
Web Appendix

A1 Software code – estimation of bias

We provide R code to implement the formulae for the estimation of bias under the

null and Type 1 error rate discussed in this paper. These formulae assume that

there are multiple genetic variants; bias is a single genetic variant is unlikely to be

substantial [Angrist and Pischke, 2009]. We assume that the units for the risk factor

and outcome (for a continuous outcome) are the same for the ordinary least squares

(OLS) and instrumental variable (IV) estimates; the simplest case is when all variables

are in standard deviation units (so var x and var y are both 1).

expf = (N-K-1)/K * rsq/(1-rsq) # expf is expected value of the F statistic

# N is sample size

# K is number of genetic variants

# rsq is the expected value of R^2

# (otherwise expf can be specified directly)

bias = olsbias*overlap.prop*(1/expf)

# bias is the bias of the IV estimate under the null

# olsbias is the bias of the OLS estimate (observational

# estimate for binary outcome)

# overlap.prop is the proportion of overlap

# between the samples (between 0 and 1)

var = var_y/(N*var_x*rsq) # var is the variance of the IV estimate

# (continuous outcome)

# var_x is the variance of the risk factor

# var_y is the variance of the outcome

var = 1/(N*rsq*var_x*prop.case*(1-prop.case))

# var is the variance of the IV estimate

# (binary outcome)

# prop.case is the proportion of cases (between 0 and 1)

type1err = 2-pnorm(1.96+bias/sqrt(var))-pnorm(1.96-bias/sqrt(var))

# type1err is the estimated Type 1 error rate

# rate under the null for a nominal 5% two-sided

# significance level

This code is implemented in a web application at https://sb452.shinyapps.io/

overlap.
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A2 Further validation of the analytic formulae for bias and

Type 1 error rate

To further assess the validity of the analytic formulae for the bias and Type 1 error

rate, we simulated data using the same data-generating model (2) under the causal

null (βX = 0) for a different level of confounding (βU = 1), a different number of IVs

(K = 10), and a different range of values of the IV strength (α = 0.02, 0.03, 0.05)

for cases where there is 0% overlap, increasing in increments of 10% up to a 100%

overlap. In each case, we report the mean 2SLS (or equivalently IVW) estimate and

empirical Type 1 error rate from 10 000 simulations, and the estimated bias and Type

1 error rate from the analytic formulae above, using mean values of the OLS estimate

and F statistic estimated across the simulations (the relative bias is estimated as the

reciprocal of the average value of the F statistic across simulations – this would not

be available for a single dataset in practice).

Results are given in Table A1. The Monte Carlo standard error for the observed

mean estimate is around 0.002, and for the Type 1 error rate is around 0.2 to 0.3%.

We see that the analytical formulae slightly overestimate the observed bias and Type

1 error inflation. However, the estimated bias and Type 1 error rate are close to the

observed values throughout.
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α = 0.02 α = 0.03 α = 0.05

Mean F = 1.8 Mean F = 2.9 Mean F = 6.3

Mean OLS = 0.500 Mean OLS = 0.499 Mean OLS = 0.497

Percentage Expected Observed Expected Observed Expected Observed

overlap Bias (Error) Mean (Error) Bias (Error) Mean (Error) Bias (Error) Mean (Error)

0% 0.000 (5.0) -0.002 (4.9) 0.000 (5.0) 0.002 (5.0) 0.000 (5.0) -0.002 (5.2)

10% 0.027 (5.2) 0.024 (4.9) 0.017 (5.1) 0.018 (5.3) 0.008 (5.0) 0.005 (5.1)

20% 0.054 (5.6) 0.049 (5.5) 0.035 (5.4) 0.034 (5.2) 0.016 (5.2) 0.012 (5.2)

30% 0.082 (6.4) 0.076 (6.2) 0.052 (5.9) 0.049 (5.8) 0.024 (5.4) 0.018 (5.4)

40% 0.109 (7.5) 0.103 (7.4) 0.069 (6.6) 0.064 (6.8) 0.032 (5.7) 0.026 (5.5)

