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Bayesian model reveals latent atrophy factors with dissociable cognitive 

trajectories in Alzheimer’s disease 
 

Supporting Information 
 

This supplemental material is divided into Supplemental Results, Supplemental 

Methods, Supplemental Figures and Tables, and Complete List of ADNI 

Investigators and Participating Institutions. 

 

Supplemental Results 

Similar Atrophy Factors Were Obtained from Aβ+ MCI Participants 

We confirmed that atrophy patterns estimated with our LDA approach would be 

similar during the nondemented stage compared to the resulting factors from the AD 

dementia group. Given the small number of the Aβ+ CN participants, we estimated 

atrophy factors with the 147 Aβ+ MCI participants (Fig. S3C) and confirmed that the 

obtained atrophy factors were highly similar, with an average correlation across all 

pairwise comparisons of r = 0.77. Therefore, the atrophy factors from the AD dementia 

patients were utilized for subsequent analyses.  

 

Atrophy Factors Were Robust to Choice of Software  

 Table S1 lists the anatomical structures associated with each factor based on 

overlap between the atrophy maps and anatomical structures in MNI152 space as defined 

by FreeSurfer [1] (see Supplemental Methods). The volumes of individual anatomical 

structures in all AD dementia patients were computed using FreeSurfer. Regression 

analyses confirmed that volumes of anatomical structures associated with an atrophy 

factor were lower (after controlling for intracranial volume) in participants with higher 

loading on the factor (see Supplemental Methods). For example, the temporal factor 

was associated with the most severe atrophy in the structures listed by Table S1A 

compared with the subcortical factor (p = 2e-15) and cortical factor (p = 4e-15), whereas 

there were no differences between the subcortical and cortical factors (p = 0.84). Results 

for the subcortical and cortical factors are in the captions of Tables S1B and S1C. The 
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agreement between FSL-VBM [2] and this posthoc analysis with FreeSurfer suggested 

that the factors were unlikely the results of segmentation or registration artifacts. 

 

Baseline and Longitudinal Decline of Memory and Executive Function Were 

Consistent Across Factor Hierarchy 

The behavioral (memory and executive function) analyses were repeated for two 

and four atrophy factors (Figs. S6 and S8). The results were consistent with the hierarchy 

of atrophy factors.  

 For example, the temporal and subcortical factors in the three-factor model were 

merged as a single temporal+subcortical factor in the two-factor model. Since the cortical 

factor was associated with the fastest longitudinal memory decline among the three 

factors in the AD dementia cohort (Fig. 7A), we expected the cortical factor to be 

associated with faster memory decline than the temporal+subcortical factor in the two-

factor model, which was indeed the case (p = 2e-6; Fig. S6A2).  

 On the other hand, the three-factor analysis of AD dementia patients suggested 

that the temporal factor was associated with worse memory than the cortical factor, while 

the cortical factor was associated with slightly worse memory than the subcortical factor 

(Fig. 6A). Therefore, we expected difference in baseline memory between the 

temporal+subcortical and cortical factors (in the two-factor model) to be diluted by the 

fusion of the temporal and subcortical factors, which was indeed the case (p = 0.17; Fig. 

S6A1). Therefore, additional insights into factor differences could be obtained by going 

from two factors to three factors. 

 As the number of factors was increased from three to four, the cortical factor split 

into frontal and posterior cortical factors. There was again consistency when comparing 

the four-factor results with the three-factor results. The two factors were mostly 

associated with similar behavioral trajectories, except that among Aβ+ MCI participants, 

the posterior cortical factor was associated with faster memory (p = 8e-3) and executive 

function (p = 9e-8) decline rates than the frontal cortical factor (Fig. S8).  

As the number of factors increased, the effective (average) number of participants 

per factor decreased (e.g., the effective number of Aβ+ CN participants “assigned to the 

temporal factor” is only 5.7 for the four-factor model), thus reducing our confidence in 
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larger number of factors despite the successful behavioral dissociation. Therefore, this 

work focused on interpreting the results of the three-factor model. As the ADNI database 

continues to grow, future work might re-visit the question of larger number of atrophy 

factors. 

 

Schematics of Memory and Executive Function Trajectories Based on Statistical 

Test Results 

The behavioral results (Figs. 5, 6 and 7) are summarized by the schematics of 

trajectories in Fig. 8, which were drawn based on how memory (or executive function) of 

each factor declined across disease stages and how the factors compared with each other 

in terms of memory (or executive function) decline at each stage.  

