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S1.1 Text. Spatial information fusion model (SIFM) 

 

S1.1.1. Theoretical framework 

The information fusion principle of SIFM is adapted from probabilistic SLAM (simultaneous localization 

and mapping). The standard problem of probabilistic SLAM is to estimate the distribution  1: 1: 1:, | ,t t tp x m z u  

in high-dimensional state space, where 
1:tx  is the set of poses (position and direction) from step 1 to t, m is 

the map of the observable environment, 
1:tz  is the set of external sensory inputs from step 1 to t, and 

1:tu  is 

the set of self-motion estimates from step 1 to t. The aim is to approximate the probability distribution of all 

possible paths and maps given uncertain self-motion and external inputs.  

SIFM is implemented as a Rao-Blackwellized particle filter [1-4] which separates the estimation of 

the trajectory from the learning of associations between anatomically co-localized grid and boundary cells – 

a set of associations is called a ‘map’ here. This implementation of the probabilistic spatial information 

fusion principle can directly use and predict information encoded by neuronal responses, is tractable in 

simulation, and readily understood mathematically. Factorization of the SLAM problem reduces the 

dimensionality of the state space of all poses and maps to a 3-D state space of pose (two dimensions of 

position and one of direction), and a conditional term attached to each instantiation of pose. To perform this 

factorization step in SIFM, associations between each boundary code and grid code were assumed to be 

independent of grid code. Note that this assumption is an approximation in reality since real boundaries tend 

to span multiple spatially adjacent grid codes. Nonetheless this step makes the problem computationally 

tractable and has been found in robotic SLAM models to work well under real-world conditions [2-5]. The 

state estimation problem can then be factorized into 

 
     

   

1: 1: 1: 1: 1: 1: 1: 1: 1:

1: 1: 1: 1: 1:

, | , | , | , ,

| , | ,

t t t t t t t t t

t t t t t

p x m z u p x z u p m x z u

p x z u p m x z




  (S1) 

The last simplification assumes that the map is independent of self-motion cues given the path and 

environmental inputs are already known. 
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Since the model was developed to account for the real-time activity of grid cells, only current pose 

and map information is required so the factorization of (S1) can be rewritten as  

      1: 1: 1: 1: 1: 1:, | , | , | ,t t t t t t t t t tp x m z u p x z u p m x z   (S2) 

Applying a Markov assumption, past self-motion and boundary information are discarded once incorporated 

into the pose and map estimates, so the factors of (S2) can be written as 

    1: 1: 1 1| , | , , ,t t t t t t t tp x z u p x x z u m    (S3) 

and 

    1: 1: 1| , | , ,t t t t t t tp m x z p m m x z   (S4) 

Note that 
tm  denotes the map which can be estimated by the information acquired up to step t, but the true 

layout of the environment is assumed to be static over time. Applying Bayes theorem to (S3), 

      1 1 1 1 1 1| , , , | , , , | , ,t t t t t t t t t t t t t tp x x z u m p z x x u m p x x u m        (S5) 

From (S5), 

    1 1 1| , , , | ,t t t t t t t tp z x x u m p z x m     (S6) 

because the previous pose and most recent self-motion cues have already been incorporated into the pose tx . 

Also,  

    1 1 1| , , | ,t t t t t t tp x x u m p x x u     (S7) 

because pose change is assumed to be independent of the map. Combining (S2) to (S7), 

        1: 1: 1 1 1, | , | , | , | , ,t t t t t t t t t t t t t tp x m z u p z x m p x x u p m m x z     (S8) 

In a particle filter implementation of (S8),  1| , , 1t t t tp m m x z  , because the map attached to each particle is 

updated given its pose, so the map is assumed to be conditionally exact. There are abstract worlds for which 

an exact map update is achievable recursively, e.g., in an environment made of binary blocks, where an 

occupancy map is used, and all measurements of each block’s occupancy are statistically independent. 
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Empirical evidence shows that violation of these assumptions in real-world environments are well-tolerated 

[3-5]. 

The posterior state distribution      1: 1: 1 1| , | , | ,t t t t t t t t tp x z u p z x m p x x u   is maintained by a set of 

particles 
tX . Each particle, 

[ ]i

t tx X , represents one hypothesis of pose, and is associated with its own map, 

[ ]i

tm , which has been constructed stepwise using its private estimate of path 
[ ]

1:

i

tx  and common external inputs 

1:tz . For example, each particle in SIFM consists of one grid code and its association map. The details of 

how information encoded by grid and boundary cells are used in SIFM are detailed in subsequent S1 Texts. 

Particles are recursively updated using first a prediction step and then a correction step. In the 

prediction step, the most recent noisy self-motion estimate, 
tu , is used to generate a probabilistic estimate of 

current pose, i.e., 

  [ ] [ ]

1~ | ,i i

t t t tx p x x u
  (S9) 

by sampling from an internal model of self-motion error. This step corresponds to adding random phase 

noise to a grid code (see later).  

In the correction step, the temporary particle set (commonly called the proposal distribution) is 

resampled according to its importance weight 

  [ ] [ ] [ ]

1| ,i i i

t t t tw p z x m    (S10) 

such that particles with low importance are likely to be replaced by particles with a high weight. In SIFM, an 

exact importance weight is not available. For instance, a grid code repeats an infinite times spatially, which 

makes the exact likelihood of current sensory input given the current grid code (and map) difficult to 

compute. Instead, the importance weight is approximated by a prediction error term (S1.1.7 Text). A similar 

surrogate function of the Bayesian likelihood term has been demonstrated previously to be an effective 

approximation for particle filter implementation on a mobile robot [6]. Stochastic universal resampling [6, 7] 

is used to normalize the importance, 
[ ]i

tw , after every step. 

Finally, the map, 
[ ]

1

i

tm  , is updated for each particle [i], based on the common sensory input, 
tz , and 

the pose represented by that particle, 
[ ]i

tx , i.e., 
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  [ ] [ ] [ ] [ ]

1| , ,i i i i

t t t t tm m m x z   (S11) 

where each map is updated according to its corresponding 
[ ]i

tx . The recursive map update step of (S11) 

implies that all the map-relevant pose and sensory information have already been incorporated into the 

previous map, and the latest pose and sensory estimates are sufficient to build on the existing map. This is 

possible because uncertainty is carried by the distribution of particles so that each particle has the exact map 

conditional on its pose and sensory history. Adaptations of 
[ ]i

tx , 
tz  required to use grid cell and boundary 

cell responses are described next. 