50% 0.136 (9.0) 0.128 (8.2) 0.086 (7.5) 0.079 (7.2) 0.040 (6.1) 0.033 (5.7)

60% 0.163 (10.8) 0.153 (9.6) 0.104 (8.6) 0.096 (7.9) 0.048 (6.6) 0.040 (6.1)

70% 0.191 (12.9) 0.178 (11.3) 0.121 (10.0) 0.111 (9.1) 0.056 (7.2) 0.047 (6.6)

80% 0.218 (15.4) 0.205 (13.7) 0.138 (11.5) 0.126 (10.6) 0.064 (7.9) 0.055 (6.8)

90% 0.245 (18.3) 0.231 (16.3) 0.156 (13.3) 0.143 (12.2) 0.072 (8.7) 0.063 (7.8)

100% 0.272 (21.4) 0.258 (18.3) 0.173 (15.3) 0.159 (13.5) 0.079 (9.6) 0.068 (8.4)

Web Table A1: Comparison of the expected bias with a null causal effect (βX = 0)

and Type 1 error rate (5% significance level) calculated using formulae (3) and (4)

with the observed mean and empirical Type 1 error rate from a simulation study for

a two-sample IV estimate with sample overlap and 10 IVs.
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We also repeated the simulation of Table II, except with a sample size of 1000

rather than 10 000. Results for α = 0.01, 0.02, 0.03 have been omitted, as the instru-

ments are so weak that they are barely associated with the risk factor (even an F

statistic of 1.3 corresponds to a two-sided p-value of 0.34 for an F distribution on 20

and 979 degrees of freedom, and an R2 statistic of 2.7% for a sample size of 1000

is little more than would be explained on average by a variable that was truly inde-

pendent from the risk factor), and so would not be used as instruments in practice.

Generally the expected estimates of relative bias (reciprocal of F parameter) are close

to the observed values. However, while Type 1 error rate is overestimated for the

weakest of instruments, it is underestimated for large values of α. This may be due

to overrejection of the null by the two-stage least squares method using a Wald test

with weak instruments [Stock and Yogo, 2002]. There are several solutions to this

problem, including the use of Fieller’s theorem [Burgess et al., 2015b], inversion of the

Anderson–Rubin test statistic [Mikusheva, 2010], and bootstrapping [Moreira et al.,

2009] for improved inference properties with weak instruments; none of these methods

assume that the IV estimate is normally distributed.
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Web Table A2: Repeat of Simulation 2 with continuous outcome to validate bias
and Type 1 error rate formulae with reduced sample size

Mean Mean Relative Empirical Expected

α Mean F Mean R2 OLS estimate IV estimate bias (Mean F )−1 Type 1 error Type 1 error

0.04 1.3 2.7% 0.994 0.747 0.751 0.743 80.6% 84.9%

0.05 1.5 3.0% 0.989 0.651 0.658 0.657 75.0% 78.9%

0.06 1.8 3.5% 0.986 0.560 0.568 0.570 67.7% 71.0%

0.07 2.0 4.0% 0.980 0.484 0.494 0.490 62.5% 62.4%

0.08 2.3 4.5% 0.974 0.418 0.429 0.428 54.9% 54.6%

0.09 2.7 5.2% 0.967 0.355 0.367 0.369 48.6% 46.7%

0.10 3.1 6.0% 0.959 0.306 0.319 0.321 42.3% 40.2%

0.15 5.7 10.5% 0.913 0.161 0.177 0.174 24.5% 20.8%

0.20 9.4 16.1% 0.856 0.098 0.115 0.106 17.2% 13.0%

Simulation results with null causal effect βX = 0, and confounder effect βU = 2 to estimate the

relative bias and empirical Type 1 error rate (5% nominal significance level) of the two-stage

least squares (or equivalently, inverse-variance weighted) instrumental variable (IV) estimate;

the relative bias is the bias of the IV estimate divided by the bias of the ordinary least squares

(OLS) estimate. The relative bias is theoretically predicted to be close to the reciprocal of the

mean value of the F statistic, (Mean F )−1. This table is a repeat of Table II from the main

paper, except with a smaller sample size.
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We also repeated the simulation of Table II, except with a binary risk factor.

