
Methods 

Data sources and SNP selection  
To select genetic variants associated with HDL-cholesterol, published data from the Global 

Lipids Genetics Consortium (GLGC) [1] were used. The GLGC meta-analyzed data from 23 

studies of European ancestry (n=94,595 individuals), which were genotyped with genome-

wide SNP arrays and additionally 37 studies (n=93,982 individuals) which were genotyped 

with the Metabochip array [2]. For each locus that was found to be associated with HDL-

cholesterol with SNPs having a p-value <5x10-8, the lead SNP was selected, resulting in a list 

of 70 independent SNPs (sample size ranging from 92,820 to 187,141). We decided not to 

include SNPs that were found to be genome-wide significant exclusively with other lipid 

phenotypes than HDL cholesterol. With this approach weak instrument bias can be held as 

small as possible. For all SNPs, beta effect estimates, standard errors and genomic control 

corrected p-values were retrieved from the original publication. Beta effects refer to standard 

deviation of inverse-normally transformed HDL-cholesterol values for each increase in 

number of the effect allele. The effect allele is defined as the allele that increases HDL-

cholesterol. 

Publicly available GWAS summary statistics from the CKDGen Consortium were retrieved, 

and all 70 selected HDL-cholesterol SNPs were looked up for the association of these SNPs 

with kidney function parameters [3]. This consortium combined genome-wide data from up to 

133,413 individuals of European ancestry from 49 predominantly population-based studies. 

The mean age of these studies ranged from 37 to 81 years and all studies combined 

included on average 54.8% women. The estimated glomerular filtration rate (eGFR) based 

on a creatinine measurement was estimated using the four-variable Modification of Diet in 

Renal Disease Study Equation and the mean values for the studies ranged from 71.2 to 

104.8 ml/min/1.73m². Chronic kidney disease (CKD) was defined by an eGFR <60 

ml/min/1.73m² and was present in 12,385 individuals. The study sample included 11,522 

cases with diabetes and 54,824 cases with hypertension. A sample characteristic and a short 

description for each study cohort were provided in the Supplementary Tables 1 and 16 of 

Pattaro et al. [3].  

Summarized meta-analysis results (beta estimates, for genomic control corrected standard 

errors and genomic control corrected p-values) were available for eGFR based on serum 

creatinine (eGFR). 68 of the 70 selected SNPs were available, with a sample size ranging 

from 122,575 to 133,808. Beta effects refer to change in log-transformed eGFR for each 

increase in number of the effect allele. The direction of effect estimates were aligned to the 

HDL-increasing allele. In both consortia, meta-analysis was performed using inverse 
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variance-weighted fixed effect models. Between the two consortia, there is a partial overlap: 

15 studies contributed to both, the GLGC and CKDGen Consortia, including data from about 

58,000 participants.  

Statistical Methods 

For all individual SNPs, p-values from the association on log-transformed eGFR values are 

presented. Overrepresentation of p-values smaller than 0.05 was tested using a binomial 

test. The significance level of the single SNP look-up was set to 0.05/68=7.35x10-4 after 

Bonferroni correction on the number of SNPs. 

The Mendelian randomization analysis was performed using the published summarized data 

as described in [4]. The independence of SNPs was assessed using SNiPA 

(http://snipa.helmholtz-muenchen.de/snipa/) [5]. The ratio estimates from all 68 SNPs were 

combined using the fixed-effects meta-analysis model with inverse variance weights as 

proposed by Burgess et al. [4]. The inverse variance weighted ratio estimate can also be 

interpreted as a weighted regression from the HDL-cholesterol effect estimates of the HDL-

cholesterol SNPs on the eGFR effect estimates of the same SNPs (removing the intercept). 

A random-effects model was applied when significant heterogeneity was detected based on 

the Cochran’s Q statistic [6]. Since we observed a substantial overlap between the two 

consortia of about 43%  we included the random effects model corrected for the overlap as 

well as the standard random effects model approach as recommended by Burgess et al. 

(only available in online software code:  

 http://www.mendelianrandomization.com/index.php/software-code).  