All salient features of the trajectories reflect the results of statistical tests (Figs. 5, 

6 and 7). For example, the executive function trajectories of all three atrophy factors were 

almost flat and did not diverge at the CN stage (Fig. 8B). This was based on the fact that 

there was no change in ADNI-EF [3] performance between Aβ+ CN and MCI 

participants for all three factors (Fig. 5B1), as well as no difference in ADNI-EF decline 

rates between factors among Aβ+ CN participants (Fig. 7B). From the MCI stage 

onwards, the trajectory of the cortical factor (red curve) became increasingly steep, 

reflecting the test results that executive function decline of the cortical factor accelerated 

from CN to MCI to AD (Fig. 5B2). This was also consistent with the ADNI-EF decrease 

between MCI and AD (Fig. 5B1). In contrast, trajectories of the temporal and subcortical 

factors (blue and green curves) remained almost flat from MCI to AD because there was 

no difference in ADNI-EF performance between MCI and AD for the two factors (Fig. 

S5B1). In addition, cross-sectional and longitudinal differences between the factors (Figs. 

6B and 7B) were also respected in Fig. 8B, e.g., the cortical factor was associated with 

the worst baseline ADNI-EF and the most rapid decline among AD dementia patients. 

One salient feature of the memory trajectories was the crossing of the subcortical 

and cortical factors (blue and red curves), supported by the following behavioral tests. 

Among Aβ+ CN participants, both the temporal and subcortical factors exhibited 

significant memory decline rates, but not the cortical factor (Fig. 5A2). The temporal and 

subcortical factors showed faster memory decline than the cortical factor (Fig. 7A). These 
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results implied that the cortical (red) curve should be above the subcortical (blue) and 

temporal (green) curves immediately after CN (Fig. 8A). Among Aβ+ MCI participants, 

the temporal factor was associated with worse memory than the subcortical factor, but not 

the cortical factor (Fig. S7A1). This implies that the cortical (red) curve should be lower 

than the subcortical (blue) curve, closer to the temporal (green) curve. This is also 

consistent with the statistical test showing a significant decrease in memory performance 

between MCI and CN for the cortical and temporal factors, but not for the subcortical 

factor (Fig. 5A1). Together, the results imply that the cortical (red) curve, originally 

higher than the subcortical (blue) curve at the CN stage, later crossed the subcortical 

(blue) curve before the MCI stage. 
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Supplemental Methods 
Quality Control for Voxel-Based Morphometry. The outputs of each VBM step were 

visually checked by authors XZ and NS. In practice, all the VBM steps (except for brain 

extraction) did not require any manual interventions. The brain extraction (FSL BET [4]) 

sometimes resulted in inaccurate brain extraction, e.g., part of the neck was sometimes 

included as part of the brain. For these problematic cases, the parameters were manually 

tuned until the results were satisfactory. The 810 baseline scans and 560 follow-up scans 

(see the second paragraph of II. Examining Factor Robustness and Characteristics of 

Factor Compositions) were processed jointly to avoid bias introduced by processing the 

baseline and follow-up scans separately as two independent sets. Specifically, the 810 

baseline scans and 560 follow-up scans were mixed together and randomly divided into 

two sets, such that each set contained both baseline and follow-up scans. XZ and NS each 

processed one set. To ensure common quality control standards, XZ and NS 

independently processed a small number of the participants, compared their conclusions, 

and eventually reached consensus. 

 

Quantifying the Nested Hierarchy of Atrophy Factors. An important model parameter 

is the number of latent factors K. Therefore, we determined how factor estimation 

changed from K = 2 to 10 factors. An exhaustive search was performed to quantify the 

possibility that two atrophy patterns in the (K+1)-factor model were subdivisions of a 

pattern in the K-factor model (while the remaining K-1 atrophy patterns remained similar 

across both models). This quantification is based on the following idea: suppose an 

atrophy pattern in the K-factor model divides into the i-th and j-th patterns in the (K+1)-

factor model, then the average of the i-th and j-th patterns should be similar to the 

original pattern. To quantify the presence of this phenomenon, the Pr(Voxel | Factor) of 

the i-th and j-th latent factors were averaged into a single Pr(Voxel | Factor). The 

resulting K factors of the (K+1)-factor model were matched to the K-factor model by 

reordering the factors (using the Hungarian matching algorithm) to maximize the 

correlation of Pr(Voxel | Factor) between corresponding pairs of factors. After obtaining 

the optimal correspondence, the pairwise correlations were averaged across all pairs of 

factors, resulting in an average correlation value indicating the quality of the split (with 
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higher correlation values indicating a better split). By performing an exhaustive search 

over all pairs of i and j, we found the atrophy factor of the K-factor model whose split 

best approximated the (K+1)-factor model (Fig. S2A). This procedure was independently 

repeated using Pr(Factor | Patient) (Fig. S2B). 