This was implemented by first simulating the risk factor as in equation (2), and then

dichotomizing the risk factor at its median to take the value 0 or 1. Associations with

the risk factor were still estimated using a linear model in the two-stage least squares

method. Web Table A3 shows marked differences in the mean OLS and IV estimates

compared with those in Table II; however, the expected estimates of relative bias and

Type 1 error rate were close to their observed values for all strengths of instrument.

Web Table A3: Repeat of Simulation 2 with continuous outcome to validate bias
and Type 1 error rate formulae with binary risk factor

Mean Mean Relative Empirical Expected

α Mean F Mean R2 OLS estimate IV estimate bias (Mean F )−1 Type 1 error Type 1 error

0.01 1.1 0.2% 2.256 1.995 0.884 0.882 66.6% 66.3%

0.02 1.5 0.3% 2.254 1.449 0.643 0.654 52.8% 52.1%

0.03 2.2 0.4% 2.252 1.004 0.446 0.455 37.9% 39.4%

0.04 3.1 0.6% 2.249 0.687 0.305 0.318 27.0% 28.5%

0.05 4.3 0.9% 2.245 0.494 0.220 0.231 20.3% 22.0%

0.06 5.8 1.1% 2.240 0.368 0.164 0.172 16.0% 17.9%

0.07 7.5 1.5% 2.234 0.280 0.125 0.133 13.2% 14.9%

0.08 9.5 1.9% 2.226 0.217 0.097 0.106 11.3% 11.8%

0.09 11.7 2.3% 2.219 0.176 0.079 0.086 10.0% 10.7%

0.10 14.2 2.8% 2.211 0.142 0.064 0.071 9.0% 9.7%

0.15 30.1 5.7% 2.157 0.071 0.033 0.033 6.7% 7.5%

0.20 51.4 9.3% 2.087 0.038 0.018 0.019 5.9% 5.9%

Simulation results with null causal effect βX = 0, and confounder effect βU = 2 to estimate the

relative bias and empirical Type 1 error rate (5% nominal significance level) of the two-stage

least squares (or equivalently, inverse-variance weighted) instrumental variable (IV) estimate;

the relative bias is the bias of the IV estimate divided by the bias of the ordinary least squares

(OLS) estimate. The relative bias is theoretically predicted to be close to the reciprocal of the

mean value of the F statistic, (Mean F )−1. This table is a repeat of Table II from the main

paper, except with a binary risk factor.
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A3 Software code – bound for the F parameter

The lower bound of a one-sided 95% confidence interval for the F parameter can be

obtained by: i) finding the non-centrality parameter for which the given value of the

F statistic is the mean of the non-central F distribution; ii) finding the value such

that the cumulative distribution function for that non-central F distribution is 5%.

We demonstrate this procedure with the example from the paper of body mass

index in which the F statistic is 97.02, and the degrees of freedom for the F distribution

are ν1 = 97 and ν2 = 339 127. The mean of the non-central F distribution on (ν1, ν2)

degrees of freedom with non-centrality parameter λ (for ν2 > 2) is:

E(F ) =
ν2(ν1 + λ)

ν1(ν2 − 2)
.

In this case, the non-centrality parameter is:

λ =
97× 97.02× 339 125

339 127
− 97 = 9313.88

The cumulative distribution function of the non-central F distribution can be calcu-
lated using the R code:

pf(value, df1=97, df2=339127, ncp=9313.884)

We find the value such that the distribution function takes the value 0.05 by an
iterative search:

> pf(94, df1=97, df2=339127, ncp=9313.884)

[1] 0.06549997

> pf(93, df1=97, df2=339127, ncp=9313.884)

[1] 0.02182131

> pf(93.5, df1=97, df2=339127, ncp=9313.884)

[1] 0.03890898

> pf(93.75, df1=97, df2=339127, ncp=9313.884)

[1] 0.05084209

> pf(93.625, df1=97, df2=339127, ncp=9313.884)