 

S1.1.2. Oscillatory grid codes 

To use and predict grid cell activity in SIFM, pose 
[ ]i

tx  is replaced by a spatially-repetitive grid code whose 

properties are based on rodent grid cell data [8], 

 

[ ,1]

[ ] [ ]

[ , ]

[ ]

:

i

t

i i

t t i M

t

i

t

f

x g
f



 
 
  
 
 
  

  (S12) 

where M = 8 grid scales (modules) unless otherwise stated, and 
[ ]i

t  denotes the heading orientation 

associated with grid code [i]. Of note is that directional information is encoded in rodent medial entorhinal 

cortex as both pure head direction cells and conjunctive grid cells [9], and revealed through hippocampal 

inactivation in normally directionally-insensitive grid cells [10]. In SIFM, the activity of eight grid cells plus 

an orientation estimate constitutes each grid code, which is a surjective function of pose (conjunctive 

position and orientation). Unless otherwise specified (e.g., Fig 8B), a total of 103 grid codes are used.  

The response of each probabilistic grid cell [i] at time t is determined by the superposition of plane waves 

along non-parallel directions dj , i.e.,  

 
  

[ ]
[ ]

11

1 2
cos cos 1

2

wn t i i
i

t dj

j j

f
r

 




  



  
      

  
   (S13) 
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where 
jr  is the spatial period along each direction, 

[ ]i

  denotes the linear displacement estimate of grid cell 

[i] at step τ, and 
 i

  denotes the heading estimate of grid cell [i] at step τ, noting that 
[ ]i

  and 
 i

 include 

both sensory and phase noise (see S1.1.3 Text). Unless otherwise specified (e.g., S4 Fig), three plane waves 

are used (nw = 3), oriented 60° apart. Spatial periods 
jr  range from 30 cm to 339 cm along a geometric 

series increasing by 2  per scale module [8]. The grid response, [ ]i

tf , is linearly mapped to between 0 and 

1. Grid spatial irregularities [11] can be incorporated by varying the spatial periodicity gain parameter, jr , or 

preferred orientation of each dendritic input, dj [12] (S4 Fig). A non-zero phase offset between pairs of grid 

cells within a module [13] can also be implemented via additional firing offset during a probabilistic update.  

 Although the grid response f is not dependent on any particular biophysical model of grid cell 

activity, one possible interpretation is that it is an approximation of the oscillatory interference model [12, 

14, 15] with three dendritic inputs, i.e., 

     
3

[ ]

1

cos cosi

t d s

j

f t t 


 
   

 
   (S14) 

where   is the Heaviside function, 
s  is the somatic oscillatory frequency, and 

d is the dendritic 

oscillatory frequency which depends on the animal’s movement speed, 
ts , along the preferred direction dj  

of dendritic input j: 

   cos
i

d s t t djs         (S15) 

From (S14) and (S15), the interference pattern along direction j oscillates at 2   cycles per unit distance. 

Note that the temporal oscillation frequency of the interference pattern, 
  cos
i

t t djs   , is directly 

proportional to the speed component along direction j, 
  cos
i

t t djs   , and thus maintains a constant spatial 

oscillatory period, 2  , along direction j. Relating back to (S13), over a discrete time step Δt,  

 
[ ]

2
i

tt js t r      (S16) 
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By combining (S13), (S14), (S15) and (S16), testable hypotheses can be generated about local field 

potential oscillations (e.g., omnidirectional grid expansion in novel environments in S6 Fig). 

 

S1.1.3. Noisy self-motion cues 

Self-motion cues, 
1:tu , are assumed to provide noisy angular and linear displacement information, which 

update grid codes in the same manner as (S9), i.e.,  

  [ ] [ ]

1~ | ,i i

t t t tg p g g u
  (S17) 

All grid codes receive a common noisy self-motion input, 
tu , suffering from further independent phase noise 

during updates within each grid code. The sensory angular displacement estimation error,  , is assumed to 

be Gaussian, i.e.,  

  2~ ,N            (S18) 

where   was estimated previously to be approximately 0.03 radians per step in darkness (at 9/7 steps per 

s), by modelling the drift in rat head direction cell tuning functions [6, 7, 16, 17]. The linear displacement 

estimation error,  , is also assumed to be Gaussian with a coefficient of variation of 0.1, i.e., 

  2~ ,N         (S19) 

and where 10   . The independent phase noise is assumed to follow the same distributions so that 

 
 
 

[ ] [ ]

[ ]

[ ] [ ]

cos

sin

i i

t ti

t
i i

t t

u

 

 

 
 

  
 
 

  (S20) 

where  
[ ]

2~ ,
i

t tN      and  
[ ]

2~ ,
i

t tN    . Since the rotation input, t , already contains sensory 

noise, each grid code’s heading accumulates both sensory and phase noise, i.e., 
[ ]

[ ] [ ]

1

i
i i

tt t     . Combining 

(S20) with (S12) and (S13), yields the grid code prediction step of (S17). 

 In SIFM, the independent phase noise has a compensatory effect by sampling the local space of the 

noisy displacement estimate  ,  , so that by chance, some grid codes end up close to the ideal grid code 
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had there been no sensory noise (others end up further). It is explicitly assumed in SIFM that grid phases 

across grid cells within each code are tightly correlated. A small amount of non-cumulative independent 

noise is tolerated within a grid code since association map grid codes learn within a small zone in grid code 

space. However, cumulative random phase drift between elements of a grid code would lead to SIFM failure 

because cumulative phase decoupling within each grid code would correspond to large jumps in physical 

position, unrelated to actual physical displacement. Recent theoretical work demonstrated that 

autocorrection of grid codes is possible using networks of noisy neurons, whereby cumulative phase 

decoupling is effectively prevented [18]. Furthermore, both algorithmic and possible neural network 

implementations have recently been presented which can calculate the physical vector between two grid 

codes [19]. Therefore, independent grid phase drift which corresponds to an unrealistically large jump 

(vector magnitude) in physical space can potentially be detected by a similar mechanism, and either 

corrected or removed (e.g., by incorporating the error into the importance weight in SIFM). Finally, an 

operational SIFM grid code need not include cells from all grid scale modules (e.g., Fig 8B), which means 

there could be functional independence between some grid modules [8]. 

 

S1.1.4. Noisy boundary codes 

In SIFM, boundary information is encoded by two types of boundary cells – sensory and predictive 

boundary cells. Sensory boundary cells are based on the boundary vector cell (BVC) model [20-23], with 

some important modifications. First, SIFM boundary input is assumed to be in egocentric coordinates since 

the animal may not always have a stable compass cue, especially in darkness. The original BVC model 

assumed that boundaries provide allocentric input to BVC’s, and the directional cue was assumed to be from 

a global compass, possibly via the head direction system. However, the rodent head direction system 

accumulates error in darkness and drifts randomly [16, 17], which would destabilize BVC response. Instead, 

SIFM boundary cells use an estimated allocentric direction, 
[ ]i

t , associated with each grid code rather than a 

single global direction which may be unstable. Hence modified boundary cell activation, 
Allo

BVf , is 

  [ ]

'

, ' 'Allo i

BV t

r

f r drd


        (S21) 
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where '  denotes the egocentric direction of each detectable boundary point, r denotes the distance of the 

boundary point, and   denotes the boundary cell’s conjunctive distance-and-direction response function 

[21], i.e., 

  

   
2 2

2 22 2
,

2

r

r

r

r
Exp

r







  

 
 

 

    
 

 
 

   (S22) 

The domain of integration in (S21) is the set of egocentric polar coordinates of all boundary points which 

contribute to a boundary cell’s response, which in turn depends on the boundary geometry, the current true 

pose, availability of vision, and the transparency of boundary walls. The directional Gaussian tuning mean 

and standard deviation,   and  , and radial distance Gaussian tuning mean and standard deviation, 
r  

and 
r , are described in detail below where short range boundary cells are introduced. 