 

Cross-Pipeline Validation of Atrophy Patterns. To ensure the atrophy factors were 

robust to choice of VBM software (FSL [2]), we performed posthoc analyses using 

FreeSurfer. Recall from Top Anatomical Structures Associated with Each Factor, that 

we have assigned each MNI GM anatomical structure to each of the three atrophy factors 

(Table S1). The structural MRI data of the 378 (= 43 CN + 147 MCI + 188 AD) 

participants were preprocessed using FreeSurfer so as to obtain volume estimates of all 

the anatomical structures for each participant. We then verified using GLM that each 

factor had a smaller total volume of its assigned GM anatomical structures than the other 

two factors (while controlling for ICV).  

For example, Table S1A shows the top GM anatomical structures associated with 

the temporal factor. A GLM was set up where the response variable y was the total 

volume of the anatomical structures listed in Table S1A, while the explanatory variables 

included the subcortical factor probability s, cortical factor probability c, and ICV i. 

Hence, the GLM was y = β0 + βs·s + βc·c + βi·i + ɛ, where β’s are the regression 

coefficients, and ɛ is the residual. The temporal factor probability t was implicitly 

modeled because t + s + c = 1. Intuitively, β0 reflected the temporal factor’s total GM 

volume of the structures while discounting ICV, βs reflected the response difference 

between the subcortical and temporal factors, and βc reflected the response difference 

between the cortical and temporal factors.  

Statistical tests of whether total GM volume y varied across factors involved null 

hypotheses of the form Hβ = 0, where β = [β0, βs, βc, βi]T, and H is the linear contrast [5]. 

By specifying different H’s, we were able to compare different pairs of factors. For 

example, H = [0, 1, 0, 0] tested possible differences between the subcortical and temporal 

factors, and H = [0, -1, 1, 0] compared the cortical and subcortical factors.  
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The GLM and statistical tests were repeated using Table S1B (top GM anatomical 

structures associated with the subcortical factor) and Table S1C (top GM anatomical 

structures associated with the cortical factor). 

 

Linear Mixed-Effects Modeling of Longitudinal Cognition Decline Among Aβ+ CN, 

Aβ+ MCI and AD Dementia Participants. To analyze variations in cognitive decline 

rates across atrophy factors, one could first estimate the decline rate for each participant 

and then model the estimated decline rates using GLM. However, this approach is 

suboptimal because participants with one or even two time points may have to be 

discarded because the decline rate cannot be estimated with confidence (e.g., [6]).  

Here we considered the linear mixed-effects (LME) model that provides 

significantly improved exploitation of longitudinal measurements [7] by accounting for 

both intra-individual measurement correlations and inter-individual variability. Under 

this framework, the longitudinal cognitive decline rates can be easily compared across 

atrophy factors for the 188 AD dementia patients, 147 Aβ+ MCI participants, and 43 Aβ+ 

CN participants.  

A single LME model was utilized to examine longitudinal changes in memory 

(ADNI-Mem [8]) across the atrophy factors in the 43 Aβ+ CN, 147 Aβ+ MCI, and 188 

AD dementia patients. The same model was estimated for K = 2, 3 and 4 factors, as well 

as for executive function (ADNI-EF) and MMSE. 

For ease of explanation, we will focus on explaining the LME model for the case 

of three atrophy factors and ADNI-Mem. Response variable y of the LME model 

consisted of the 378 (= 43 CN + 147 MCI + 188 AD) participants’ longitudinal ADNI-

Mem. Explanatory fixed-effects variables included binary MCI group indicator m, binary 

AD group indicator d, subcortical factor probability s, cortical factor probability c, 

interactions between group indicators and factor probabilities (i.e., m·s, m·c, d·s and d·c), 

time from baseline t, interactions between group indicators and time from baseline (i.e., 

m·t and d·t), interactions between factor probabilities and time from baseline (i.e., s·t and 

c·t), and interactions among group indicators, factor probabilities and time from baseline 

(i.e., m·s·t, m·c·t, d·s·t and d·c·t), while nuisance variables consisted of baseline age x1, 

sex x2, education x3 and total atrophy x4.  
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The resulting LME model was y = (β0 + βm·m + βd·d + βs·s + βc·c + βms·m·s + 

βmc·m·c + βds·d·s + βdc·d·c + β1·x1 + β2·x2 + β3·x3 + β4·x4 + b) + (βt0 + βtm·m + βtd·d + 

βts·s + βtc·c + βtms·m·s + βtmc·m·c + βtds·d·s + βtdc·d·c)·t + ɛ, where β’s are the regression 

coefficients, b is the random intercept, and ɛ is the residual. For the same reasons 

provided in the previous section, the temporal factor probability and binary CN group 

indicator were implicitly modeled. Intuitively, βt0 reflected the temporal factor’s decline 

rate at the CN stage, βt0 + βtm reflected the temporal factor’s decline rate at the MCI stage, 

and βt0 + βtm + βts + βtms reflected the subcortical factor’s decline rate at the MCI stage. 