[1] 0.04455657

> pf(93.6875, df1=97, df2=339127, ncp=9313.884)

[1] 0.04761685

> pf(93.71875, df1=97, df2=339127, ncp=9313.884)

[1] 0.04920851

> pf(93.734375, df1=97, df2=339127, ncp=9313.884)

[1] 0.05002001

Hence the lower limit of the one-sided 95% confidence interval is approximately

93.734.
The following function performs this search automatically:
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findlowerflimit <- function(f, nu1, nu2) {

lambda = f*nu1*(nu2-2)/nu2-nu1

lower = f-1

while (pf(lower, df1=nu1, df2=nu2, ncp=lambda)>0.05) { lower = lower-1 }

upper = lower + 1

while ( abs(pf((lower+upper)/2, df1=nu1, df2=nu2, ncp=lambda)-0.05)>0.0001 ) {

if (pf((lower+upper)/2, df1=nu1, df2=nu2, ncp=lambda)>0.05)

{ upper = (lower+upper)/2 }

if (pf((lower+upper)/2, df1=nu1, df2=nu2, ncp=lambda)<0.05)

{ lower = (lower+upper)/2 }

}

return((lower+upper)/2)

}

Running this code gives:

> findlowerflimit(97.02, 97, 339127)

[1] 93.73484

Hence the lower limit of the one-sided 95% confidence interval is approximately

93.735. Further precision can be obtained if required, but 1 decimal place should be

enough to give a good estimate of the potential bias.

For comparison, the corresponding lower limits for educational attainment are:

1. Discovery sample: observed F statistic = 20.2, sample size = 101 069, number

of genetic variants = 5, lower limit for F statistic = 14.0.

2. Follow-up sample: observed F statistic = 5.1, sample size = 25 490, number of

genetic variants = 5, lower limit for F statistic = 2.3.

In these cases, the lower one-sided 95% limit for the F statistic is substantially lower

than the observed value of the F statistic.
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A4 Software code – allele score method using summarized

data with arbitrary weights

The estimate from an inverse-variance weighted method for uncorrelated genetic vari-

ants is equal to that from of an allele score method with internally-derived weights

(also equal to that from a two-stage least squares method). The inverse-variance

weighted method can be modified to give the same estimate as that from an allele

score method with arbitrary weights [Burgess et al., 2016b]. In particular, it can

provide the same estimate as that from an allele score method with equal weights.

Inputs are the genetic associations with the risk factor (bx, standard error bxse),

the genetic associations with the outcome (by, standard error byse), and the allele

score weights (wts):

wts = rep(1, length(bx))

# for equal weights, otherwise specify weights

beta_SSw = sum(wts*by/byse^2)/sum(wts*bx/byse^2)

# equivalent to original IVW method when wts = bx

se_SSw_first = sqrt(sum(wts^2/byse^2)/sum(wts*bx/byse^2))

# standard error from delta method (first-order approximation)

se_SSw_second = sqrt(sum(wts^2/byse^2)/sum(wts*bx/byse^2)^2 +

sum(wts*by/byse^2)^2/sum(wts*bx/byse^2)^4*sum(wts^2/byse^2) -

2*theta*sum(wts*by/byse^2)/sum(wts*bx/byse^2)^3)

# standard error from delta method (second-order approximation)

# theta is the correlation between the numerator and denominator of the estimate

# if the correlation is not known, it can be taken as the observational

# correlation between the risk factor and outcome;

# a sensitivity analysis can also be performed for its value

If the genetic variants are correlated, then a valid test statistic for the causal null
hypothesis can be derived:

beta_SSw_cor = sum(wts*by/byse^2)/sum(wts^2/byse^2)

se_SSt_cor = sqrt(sum((wts*byse^-1)%o%(wts*byse^-1)*rho)/

sum(wts^2/byse^2)^2)

# standard error from delta method (first-order approximation)

# rho is the matrix of correlations between the genetic variants

This test statistic can also be used with uncorrelated genetic variants [Burgess

et al., 2016b], although it does not have an interpretation as an effect estimate with

either correlated or uncorrelated variants.
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