 To model correlated boundary detection error, zero-mean random Gaussian noise is added to all 

egocentric boundary vectors during each boundary detection step. This error constitutes a random rotation of 

all egocentric boundary points,  2~ 0,B N   , the same magnitude as self-motion angular noise; and 

random translations along Cartesian directions,  2~ 0,0.5B

x N   and   2~ 0,0.5B

y N  in units of cm. 

For simulation efficiency, a single set of egocentric boundary cell responses are first found using 

(S22), and used as the environmental sensory input, i.e., 

 

[1]

[ ]

' :

Ego

BV

t t

Ego n

BV

f

z b

f

 
 

   
 
 

  (S23) 

where 'tb  denotes the egocentric boundary code, consisting of elements 
[ ]Ego j

BVf  which denotes the response 

of boundary cell [j] to boundary points according to (S22) in egocentric coordinates. The tuning parameters 

of all boundary cells are described below. Then for each grid code, 'tb  is transformed into an estimated 

allocentric boundary code  [ ] [ ]| ',i i

t t tb b   and compared against the prediction from the grid code and map. 
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The transform is a circular shift operation (linear interpolation) on the elements of 
[ ]Ego j

BVf  which have the 

same tuning distance but different tuning directions, i.e., 

 
 

 

 

 
1 22 1[ , ' ] [ , ' ][ , ]

2 1 2 1

, ,

, ,

Ego i Ego iAllo i

BV BV BVf f f
     

   

 
 
 

  (S24) 

where  ,a b  denotes the angular separation of a and b, [ ]

1 1'
i

t     and [ ]

2 2'
i

t    are the allocentric 

directions which flank   and which 1'  and 
2'  map to, respectively, given the estimated heading [ ]i

t . For 

example, given [ ] 130i

t   , 
[ ,90 ] [ , 30 ] [ , 60 ]20 10

30 30

Allo i Ego i Ego i

BV BV BVf f f      . Hence an allocentric boundary code is 

estimated from a common set of egocentric boundary cell responses and the estimated heading [ ]i

t  of each 

grid code, i.e., 

  

[ ,1]

[ ] [ ]

[ , ]

| ', :

Allo i

BV

i i

t t t

Allo i n

BV

f

b b

f



 
 

  
 
 

  (S25) 

where 
[i, ]Allo j

BVf  denotes the response of allocentric sensory boundary cell [j]  associated with grid code [i]. 

Notably, sensory boundary cells need to develop before SIFM grid cells can show stable grids, consistent 

with recent rodent developmental results [24].  

In contrast, predictive boundary cell responses depend on both grid cell response and learned 

associative weights, i.e., 

 [ , ] [ ] [ ] [ , ] [ ] [ , , ]

1 1| ,  i j i i i k i i j k

t t t t t t

k

b g m g W     (S26) 

and can therefore deviate from sensory boundary cell response  [ ] [ ]| ',i i

t t tb b  , and should mature along with 

grid cells (see S1.1.6 Text). Successful learning in a stable environment leads to convergence of sensory and 

predictive boundary cell responses, i.e.,    [ ] [ ] [ ] [ ] [ ]

1| ', | ,i i i i i

t t t t t tb b b g m  . For simplicity, head direction is 

assumed to be aligned with the heading  . Otherwise, an extra head rotation term is required to estimate 

sensory boundary cell activation, e.g.,  [ ] [ ]| ',i i Head

t t t tb b    . Since predictive boundary cells are unique to 

SIFM, their responses are stored for further analysis. Sensory boundary cell responses are not stored for 
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further analysis since their properties are virtually indistinguishable from boundary vector cells described 

previously [20, 21, 23]. Due to computer memory limitations, the response of each cell is averaged over all 

grid codes and maps. The latter reduces rate variability but otherwise produces similar boundary cell rate 

maps because both association maps and grid codes converge over time. 

In addition to long-range boundary cells of the BVC model, SIFM includes a population of short-

range boundary cells whose tuning distances are appropriate for boundary detection in darkness. The latter is 

assumed to have a maximum range of 7 cm, based on the longest rat whiskers being on average 6 cm [25] 

and head width and head movement adding a small radial range. A circular (panoramic) detection region is 

assumed, ignoring more extensive boundary detection contributions which may arise from the body and tail 

which trail significantly more than 7 cm behind the rat’s head. The short-range boundary cell tuning 

distances are  0.5,1.5,2.5,3.5,4.5,5.5,6.5,7.5,8.5SHORT

r  cm, with constant tuning standard deviation 

SHORT

r = 0.5 cm. Long-range boundary cell tuning distances are from model BVCs originally fitted to best 

account for hippocampal place fields[21]. The fitted tuning distances are 

 16.2,33.8,53.0,73.8,96.5,121.3,148.2,177.4,209.3,244.0LONG

r  cm, and the tuning standard deviations 

are given by  0 183 1LONG LONG

r r cm     where 
0  = 12 cm, taken from from the BVC model. 

Long-range boundary cell responses are assumed to be vision-dependent [26], and therefore limited 

by visual field [27] so only boundary points in the frontal 270° are used (limiting the domain of integration 

of '  in (S21)). Prediction error (see later) is similarly assumed to be limited for the long-range boundary 

cells corresponding to the frontal 270°.  

The directional Gaussian tuning parameters of SIFM boundary cells are 

 0,30,60,90,120,150,180,210,240,270,300,330  ° , and  = 15°, resulting in a total of 228 distinct 

boundary cell distance-direction pairs. Absolute direction is arbitrary in SIFM since initial grid orientations 

and grid phases are randomly assigned. However, for consistency and presentation clarity, 0° is aligned with 

the X-axis at the beginning of each learning trial, without loss of generality. Cumulative errors can lead to 

drift in map position and orientation, the latter especially in the absence of a compass. 
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During foraging, rats whisk at approximately 4-6 cycles per second [28], corresponding to 

approximately 4 whisks per step in darkness [6, 29]. For simplicity, a constant 4 boundary observations are 

modelled per step. Boundary information is learned once per step, immediately following the generation of 

the prediction error, based on (S10) and (S11). 