With this model setup, variations in age, sex, education and total atrophy were controlled 

for across participants.  

Statistical tests were performed in two stages. First, we tested whether ADNI-

Mem decline rate accelerated, decelerated or stayed the same across disease stages for 

each factor. More specifically, for each factor, we first tested whether decline in memory 

and executive function was significant at the CN stage and then examined possible 

changes in decline rates from CN to MCI as well as from MCI to AD. For example, to 

test whether ADNI-Mem decline was significant at the CN stage for the subcortical factor, 

the null hypothesis was βt0 + βts = 0. To test whether the decline rate changed from CN to 

MCI for the subcortical factor, the null hypothesis was βtm + βtms = 0. Finally, null 

hypothesis βtd + βtds – βtm – βtms = 0 tested whether the decline accelerated from MCI to 

AD. The test results for memory and executive function are shown in Figs. 5A2 and 5B2, 

respectively. Details on hypothesis testing in the LME model can be found in [7]. 

To foreshadow the results, the hypothesis tests in the previous paragraph hinted at 

differences in ADNI-Mem decline rates across the factors. Therefore, statistical tests of 

whether ADNI-mem decline rates varied across factors at each disease stage were 

performed. More specifically, at each disease stage, we first performed an omnibus 

statistical test on whether there were differences in memory decline rates across factors 

and then tested for pairwise differences. Take the MCI stage as an example. Rejecting the 

null hypothesis βts + βtms = βtc + βtmc = 0 would imply differences in ADNI-Mem decline 

rates across the three factors among Aβ+ MCI participants. Rejecting the null hypothesis 

that βts + βtms = 0 would suggest that the subcortical factor and temporal factor were 

associated with different ADNI-Mem decline rates. Rejecting the null hypothesis that βtc 
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+ βtmc = 0 would suggest that the cortical factor and temporal factor were associated with 

different ADNI-Mem decline rates. Finally, rejecting the null hypothesis that βts + βtms = 

βtc + βtmc would suggest that the subcortical and cortical factors were associated with 

different cognitive decline rates.  

The results of the above statistical tests are illustrated in Figs. 5A2, 5B2, 7, S6A2, 

S6B2, S7A2, S7B2, S7C2, S8A2 and S8B2, where (except in Figs. 5A2 and 5B2) the 

blue dot corresponds to the estimated difference in cognitive decline rate between two 

“pure factors” after controlling for age, sex, education and total atrophy. For example, 

when comparing temporal and subcortical factors at the AD dementia stage, the estimated 

difference in cognitive decline rate is given by βts + βtds. The red bar corresponds to the 

standard error of this estimation given by SD(βts + βtds). 

  



Zhang et al.                                                 Latent Atrophy Factors in Alzheimer’s Disease 

	 10	

References 
 
[1] Fischl B (2012) FreeSurfer. NeuroImage 62(2):774-781. 
 
[2] Douaud G, et al. (2007) Anatomically related grey and white matter abnormalities in adolescent-onset 
schizophrenia. Brain 130(9):2375-2386. 
 
[3] Gibbons LE, et al. (2012) A composite score for executive functioning, validated in Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) participants with baseline mild cognitive impairment. Brain 
Imaging Behav 6(4):517-527. 
 
[4] Smith SM (2002) Fast robust automated brain extraction. Hum Brain Map 17(3):143-155.  
 
[5] Koch KR (1999) Parameter estimation and hypothesis testing in linear models. Springer Sci & 
Business Media. 
 
[6] Murray ME, et al. (2011) Neuropathologically defined subtypes of Alzheimer’s disease with distinct 
clinical characteristics: a retrospective study. Lancet Neurol 10(9):785-796. 
 
[7] Bernal-Rusiel JL, Greve DN, Reuter M, Fischl B, Sabuncu MR (2013) Statistical analysis of 
longitudinal neuroimage data with linear mixed effects models. NeuroImage 66:249-260. 
 
[8] Crane PK, et al. (2012) Development and assessment of a composite score for memory in the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI). Brain Imaging Behav 6(4):502-516. 