To assess the strength of the instrumental variables (SNPs), the proportion of the phenotypic 

variance of HDL-cholesterol explained by the HDL-cholesterol SNPs was estimated as given 

in Pattaro et al. [3;7]. Using their formula, the percentage of phenotypic variance explained 

can be estimated as ∑ 𝑅𝑅𝑖𝑖268
𝑖𝑖=1 , where 𝑅𝑅𝑖𝑖2 = 𝛽𝛽𝑖𝑖2𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖) 𝑣𝑣𝑣𝑣𝑣𝑣(𝐻𝐻𝐻𝐻𝐻𝐻)⁄  is the coefficient of 

determination for all SNPs associated with HDL-cholesterol, 𝛽𝛽𝑖𝑖 is the estimated effect of the 

ith SNP on HDL in s.d., 𝑣𝑣𝑣𝑣𝑣𝑣(𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖) = 2 × 𝑀𝑀𝑀𝑀𝐹𝐹𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖 × �1 −𝑀𝑀𝑀𝑀𝐹𝐹𝑆𝑆𝑆𝑆𝑃𝑃𝑖𝑖� and 𝑣𝑣𝑣𝑣𝑣𝑣(𝐻𝐻𝐻𝐻𝐻𝐻) = 1, since 

the beta estimates refer to change in 1 s.d. of HDL-cholesterol. 

A central assumption of the Mendelian randomization approach is that SNPs used as 

instrumental variables should not have pleiotropic effects. Therefore, different methods were 

used to detect possible pleiotropy and also to account for it:  

1) The MR-Egger regression to assess directional pleiotropy 

2) The Weighted median estimation method 

3) The Exclusion of possible pleiotropic SNPs as sensitivity analysis 

a) based on the gtx package in R 
2 

 

http://snipa.helmholtz-muenchen.de/snipa/
http://www.mendelianrandomization.com/index.php/software-code


b) based on the GWAS catalog 

4) Adjusting for the effect estimates of HDL-cholesterol SNPs on LDL-cholesterol and 

triglycerides 

MR-Egger regression [8] was used to investigate whether there is directional bias caused by 

pleiotropy. Directional bias means that the pleiotropic effects of genetic variants are not 

balanced about the null and are drawn into one direction. This regression is an adaption of 

the standard Egger regression which is used to analyze small study bias in the meta-analysis 

literature. The intercept obtained from the MR-Egger regression gives an estimate of 

directional bias and the slope coefficient provides an estimate of the causal effect, which is 

consistent even when all the genetic variants are invalid instrumental variables with respect 

to pleiotropy [8]. Additionally, the weighted median estimator was calculated as proposed by 

Bowden et al. [9]. In this method, the ratio estimates are ordered and weighted by the inverse 

of their variance. The weighted median estimator is then the median of these estimates, 

according to the weights. This estimator is consistent if at least 50% of the weight comes 

from valid instrumental variables (IV). Although the MR-Egger regression method allows all 

the IVs to be invalid, the weighted median approach offers the advantages of an improved 

precision compared to the MR-Egger regression. Therefore, both methods were used to 

assess whether pleiotropy had influenced our results. 

In a further sensitivity analysis, all SNPs that were assumed to have pleiotropic effects were 

excluded. Each SNP was screened for association with other phenotypes in the NHGRI-EBI 

GWAS Catalog (https://www.ebi.ac.uk/gwas/) [10] and a sensitivity analysis was performed 

excluding such SNPs, which were associated with other phenotypes than HDL-cholesterol. 

However, bias in Mendelian randomization only occurs due to pleiotropy, when the SNPs are 

associated with other phenotypes, which also influence the outcome variable (in our case: 

eGFR) or are independently associated with the outcome variable itself. If this is not the case 

and there is also no direct effect of the SNPs with the outcome variable, the effect of the 

SNPs on the outcome is mediated completely by the intermediate variable (in our case: HDL-

cholesterol concentrations). Then, the causal effects of all SNPs individually should rather be 

homogeneous and approximate the true unknown causal effect of HDL-cholesterol on eGFR 

[6;11;12]. This assumption was tested by a goodness of fit test using the function 

“grs.filter.Qrs” in package “gtx” in R (Johnson, T.: Efficient Calculation for Multi-SNP Genetic 

Risk Scores. Poster presentation at the American Society of Human Genetics Annual 

Meeting, San Francisco, 2012). This function performs a stepwise downward “model 

selection” in which SNPs are iteratively removed from the risk score until the heterogeneity 

test is no longer significant at the specified threshold (pthreshold=0.05). An illustration of this 

approach is given in Figure 4. SNPs showing a deviation from this assumption and are 
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therefore potentially not mediated completely by HDL-cholesterol (as SNP 5 in Figure 4) 

were excluded in a further sensitivity analysis. 

As it might be too strict to exclude the SNPs that seem to have pleiotropic effects, we also 

included a linear regression adjusted for LDL-cholesterol and triglycerides as in Do et al. [13]. 

For this analysis, effect estimates for all selected HDL-C SNPs on Triglycerides and LDL-C 

were derived from Willer et al. [14]. Using this approach, it is possible to adjust for the effects 

the HDL-cholesterol SNPs might have on LDL-cholesterol and triglycerides.  
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