 

S1.1.5. Noisy compass cue 

Rodent head direction cell tuning is stable in the presence, but not absence, of vision [16]. A coarse compass 

is therefore assumed to be used specifically with vision. Compass error is assumed to be Gaussian, i.e., 

 2~ ,HD HDN   , where 
HD  is  liberally estimated to be 45°, an upper limit based on the width of head 

direction cell tuning functions [30]. The compass cue independently modulates the prediction error signal 

(S1.1.7 Text):  

 

2
[ ]

[ ]
i

i HDt
HD

HD

 




 
   
 

  (S27) 

In the absence of vision, 
[ ] 0i

HD  . 

 

S1.1.6. Associative learning between grid and boundary codes 

Each associative map element is updated according to the current grid code and sensory boundary 

information, based on (S11). In robotic probabilistic SLAM using occupancy maps, the map is typically 

assumed to be composed of independent locations, each either occupied or not. Map update then involves 

updating the estimated probability that each location is occupied (Chapter 9 of [5]). In SIFM, the boundary 

code is not readily transformed into occupancy. Instead, the boundary code itself is learned. Learning is 

restricted to a region in grid code space defined by a metric of distance between the current grid code and 

each map element. The update weight from grid code [i] to map element [k] is defined by a truncated 

Gaussian function: 
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 
 

2
[ , ] [ , ]

2
[ , ] [ , ]1

max[ , ] 2
12

0

M
i c k c

t m M
i c k cc

t mi k
ct g

g g

Exp if g g d

otherwise

 




  
   

     
   

   
 
  




  (S28) 

where M is the number of grid scales (modules) of grid cells (see S1.1.2 Text), and [ , ]k c

mg  is the grid code of 

association map element k at module c. Hence there is a small zone in grid code space within which each 

map grid code can learn boundary associations. Unless otherwise specified, 
max 0.01d   and 0.005g  , 

and association map grid codes are defined according to (S13) without noise, corresponding to a regular 

hexagonal spatial grid of scale 2 cm. Empirically, these values balance the need for grid codes to cover the 

traversable physical space, while maintaining sufficient spatial resolution for effective spatial learning. 

Although (S28) is efficient and straightforward to use in simulation, the distance between two grid codes can 

also be extracted using neural networks, via either rate- or phase- coded vector cell implementations [19]. 

Next, the resulting set of update weights for each grid code is normalized so that the total map update weight 

for any grid code [i] remains constant, i.e., 

 
[ , ] 1i k

t

k

    (S29) 

Finally, for grid code [i], the associative weight between map grid code [k] and predictive boundary 

cell [j] is updated according to 

 
 [ . ] [ , ] [ ] [ , ] [ , , ]

1 1[ , , ]

[ , ]

| ',i k i j i i k i k j

t t t t t ti k j

t i k

t

b b A W
W

A

   
   (S30) 

where 

 
[ , ] [ , ] [ , ]

1

i k i k i k

t t tA A     (S31) 

At the beginning of learning, 
[ , , ]

0 0.1i j kW  , which can be increased or decreased through learning, analogous 

to the prior probability of occupancy maps in probabilistic SLAM [2-5]. Since 
[ , ] [ ]| ', 0i j i

t t tb b   , 
[ , , ] 0i k j

tW  . 

For simplicity, associative learning is modelled directly between grid codes and boundary cells. Future 
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development of SIFM may involve grid cells activating a population of intermediate cells, such as place 

cells, which then learn associations with boundary cells. Note that during recall trials, no learning occurs 

(S1.1.8 Text). 

 The use of a cumulative learning record in (S31) allows a simple arithmetic mean of the sensory 

boundary code to be learned recursively using (S30). While this mathematically simple learning rule ensures 

transparency regarding the information which is learned, it is not essential for probabilistic learning per se. 

For example, an alternative simple learning based on a cell-wise boundary prediction error can also be used 

which does not require (S31), i.e., 

     [ , , ] [ , , ] [ . ] [ , ] [ ] [ , ] [ ] [ ]

1 1| ', | ,i j k i j k i k i j i i j i i

t t t t t t t t tW W b b b g m       (S32) 

where   denotes the learning rate. Empirically,   ranging from 0.05 to 0.5 can produce stable grids over 20 

minutes of probabilistic learning, initially naïve (S12 Fig). 

 

S1.1.7. Prediction error 

Applying the probabilistic SLAM framework to the elements of SIFM, the importance weight (S10) 

assigned to each grid code should be based on the likelihood of the sensory boundary code given the current 

grid code and association map. In practice, an exact likelihood function is difficult to define except under 

certain assumptions about the environment such as the world being made up of independent blocks which 

are either occupied or not (e.g., Chapter 9 of [5]). Furthermore, computations such as the estimation of an 

occupancy code from a boundary code can be difficult to implement either neurally or algorithmically. 

Hence a simple alternative likelihood function is used in SIFM. Since a predictive boundary code is a 

function of the current grid code and association map, a boundary prediction error can be defined which is 

inversely related to the importance weight, i.e., 

     
2

[ , ] [ ] [ ] [ , ] [ ]

1| , | ',i j i i i j i

t t t t t t

j

SSE b g m b b     (S33) 
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where  [ , ] [ ]| ',i j i

t t tb b   denotes the response of sensory boundary cell [j] in estimated allocentric coordinates 

of grid code [i], and  [ , ] [ ] [ ]

1| ,i j i i

t t tb g m 
 denotes the response of predictive boundary cell [j], which is a 

function of the current grid code, [ ]i

tg , and map, [ ]

1

i

tm 
 (see (S26)). The importance weight of (S10) is then 

approximated as 

 
[ ]

[ ]

2

i
i HD

t

SSE
w Exp

 
  

 
  (S34) 

and used for stochastic universal resampling following each step [6, 7, 31]. The culling of grid codes and 

association maps with high prediction error is coupled with cloning of those with low prediction error, 

thereby preserving a stable population of active grid cells. 

 It is worth noting that the resampling step in a particle filter implementation is a practical measure to 

prevent particle weight degeneracy, and not a fundamental requirement of information fusion. Without 

resampling when using finite particle populations, very few particles end up with most of the importance 

weight and cannot adequately sample the state space of interest. In SIFM, the useful population of grid 

codes and association maps would dwindle, progressively reducing the accuracy of the representation of 

uncertainty and hence information fusion itself. In contrast, if the size of a particle population is unlimited 

(or at least very large relative to the duration of learning), then the cumulative importance weight suffices to 

carry the necessary information about which particles are accurate, and which are not. Then resampling is 

not necessary since sufficient particles will remain near the correct state space despite being a decreasing 

fraction of the total. 

 

S1.1.8. Recall (localization) trials 

After learning, recall (localization) tests are assumed to occur with a frozen map averaged over all grid 

codes. This sped up simulations by at least an order of magnitude, allowing multiple trials to be carried out 

across different recall conditions. Freezing the map also has the advantage of preventing any possibility of 

performance variability being affected by continued learning (e.g., independent recall trials in darkness). 
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Unless otherwise specified, all recall trials began initially disoriented, modelled as a random 

distribution of grid codes over the learned map where weights had either increased >150% or decreased to 

<50% of the baseline weight 
[ , , ]

0

i j kW . 