K = 2: Temporal + Subcortical

L R

K = 2: Cortical

L R

0.8e-5 2.5e-5

R                     L

R                     L

Fig. S1. Sagittal, coronal and axial slices of the probabilistic atrophy maps for K = 2, 3 and 
4 atrophy factors. Bright color indicates high probability of atrophy at that spatial location 
for a particular atrophy factor, i.e., Pr(Voxel | Factor).
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Fig. S1 (cont’d). 
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Fig. S2. Quantifying the nested hierarchy of latent atrophy factors in terms of (A) atrophy 
patterns and (B) individual factor compositions. A high correlation value at “K-(K+1)” on 
the x-axis indicates a high-quality split from the K-factor model to the (K+1)-factor model 
(see Supplemental Methods of SI). For example, the close-to-one values at “2-3” in both 
(A) and (B) suggest that the splits of both the atrophy patterns and individual factor 
compositions are high-quality from two to three atrophy factors. Overall, the high 
correlation values from 2 to 10 support a nested hierarchy of latent atrophy factors.



Fig. S3. Probabilistic atrophy maps for K = 3 factors estimated with (A) 91 Aβ+ AD 
dementia patients, (B) all 188 AD dementia patients, and (C) 147 Aβ+ MCI participants. 
The three different cohorts yielded highly similar atrophy patterns. Bright color indicates
high probability of atrophy at that spatial location for a particular atrophy factor, i.e., 
Pr(Voxel | Factor). 
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FreeSurfer Structure Name Average 
Probability

Right-Amygdala 3.81e-5

Left-Amygdala 3.59e-5

ctx-rh-entorhinal 3.03e-5

ctx-lh-entorhinal 2.87e-5

Right-Hippocampus 2.86e-5

Left-Hippocampus 2.51e-5

ctx-rh-parahippocampal 2.24e-5

ctx-lh-temporalpole 2.06e-5

ctx-rh-temporalpole 1.95e-5

ctx-lh-parahippocampal 1.78e-5

ctx-rh-inferiortemporal 1.52e-5

ctx-lh-middletemporal 1.50e-5

ctx-rh-middletemporal 1.47e-5

ctx-rh-fusiform 1.40e-5

ctx-lh-inferiortemporal 1.32e-5

ctx-lh-fusiform 1.26e-5

ctx-rh-insula 1.26e-5

ctx-lh-insula 1.20e-5

ctx-lh-superiortemporal 1.09e-5

ctx-lh-rostralanteriorcingulate 1.03e-5

ctx-rh-superiortemporal 9.82e-6

ctx-rh-medialorbitofrontal 8.39e-6

ctx-rh-rostralanteriorcingulate 7.77e-6

ctx-rh-lateralorbitofrontal 7.71e-6

ctx-lh-medialorbitofrontal 7.71e-6

ctx-rh-transversetemporal 7.13e-6

ctx-lh-lateralorbitofrontal 6.92e-6

Right-VentralDC 5.95e-6

ctx-lh-caudalanteriorcingulate 3.71e-6

Table S1A. Top anatomical 
structures associated with the 
temporal factor (see Methods). The 
temporal factor was associated with 
significantly greater atrophy in these 
structures than the subcortical factor 
(p = 2e-15) and cortical factor (p = 
4e-15). There were no differences in 
atrophy of these structures between 
the subcortical and cortical factors (p 
= 0.84). See Supplemental Methods 
of SI. 



FreeSurfer Structure Name Average 
Probability

Right-Accumbens-area 1.85e-5

Left-Accumbens-area 1.75e-5

Right-Putamen 1.31e-5

Left-Cerebellum-Cortex 1.16e-5

Left-Putamen 1.13e-5

Right-Cerebellum-Cortex 1.10e-5

Left-Thalamus-Proper 8.82e-6

Right-Thalamus-Proper 7.99e-6

Right-Caudate 7.62e-6

ctx-lh-lingual 7.58e-6

Left-Caudate 7.50e-6

ctx-rh-lingual 7.16e-6

ctx-lh-parstriangularis 7.10e-6

ctx-rh-parstriangularis 6.52e-6

ctx-rh-parsopercularis 6.25e-6

ctx-rh-superiorfrontal 5.81e-6

ctx-rh-parsorbitalis 5.57e-6

Left-VentralDC 5.46e-6

ctx-lh-parsorbitalis 5.26e-6

ctx-lh-superiorfrontal 5.01e-6

ctx-lh-frontalpole 4.31e-6

ctx-rh-frontalpole 3.57e-6

Brain-Stem 3.36e-6

Right-Pallidum 2.55e-6

Left-Pallidum 2.22e-6

Table S1B. Top anatomical 
structures associated with the 
subcortical factor (see Methods). 
The subcortical factor was associated 
with significantly greater atrophy in 
these structures than the temporal 
factor (p = 1e-5) and cortical factor 
(p = 2e-12). The temporal factor had 
more atrophy in these structures than 
the cortical factor (p = 0.01). See 
Supplemental Methods of SI. 



