represented by the solid line; the 
shaded area indicates the 95% confidence interval. CADD uses annotation from Ensembl 
Variant Effect Predictor, extensive information from UCSC genome browser tracks (GERP, 
phastCons, and phyloP; functional genomic data, transcript information and protein-level 
scores like Grantham, SIFT, and PolyPhen) to make functional predictions. 
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Suppl. Fig. S11. Distribution of allele frequencies for 150 million variants. Variants solely 
identified in the present study are shown in red. Variants that are also reported in dbSNP 
(version: human_9606_b144_GRCh38p2) and the latest (phase 3) 1000 Genome Project 
(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/supporting/GRCh38_positions/AL
L.chr*.phase3_shapeit2_mvncall_integrated_v3plus_nounphased.rsID.genotypes.GRCh38_dbS
NP_no_SVs.vcf.gz ) are presented in blue. AC= allele counts. While 79.5% (57 of 72 million) of 
unique variants (AC=1) have not been reported in the past, only 0.99% (60,158 of 9.8 million) of 
common variants (allele frequency greater that 1%) are not represented in dbSNP and 1000 
Genomes Project. This corresponds to a negligible average of 5.7 “novel” common variants per 
individual in the study.  
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Suppl. Fig S12. GC and dinucleotide content of unmapped reads.  
The pattern of nucleotide-level usage is a taxonomic characteristic. GC and dinucleotide 
content was examined in the 4,876 unique human, or human-like contigs assembled from 
2,435,202 bp of non-redundant sequence. The plots depict the distribution in GC content and 
dinucleotide bias of those sequences. The dark background represents the distribution of hg38-
mapped sequences. The colored foreground density plot depicts unmapped contigs with 
confirmed human identity (green, 1,891,745 bp of non-redundant sequences mapped to known 
human sequences in GenBank), primate identity (light brown, 180,760 bp mapped to primate 
sequences in the NCBI), and the comparable distribution of 1,173,584 bp of contigs that do not 
have a known match in databases (purple, referred to as “human-like”). The figure plots the GC 
and dinucleotide pattern distribution for eukaryota, prokaryota and viruses as comparison. 

 
 
 