Note that for 10-minute localization trials in 1 m circular arenas in darkness, animals were assumed 

to use the last available set of grid codes in light at the beginning of the darkness trial. In the original 

experiment [13], lights were switched off without disturbing the animal, allowing the last pose estimate in 

light to be used at the beginning of the darkness period. 

 

S1.1.9. Pseudocode for SIFM learning 

The following pseudocode summarizes the key steps in implementing SIFM for probabilistic learning, 

initially naïve. 

  

Model initialization 

Grid cells 

 Number of grid cells per grid code (e.g., 8) 

 Directions and phase offset of each oscillatory component (e.g., three directions at 0, 60 

and 120, with zero offset) 

Boundary cells 

 Egocentric direction tuning functions (  ,  ) 

 Distance tuning functions ( SHORT

r , LONG

r , SHORT

r , LONG

r ) 

Association maps (one per grid code) 

Predefine map grid codes and update range function ( [ , ]k c

mg , [ , ]i k

t   and 

 
2

[ , ] [ , ]

max

1

M
i c k c

t m

c

g g d


  ) 

Set prior association weights ( [ , , ]

0

i j kW ) 
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Noise 

Self-motion (  2~ 0,N    ,  2~ 0,N   ) 

Boundary detection (  2~ 0,B N    ,   2

~ 0,B B

x xN  ,   2

~ 0,B B

y yN  ) 

Compass (when available,  2~ ,HD HDN   ) 

Sensory limits 

Boundary detection radial range in darkness, e.g., 7 cm whisking range 

Boundary detection angular range using vision, e.g., frontal 270 degrees 

Boundary detection cycles per step, e.g., 4 whisks per step 

Boundary detection angular sampling resolution, e.g., 2 

 

Arena definition 

Arena geometry 

 e.g., rectangle of length 100 cm and width 70 cm 

Arena wall transparency  

e.g., semitransparent hairpin maze (ST), modelled by letting boundary cells respond to both 

local walls, as well as outer perimeter walls which are otherwise obstructed by local walls 

  

Trajectory definition 

Random trajectory (approximately uniform coverage of 2D spaces) 

Thigmotactic trajectory (concentrated coverage near outer boundary) 

Path-following (hairpin and radial arm mazes)  

Note the trajectory length is longer with vision (e.g., 50% larger tmax). 

 

Probabilistic learning 
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For t = 1 to tmax 

Noisy self-motion inputs:  

 2~ ,N       

 2~ ,N     

Noisy boundary inputs: egocentric distance and direction vectors of detectable boundary points 

(detectability depends on arena geometry, wall transparency, and availability of vision) 

Update grid codes using self-motion input and compensatory phase noise: 

 
 
 

[ ] [ ]

[ ]

[ ] [ ]

cos

sin

i i

t ti

t
i i

t t

u

 

 

 
 

  
 
 

 

  
3 [ ]

[ ]

1 1

1 2
cos cos 1

2

t i
ii

t t dj

j j

f u
r






 

 

  
      

  
   

Define activity of sensory boundary cells using boundary inputs (for all boundary detection cycles 

within each step), using an intermediate egocentric reference frame: 

 

   
2 2

2 22 2
,

2

r

r

r

r
Exp

r







  

 
 

 

    
 

 
   

 
'

, ' 'Ego

BV

r

f r drd


       

[1]

[ ]

' :

Ego

BV

t

Ego n

BV

f

b

f

 
 

  
 
 

  

Transform into allocentric boundary cell response: 

 

[ ,1]

[ ] [ ]

[ , ]

| ', :

Allo i

BV

i i

t t t

Allo i n

BV

f

b b

f



 
 

  
 
 
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 Note that defining boundary cell activities in an intermediate egocentric frame increases 

simulation efficiency, but is not required for model function. 

Noisy compass direction estimate when vision is available 

  2~ ,HD HDN    

Predict boundary cell activity from each grid code and corresponding association map  

[ , ] [ ] [ ] [ , ] [ ] [ , , ]

1 1| ,  i j i i i k i i j k

t t t t t t

k

b g m g W    

Find boundary prediction error of each grid code  

    
2

[ , ] [ ] [ ] [ , ] [ ]

1| , | ',i j i i i j i

t t t t t t

j

SSE b g m b b    

2
[ ]

[ ]
i

i HDt
HD

HD

 




 
   
 

 

Calculate the importance weight of each grid code  

[ ]
[ ]

2

i
i HD

t

SSE
w Exp

 
  

 
 

Resample grid codes and the paired association maps 

Update association maps using the new grid codes and sensory boundary information over the last 

step  

 [ . ] [ , ] [ ] [ , ] [ , , ]

1 1[ , , ]

[ , ]

| ',i k i j i i k i k j

t t t t t ti k j

t i k

t

b b A W
W

A

   
  

[ , ] [ , ] [ , ]

1

i k i k i k

t t tA A    

End for 

 

See SIFM_ProbabilisticLearning.m (S1 Code) for an example in Matlab. 
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S1.1.10. Pseudocode for SIFM recall 

The following pseudocode summarizes the key steps in implementing SIFM for probabilistic recall, using 

information learned previously. 

 

Model initialization 

The parameters of grid cells, boundary cells, association maps, noise, compass, and sensory limits 

were the same as the final step of the last learning trial.  

When initially disoriented, grid codes were randomly chosen from association map grid codes whose 

mean associative weight to boundary cells exceeded a change threshold (measured as the absolute 

difference from 0W ), as a marker of learning. When initially oriented, grid codes were set to the last 

oriented values. 

Due to computer storage limitations, only an average association map was kept at the end of each 

learning trial. Since no learning occurred during strictly recall trials, the same single association map 

was used for all grid codes during recall. 

 

Arena definition 

Arena properties during recall trials may differ from learning. 

  

Trajectory definition 

Trajectory properties during recall trials may differ from learning. 

 

Probabilistic recall 

For t = 1 to tmax 

Noisy self-motion inputs:  

 2~ ,N       

 2~ ,N     
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Noisy boundary inputs: egocentric distance and direction vectors of detectable boundary points 

(detectability depends on arena geometry, wall transparency, and availability of vision) 

Update grid codes using self-motion input and compensatory phase noise: 
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Define activity of sensory boundary cells using boundary inputs (for all boundary detection cycles 

within each step), using an intermediate egocentric reference frame: 

 
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Transform into allocentric boundary cell response: 
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 Note that defining boundary cell activities in an intermediate egocentric frame increases 

simulation efficiency, but is not required for model function. 