FreeSurfer Structure Name Average 
Probability

ctx-lh-bankssts 1.15e-5

ctx-rh-inferiorparietal 1.10e-5

ctx-lh-precuneus 1.00e-5

ctx-rh-bankssts 9.92e-6

ctx-rh-precuneus 9.07e-6

ctx-lh-inferiorparietal 8.94e-6

ctx-lh-caudalmiddlefrontal 8.47e-6

ctx-rh-caudalmiddlefrontal 8.37e-6

ctx-rh-lateraloccipital 8.22e-6

ctx-lh-supramarginal 7.99e-6

ctx-lh-lateraloccipital 7.64e-6

ctx-rh-isthmuscingulate 7.32e-6

ctx-rh-cuneus 7.16e-6

ctx-lh-isthmuscingulate 7.11e-6

ctx-lh-superiorparietal 6.89e-6

ctx-rh-supramarginal 6.74e-6

ctx-lh-paracentral 6.53e-6

ctx-lh-cuneus 6.47e-6

ctx-lh-transversetemporal 6.29e-6

ctx-rh-posteriorcingulate 6.29e-6

ctx-lh-parsopercularis 6.05e-6

ctx-lh-posteriorcingulate 5.87e-6

ctx-lh-rostralmiddlefrontal 5.69e-6

ctx-rh-precentral 5.69e-6

ctx-rh-superiorparietal 5.57e-6

ctx-rh-rostralmiddlefrontal 5.41e-6

ctx-lh-precentral 5.33e-6

ctx-lh-pericalcarine 5.29e-6

ctx-lh-postcentral 5.27e-6

ctx-rh-pericalcarine 4.94e-6

ctx-rh-postcentral 4.73e-6

ctx-rh-paracentral 4.68e-6

ctx-rh-caudalanteriorcingulate 3.83e-6

Table S1C. Top anatomical 
structures associated with the cortical 
factor (see Methods). The cortical 
factor was associated with 
significantly greater atrophy in these 
structures than the temporal factor (p 
= 7e-6) and subcortical factor (p = 
4e-7). There were no differences in 
atrophy of these structures between 
the temporal and subcortical factors 
(p = 0.62). See Supplemental
Methods of SI. 
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Fig. S4. Stability of factor compositions over two years for (A) 115 AD dementia patients, 
(B) 260 MCI participants, and (C) 185 CN participants. Each participant corresponds to a 
dot, whose color indicates amyloid status: red for Aβ+, green for Aβ-, and blue for 
unknown. For each atrophy factor (plot), x-axis and y-axis represent, respectively, the 
probabilities of factor at baseline and two years after baseline. In the ideal case where 
factor probability estimations remain exactly the same after two years, one would expect a 
y = x linear fit as well as a r = 1 correlation. In our case, the linear fits were close to y = x 
with r > 0.82 for all three atrophy factors for all clinical groups, suggesting that the factor 
compositions were stable despite disease progression.



Fig. S5A. Factor compositions of (1) 147 Aβ+ MCI participants and (2) 43 Aβ+ CN 
participants for K = 3 factors. Each participant corresponds to a dot, whose location (in 
barycentric coordinates) represents the factor composition. Corners of the triangle 
represent “pure factors”; closer distance to the respective corners indicates higher 
probabilities for the respective factors. Most dots are far from the corners, suggesting that 
most participants expressed multiple factors. 
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Fig. S5B. Factor compositions of (1) 188 AD dementia patients, (2) 147 Aβ+ MCI 
participants, and (3) 43 Aβ+ CN participants for K = 2 factors. Histograms were created 
with participants’ cortical factor probability (x-axis). Therefore the left (or right) extreme 
corresponds to the pure temporal+subcortical (or cortical) factor. In addition, colors in (1) 
indicate amyloid status: red for Aβ+, green for Aβ-, and blue for unknown. The majority of 
the population lies around the center, suggesting that most participants expressed both 
atrophy factors. 
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Fig. S5C. Factor compositions of (1) 188 AD dementia patients, (2) 147 Aβ+ MCI 
participants, and (3) 43 Aβ+ CN participants for K = 4 factors. Each participant 
corresponds to a dot, whose location represents the factor composition. Tetrahedron 
corners represent “pure factors”; closer distance to a corner corresponds to higher 
probability for the corresponding factor. Color in (1) indicates amyloid status: red for Aβ+, 
green for Aβ-, and blue for unknown. Most dots are far from the corners, suggesting that 
most participants expressed multiple factors. 
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Table S2. Characteristics of 188 AD dementia patients by factor. Data are weighted 
averages (weighted standard deviation) with weights corresponding to factor probabilities. 
Highlighted p values (blue) are characteristics significantly different across factors. 
*Computed by linear hypothesis test on GLM or likelihood ratio test on logistic regression 
for sex (see Methods). †Only available for 182 patients. ‡Only available for 100 patients. 
§The original counts were 0, 1 or 2.

Temporal Subcortical Cortical Overall p*

Baseline age (years) 76 (6.9) 76 (7.1) 74 (7.8) 8e-7

Age at AD onset (years)† 72 (7.5) 73 (7.7) 70 (8.5) 1e-5

Years from onset to 
baseline† 3.8 (2.6) 3.5 (2.4) 3.5 (2.4) 0.29

Education (years) 15 (3.1) 14 (3.1) 15 (3.2) 0.15

Sex (0 for male) 0.4 (0.5) 0.5 (0.5) 0.5 (0.5) 0.27

Amyloid (pg/mL)‡ 141 (39) 149 (51) 140 (36) 0.09

APOE ε2§ 0.03 (0.2) 0.08 (0.3) 0.04 (0.2) 0.03

APOE ε4§ 0.86 (0.7) 0.81 (0.7) 0.87 (0.7) 0.61



Fig. S6. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
(A) memory and (B) executive function between K = 2 factors. Comparisons remaining 
significant after FDR control (q = 0.05) are highlighted in blue. Blue dots are estimated 
differences between “pure atrophy factors”, and red bars show the standard errors (see 
Methods and Supplemental Methods of SI). 
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Fig. S7A. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
memory among K = 3 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S7B. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
executive function among K = 3 factors. Comparisons remaining significant after FDR 
control (q = 0.05) are highlighted in blue. Blue dots are estimated differences between 
“pure atrophy factors”, and red bars show the standard errors (see Methods and
Supplemental Methods of SI). 
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Fig. S7C. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
MMSE among K = 3 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S8A. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
memory among K = 4 factors. Comparisons remaining significant after FDR control (q = 
0.05) are highlighted in blue. Blue dots are estimated differences between “pure atrophy 
factors”, and red bars show the standard errors (see Methods and Supplemental Methods 
of SI). 
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Fig. S8B. Comparisons of (1) cross-sectional baseline and (2) longitudinal decline rates of 
executive function among K = 4 factors. Comparisons remaining significant after FDR 
control (q = 0.05) are highlighted in blue. Blue dots are estimated differences between 
“pure atrophy factors”, and red bars show the standard errors (see Methods and
Supplemental Methods of SI). 
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Allyson Rosen, PhD – Past Investigator
Jared Tinklenberg, MD – Past Investigator

Banner Sun Health Research Institute:
Marwan N. Sabbagh, MD 
Christine M. Belden, PsyD
Sandra A. Jacobson, MD
Sherye A. Sirrel, CCRC

Boston University: 
Neil Kowall, MD
Ronald Killiany, PhD
Andrew E. Budson, MD
Alexander Norbash, MD – Past Investigator

Patricia Lynn Johnson, BA – Past Investigator

Howard University: 
Thomas O. Obisesan, MD, MPH 
Saba Wolday, MSc
Joanne Allard, PhD

Case Western Reserve University: 
Alan Lerner, MD
Paula Ogrocki, PhD 
Curtis Tatsuoka, PhD
Parianne Fatica, BA, CCRC

University of California, Davis – Sacramento:
Evan Fletcher, PhD 
Pauline Maillard, PhD 
John Olichney, MD
Charles DeCarli, MD – Past Investigator
Owen Carmichael, PhD – Past Investigator

Neurological Care of CNY: 
Smita Kittur, MD – Past Investigator

Parkwood Hospital: 
Michael Borrie, MB ChB 
T-Y Lee, PhD
Dr Rob Bartha, PhD

University of Wisconsin: 
Sterling Johnson, PhD
Sanjay Asthana, MD
Cynthia M. Carlsson, MD, MS

University of California, Irvine - BIC: 
Steven G. Potkin, MD
Adrian Preda, MD
Dana Nguyen, PhD

Banner Alzheimer's Institute: 
Pierre Tariot, MD
Anna Burke, MD 
Ann Marie Milliken, NMD
Nadira Trncic, MD, PhD, CCRC – Past Investigator
Adam Fleisher, MD – Past Investigator
Stephanie Reeder, BA – Past Investigator