Noisy compass direction estimate when vision is available 

  2~ ,HD HDN    

Predict boundary cell activity from each grid code and corresponding association map  



S23 

 

[ , ] [ ] [ ] [ , ] [ ] [ , , ]
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Find boundary prediction error of each grid code  
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Calculate the importance weight of each grid code  

[ ]
[ ]

2

i
i HD

t

SSE
w Exp

 
  

 
 

Resample grid codes 

End for 

 

See SIFM_ProbabilisticRecall.m (S1 Code) for an example in Matlab. 
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S1.2 Text. Trajectory models 

 

All learning trials presented were 20 minutes in duration, comparable to training sessions in rodent 

experiments [8, 9, 11, 13, 32-35]. This duration was long enough to adequately sample the arena to calculate 

rate maps for grid cells and boundary cells, while being short enough to simulate multiple independent trials 

in reasonable computing time (minimum of 10 trials per condition). Subsequent test trial durations were 

based on published experiments [13, 32, 34]. Trajectory positions were assumed to correspond to the center 

of a rat’s head, which cannot physically touch any boundary wall and assumed to be no closer than 2 cm 

from the nearest boundary. 

 

S1.2.1. Random trajectory 

A random trajectory was used for rapid coverage of the entire space of each 2D arena [7]. This trajectory 

model was used for learning and recall trials with vision, providing complete sampling of the traversable 

space. Pseudocode used to model true displacement  ,t t  , starting at pose 
ty  for a random trajectory at 

time step t is shown below. 

 

Pseudocode begins  

Randomly draw angular displacement  2~ WN 0,t    

KeepSearching = true 

k=0 

While KeepSearching = true do 

Randomly draw linear displacement  2~ N ,t      

If displacement  ,t tl  from current pose ty  crosses a region within 2 cm of any boundary 

 k=k+1 

If RandomNumber > 0.5  

   2~ WN 0,    
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 1.1
k

t t        

Else 

 2~ WN 0,25    

 1.1
k

t t       

End 

Else 

KeepSearching = false 

End 

End 

  
  1

cos 1

sin 1

t t t

t t t t t

t

y

y y y

 

 





  
 

    
 

 

  

Pseudocode ends 

 

A new displacement  1 1,t t   was then generated recursively starting from the new pose 
1ty 
. 

For the random trajectory model, 0.5  , while for the thigmotactic bias trajectory model, 0.1  . The 

factor  1.1
k
 ensures that attempted turns gradually increase in magnitude while a viable next step has not 

been found. WN denotes a wrapped normal distribution. Note that the thigmotactic trajectory model variant 

is only suitable for convex arenas [7]. 

 

S1.2.2. Thigmotactic bias for learning in darkness 

For learning trials in darkness (e.g., Fig 8A), a trajectory model with additional thigmotactic bias was used 

to ensure adequate learning of boundary contact regions (< 7 cm from the nearest boundary), which resulted 

in denser sampling of short-range boundary contact information. 

There was an initial 2 minutes of pure thigmotaxis where the trajectory remained 2 cm from the 

boundary, moving anticlockwise. The remaining trajectory were 1-minute cycles consisting of a period of 
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random trajectory with thigmotactic bias ( 0.1  ) and a period of standard random trajectory ( 0.5  ), 

set empirically to maintain approximately uniform coverage of the traversable space. 

 

S1.2.3. Hairpin maze 

A path was constructed from straight segments along the center of the hairpin maze corridors (Fig 6A). 

Along each segment, the endpoint was used as a beacon to generate the noisy trajectory such that 

 2~ WN ,Beacon

t t      where  
Beacon

t  was the true direction to the next beacon point at t. This algorithm was 

also used to generate the virtual hairpin paths (Fig 7C). 

 

S1.2.4. Total trajectory length was decreased in darkness 

The total trajectory length affects the spatial sampling density of the arena during learning and recall. Most 

published rat experiments were defined by the total time of each trial, which may have variable total 

trajectory length depending on movement speed. Rats typically run about 25% to 75% faster with vision 

during foraging [29, 36, 37]. This was modelled as an increase of 50% of the total number of steps per time 

period (relative to no vision), in all trials with vision. This increased the total trajectory length by 50% in 

trials with vision relative to no vision. 
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S1.3 Text. Data analysis 

 

S1.3.1. Firing rate maps 

Grid cell and boundary vector cell rate maps were calculated using the instantaneous activity following each 

step. Trajectories and corresponding unit activities were resampled 10× using linear interpolation to yield an 

effective sampling rate of 12.9Hz without vision and 19.3Hz with vision. For consistency with published 

studies, rate maps were calculated using three different spatial smoothing algorithms adapted from spike-

based analyses used in the original studies. The average rate at bin location (x, y) is defined as 

    ,rate t rate

t

f x y w f t   (S35) 

where  ratef t  is the instantaneous activity at step t and wt denotes the weight which depends on the bin 

location, trajectory location at t and the smoothing kernel used. Since  0 1ratef t   in the model 

Error! Reference source not found.,  0 , 1ratef x y  . 

 

S1.3.1.1. Gaussian smoothing 

Unless otherwise specified, a Gaussian smoothing kernel was used [9, 13, 33], defined by 
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where 1 2.5  cm, 1 5r  cm and tw  was normalized so that 1tw  . Bins were centered on a 2.5 cm 

square grid. 

 

S1.3.1.2. Boxcar smoothing 

For the arena resizing experiments [32] a boxcar smoothing kernel was applied, i.e., 
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where 1 2 5r r  cm and tw  was normalized so that 1tw  . Bins were centered on a 2 cm square grid. 

 

S1.3.1.3. Hairpin maze smoothing 

In hairpin maze experiments in which maze arms rates were displayed as linear tracks [34], the smoothing 

kernel was 
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  (S38) 

where 1 2.5  cm, 1 5r  cm, 2 7.5r  cm to cover the width of the hairpin corridors, and tw  was normalized 

so that 1tw  . Bins were centered on a rectangular grid of horizontal scale 15 cm (centered along maze 

corridors) and vertical scale 2.5 cm. Note that the for the arm-arm rate map correlation analyses, activity was 

placed into contiguous non-overlapping 10 cm x 15 cm bins [34], equivalent to boxcar smoothing with 

1 7.5r  cm and 
2 5r  cm. 

 

S1.3.2. Spatial crosscorrelograms 

To characterize the spatial response patterns of grid cells, spatial crosscorrelograms were computed from the 

smoothed rate maps of individual cells [38]. 
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where  ,u v  is the crosscorrelation coefficient at bin position (u,v), 1ratef  is the first rate map, 2ratef  is the 

second rate map, Γ1 is the region of 1ratef  which overlaps with the region Γ2 of 2ratef  when 2ratef  is translated 

by (u,v) relative to 
1ratef ,  ratef   is the mean of 

ratef  over the region Γ. Note that Γ1 and Γ2 are always 

equal in size and only those bins in both Γ1 and Γ2 which are defined are used, excluding unsampled spatial 

bins. When 
1 2rate ratef f ,  is the autocorrelogram. 
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S1.3.3. Gridness index 

The gridness index (also termed gridness score) was developed to quantify how well the activity patterns of 

putative grid cells match a regular hexagonal grid [9, 38-40]. Four gridness index calculations were 

performed on autocorrelograms using a fixed and variable radius circular annulus mask [32], and a fixed and 

variable radius elliptic annulus mask [38]. The autocorrelogram pixels under the mask were rotated by α = 

30°, 60°, 90°, 120° and 150°, and the Pearson correlation, r(α), found with the unrotated pixels. The gridness 

index was calculated as  

            min 60 , 120 max 30 , 90 , 150g r r r r r         (S40) 

To define a circular annulus, an average grid scale, gr , was first found from the distances to the six 

nearest autocorrelogram peaks excluding the central peak [32]. The inner and outer radius of a fixed circular 

annulus was defined as 2gr  and 3 2gr , respectively. The inner and outer radius of a variable circular 

annulus was defined as  1 gk r  and  1 gk r , respectively, where  0.02,0.04,...,0.5k .  

To define an elliptic annulus [38], an ellipse was fitted to the six nearest autocorrelogram peaks 

excluding the central peak, by finding the eigenvalues and eigenvectors of the second moment matrix of the 

peak coordinates. The elliptic axes were defined by the eigenvectors, with lengths 2d  where d are the 

corresponding eigenvalues. 

 

S1.3.4. Grid rescaling 

Grid cell rate maps were analyzed for the amount of joint rescaling along the two orthogonal dimensions of 

the resized rectangular boundaries [32]. Briefly, each smoothed rate map from the three resized arenas (test) 

was compared with the average of the two rate maps in the training arena (reference). Each test rate map was 

resampled using bilinear interpolation with the number of resampled bins varying independently along the X 

and Y dimensions. For example, a 100 cm × 70 cm test arena has a baseline smoothed rate map consisting of 

50 × 35 bins (2 cm separation between bin centers). A total of 43 × 43 = 1,849 resampled rate maps were 

generated, using 29 to 71 bins along the 100 cm dimension, and 20 to 62 bins along the 70 cm dimension. 
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These resampled rate maps covered rescaling ratios of 50/71 ≈ 0.70 to 50/29 ≈ 1.72 along the 100 cm 

dimension, and 35/62 ≈ 0.56 to 35/20 ≈ 1.75 along the 70 cm dimension.  

Next, the resampled rate map which had the highest correlation with the reference map was found. 

The number of bins along the resized dimension was then used to calculate the rescaling value. If grid 

spacing was unchanged, then rescaling would be 50/50 = 1.00 and 35/35 = 1.00 (since 50 × 35 bins was 

optimal). For instance, if the test grid partially contracted along the 70 cm dimension, so that 42 bins 

produced the optimal correlation between test and reference maps, rescaling would be 35/42 ≈ 0.83. If a test 

map consisted of the entire reference map of 100 cm, but completely squashed inside 70 cm, then 50 bins 

would produce the optimal correlation, resulting in a rescaling estimate of 35/50 ≈ 0.70, i.e., 100% rescaling. 

To account for the possibility that grid rescaling co-occurred with grid translation, the value of the center-

most crosscorrelogram peak between a reference map and resampled test map was used (S39). 

 

S1.3.5. Border score 

The border score was developed to quantify how closely a cell’s firing field follows an arena boundary [41]. 

Briefly, fields were defined as sets of neighboring bins in a rate map >0.3 of the maximum rate and >200cm2 

in area. Next, Mc  was defined as the maximum fractional coverage of bins immediately adjacent to any of 

the four walls by any field. In circular arenas, Mc  was defined as the maximum fractional coverage of bins 

immediately adjacent to any 90 degree arc. Next, 
Md  was defined as the average perpendicular distance to 

the nearest wall from all pixels of all fields, normalized by half the shortest side of the environment (radius 

for circular arenas). The border score was defined as 

 M M

M M

c d
b

c d





  (S41) 

and a ‘border cell’ was defined as a cell with b > 0.5 [41]. The border score was designed to measure 

elongation of a field parallel to a boundary coupled with compression of that field perpendicular to the 

boundary. 
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S1.3.6. Parametric rate map correlation 

The border score penalizes distance away from a boundary and excludes a subpopulation of both rodent and 

model long-range boundary cells [23, 41]. To avoid exclusion of long-range boundary cells, a parametric 

rate map correlation method was developed. Two parametric rate map correlation coefficients were found 

for each rate map: using a boundary vector cell hypothesis and a simplified oscillatory interference grid cell 

hypothesis. The cell was considered to be functionally more similar to the underlying model which produced 

the higher parametric rate map correlation. 

The boundary vector cell hypothesis states that activity f at each position (x, y) in a rate map is 

determined by distance r and allocentric direction θ of some boundary points. A complementary map in 

parameter space is constructed based on this hypothesis and the original rate map f. In practice, it is 

impossible to tell which boundary points actually contribute to f(x, y), so assume that they all contribute 

equally. Inversely, the firing rate f(x, y) is added to all sampled boundary (r, θ) pairs, i.e.,  

      
,

, , , , ,b b

x y

h r n x y r f x y     (S42) 

where  , , ,bn x y r   is the number of boundary points whose polar vector from (x, y) lies within the polar bin 

centered at (r, θ). Here,  2.5,5,...,100r  cm, and  4,8,...,360   degrees. To reduce overfitting of noisy 

features in the rate map, the parameter function hb is smoothed with a boxcar kernel of width 5 × 5 bins, 

wrapping around in circular space (θ dimension of hb). Using hb, a new rate map bf  is then generated, i.e.,  

      
,

, , , , ,b f b

r

f x y n r x y h r


     (S43) 

where  , , ,fn r x y  denotes the number of boundary points whose polar vector from (x, y) lies within the 

Cartesian bin centered at (x, y). As above,  2.5,5,...,100r  cm, and  4,8,...,360   degrees, while x and y 

bin centers match the original rate map f. Finally, the bin-wise Pearson correlation coefficient between f and 

bf   gives the parametric rate map correlation for a BVC hypothesis,  :r Hyp BVC .  

The simplified oscillatory interference grid cell hypothesis states that rate maps can be approximated 

by spatially-sinusoidal oscillations of various phases, frequencies and directions [12]. The resultant 
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parameter map is similar to a 2D Fourier spectrogram [42], but constructed using a marginal rate map 

generated along each direction tested, i.e., 

    
1

1
,

N

g t t

t

h r a Exp i u
rN

 


    (S44) 

where 1i   , cos sint t tu x y    is the projection of path position (xt, yt) along direction θ at step t, at 

is the response of the cell, 2 r   is the spatial frequency being tested. One advantage of (S44) over a 

standard 2D Fourier spectrogram [42] is the natural reduction in weight given to positions along the  -axis 

which are under-sampled due to arena geometry and/or trajectory inhomogeneity. To use a spike time series, 

at = 1 if there is a spike at step t, at = 0 otherwise. For consistency with hb, hg is also smoothed with a boxcar 

kernel of width 5 × 5 bins. Using hg, a new activity vector ta  is then generated, i.e., 
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where  ,gh r   and   ,gArg h r   denote the complex modulus and argument of hg respectively. From ta , 

tx  and 
ty , a new rate map  ,gf x y  is calculated (in the same way that the original rate map  ,f x y  was 

calculated from 
ta , 

tx  and 
ty ). Finally, the bin-wise Pearson correlation coefficient between f and 

gf  is the 

parametric rate map correlation for a simplified oscillatory grid cell hypothesis,  :r Hyp GC .  