Dent Neurologic Institute:
Vernice Bates, MD
Horacio Capote, MD
Michelle Rainka, PharmD, CCRP



Ohio State University: 
Douglas W. Scharre, MD 
Maria Kataki, MD, PhD 
Brendan Kelley, MD

Albany Medical College: 
Earl A. Zimmerman, MD 
Dzintra Celmins, MD 
Alice D. Brown, FNP

Hartford Hospital, Olin Neuropsychiatry 
Research Center: 
Godfrey D. Pearlson, MD
Karen Blank, MD 
Karen Anderson, RN 

Dartmouth-Hitchcock Medical Center: 
Laura A. Flashman, PhD
Marc Seltzer, MD
Mary L. Hynes, RN, MPH
Robert B. Santulli, MD – Past Investigator

Wake Forest University Health Sciences: 
Kaycee M. Sink, MD, MAS
Leslie Gordineer 
Jeff D. Williamson, MD, MHS – Past Investigator
Pradeep Garg, PhD – Past Investigator
Franklin Watkins, MD – Past Investigator

Rhode Island Hospital: 
Brian R. Ott, MD 
Geoffrey Tremont, PhD
Lori A. Daiello, Pharm.D, ScM

Butler Hospital:
Stephen Salloway, MD, MS
Paul Malloy, PhD
Stephen Correia, PhD 

UC San Francisco:

Howard J. Rosen, MD
Bruce L. Miller, MD
David Perry, MD

Medical University South Carolina:
Jacobo Mintzer, MD, MBA 
Kenneth Spicer, MD, PhD
David Bachman, MD

St. Joseph’s Health Care:
Elizabeth Finger, MD
Stephen Pasternak, MD
Irina Rachinsky, MD
John Rogers, MD
Andrew Kertesz, MD – Past Investigator
Dick Drost, MD – Past Investigator

Nathan Kline Institute
Nunzio Pomara, MD
Raymundo Hernando, MD
Antero Sarrael, MD

University of Iowa College of Medicine
Susan K. Schultz, MD
Karen Ekstam Smith, RN
Hristina Koleva, MD
Ki Won Nam, MD
Hyungsub Shim, MD– Past Investigator

Cornell University
Norman Relkin, MD, PhD
Gloria Chiang, MD
Michael Lin, MD
Lisa Ravdin, PhD

University of South Florida: USF Health Byrd 
Alzheimer’s Institute
Amanda Smith, MD
Balebail Ashok Raj, MD
Kristin Fargher, MD– Past Investigator



 

	

ADNI Participating Institutions 

Johns Hopkins University; Washington University, St. Louis; University of 

California, Los Angeles; University of Pennsylvania; Cleveland Clinic Lou Ruvo Center 

for Brain Health; Sunnybrook Health Sciences Centre; Parkwood Hospital; University of 

California, San Diego; University of Kansas; Dent Neurologic Institute; McGill 

University / Jewish General Hospital Memory Clinic; Rush University Medical Center; 

Baylor College of Medicine; Duke University Medical Center; Wein Center for Clinical 

Research; Indiana University; St. Joseph’s Health Center – Cognitive Neurology; Banner 

Alzheimer’s Institute; New York University Medical Center; Mayo Clinic, Jacksonville; 

Mount Sinai School of Medicine; University of Michigan, Ann Arbor; University of 

British Columbia, Clinic for AD & Related; University of Wisconsin; Oregon Health and 

Science University; Northwestern University; Boston University; Case Western Reserve 

University; Emory University; University of Pittsburgh; Brigham and Women’s Hospital; 

University of Alabama, Birmingham; Medical University of South Carolina; University 

of California, Irvine; Howard University; University of California, Davis; Rhode Island 

Hospital; Mayo Clinic, Rochester; Nathan Kline Inst. for Psychiatric Rsch; University of 

Rochester Medical Center; University of California, Irvine (BIC); The Weill Cornell 

Memory Disorders Program; Georgetown University; University of California, San 

Francisco; Banner Sun Health Research Institute; Premiere Research Institute; Butler 

Hospital Memory and Aging Program; Dartmouth Medical Center; Ohio State University; 

University of Southern California; University of Iowa; Wake Forest University Health 

Sciences; University of Kentucky; University of South Florida, Tampa; Columbia 

University; Yale University School of Medicine; University of Texas, Southwestern MC; 

Stanford / PAIRE; Albany Medical College. 

The list is also available online at http://adni.loni.usc.edu/about/centers-

cores/study-sites/. 