Using forced choice classification, if    : :r Hyp BVC r Hyp GC , a cell was classified as a 

boundary cell. If    : :r Hyp BVC r Hyp GC , a cell was classified as a grid cell. This method can 

potentially be used with other hypotheses, either in addition to or in place of the ones described here. In S5 

Fig, forced choice classification is supplemented by defining a cell as unclassified if both 

 : 0.5r Hyp BVC   and  : 0.5r Hyp GC  , which suggests that neither hypothesis is adequate to 

approximate the spatial response characteristics of the cell. In addition to improving classification rate from 

standard metrics (tested using model cells whose generative mechanisms are unambiguous), the 
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reconstructed rate map provides an intuitive visual check as to whether the rate map properties of interest 

have been satisfactorily captured by the hypothesis (S5 Fig). 

It is worth noting that using the border score, the average unclassified boundary cells per experiment 

ranged from 27% (learning in a 1 m circular arena) to 54% (recall in 70 cm × 100 cm rectangular arena, 

learning in 100 cm × 70 cm rectangular arena). The variability can be explained as follows. The SIFM 

boundary cell tuning function is based on the published BVC model whose optimal tuning depends on a 

bivariate Gaussian function of distance and direction, which maps to a crescentic function in Cartesian 

coordinates (Jacobian = 1/r [43]). Consequently, a curved boundary tends to result in fields with peak 

activity slightly closer to the boundary (boundary geometry more closely matches the tuning function). The 

latter results in a lower normalized perpendicular wall distance as defined in the border score, increasing the 

fraction of boundary cells whose fields reach border score criterion. In resized arenas, predictive boundary 

fields stretched or compressed according to arena resizing. This led to a significant portion of boundary 

fields which widened along the perpendicular dimension, which reduced the border score. Fields were also 

noisier in resized arenas which further reduced the border score.  

 

S1.3.7. Visualizing associative weight maps 

Learned spatial information in SIFM is stored in associative weights between grid codes and boundary 

codes, and visualized by averaging the associative weights between all boundary vector cells and each map 

grid position, and collapsing across all grid codes, i.e.,  
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i j
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N

    (S46) 

where 
[ ]k

mW  denotes the map associative weight for map element [k], N is the number of grid codes 

multiplied by the number of boundary vector cells, and 
[ , , ]i k j

tW  is the associative weight between map 

element [k] and boundary cell [j] of grid code [i]. The resulting associative weight at each map element can 

be interpreted as the total boundary cell activity expected at that grid code. Partial weight maps are similarly 

produced using only long-range boundary cells, or only short-range boundary cells (e.g., Fig 2). Since a grid 
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code does not correspond uniquely to an (x, y) position, the coordinate used to display associative weights is 

the ideal (x, y) used to generate the map grid code reference during initialization of a learning trial. 

 

S1.3.8. Simulated spikes 

Using linearly interpolated positions and instantaneous rate,  ratef t , spikes were generated using a 

stochastic model for visual comparison with published data. All analyses of simulated grid and boundary 

cells were performed on the instantaneous rate  ratef t  unless otherwise specified. Spikes were simulated 

according to 

  
   1

0

rate spikef t r t
s t

otherwise

 
 


  (S47) 

where   1s t   denotes a spike at time t,   0s t   denotes no spike at time t, the random vector 

   ~ 0,1r t U , and 0.5 1spike  . The Poisson spike rate constant spike  was manually adjusted to vary the 

total spike count for visual clarity, and to be similar to rat data when comparisons are shown. For example, if 

  1ratef t  , 0.5spike  , the expected number of spikes at t is        0.5spike rates t p f t r t   . Since 

 0 1ratef t   and    ~ 0,1r t U ,  

    spike rates t f t   (S48) 

as long as 1spike  , producing an average stochastic spike rate proportional to  ratef t . 

  

S1.3.9. Short-range boundary vector maps 

A short-range boundary cell responds maximally when its tuning direction aligns with a boundary normal 

because the widest extent of the boundary contributes to its response (S22). Therefore, the population 

activity of predictive short-range boundary cells reflect the local boundary normal which has been learned. 

At each spatial bin, the circular mean direction of short-range boundary cells is found, weighted by the 

boundary cell’s mean activity in that bin. The weighted circular mean direction is then displayed according 

to a color wheel (e.g., Fig 4B lower right), and whose intensity scales linearly with the weighted circular 
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concentration (mean resultant length) [44]. For example, bright green indicates a westerly mean boundary 

vector with low variance (concentration approaching 1), while dark red indicates an easterly mean boundary 

vector with high variance (concentration approaching 0). This color-coded boundary vector map summarizes 

location-dependent arena boundary orientation information encoded by a population of predictive boundary 

cells, despite individual cells having no directional information content (Fig 2). 

 

S1.3.10. Dynamic grid cell rate maps and autocorrelograms 

Standard rate maps and autocorrelograms are suited for analyzing static tessellating spatial response 

patterns. However, if there is spatial drift in the response pattern, such as due to cumulative error during PI, 

then a static reference frame may smear out any underlying regularity. In contrast, a dynamically-referenced 

response map can be used to enhance drifting but otherwise stable spatial patterns in the response [10]. To 

produce a dynamic grid cell rate map, spikes were generated stochastically using the SIFM activity response 

time series as described previously (S1.3.8 Text). Each spike in a trial was used as reference. The relative 

spike positions were plotted for spikes within a 10-s time window after each reference spike, forming a 

dynamic rate map pooled over all reference spikes. A dynamic autocorrelogram was calculated from the 

dynamic rate map as for static rate maps and autocorrelograms (S1.3.2 Text). 

 

S1.3.11. Grid phase change 

Grid phase can change across trials, even within the same arena and without further learning (S9 Fig). 

Normalized phase shift quantification was adapted from the Online Methods of [38]. Briefly, grid 

parameters  1 2, , ,     were fitted to a crosscorrelogram (e.g., Fig 5, S9 Fig) and the raw phase shift was 

estimated as the center-most crosscorrelogram peak position  ,c cr   expressed in polar coordinates. The 

normalized phase shift components were found by projecting the raw phase shift onto the two fitted grid 

lattice axes, and scaled by their magnitudes, i.e., 
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Finally, to avoid phase shifts which are close to zero being inappropriately mapped to four corners of the 

unit rhombus lattice, the following remapping was applied: 
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Three types of phase changes were estimated in this way, using the nomenclature of [38]. The first is the 

phase shift of a single grid cell across two trials within the same arena, i.e.,       1 2 1 2, ,t tx x       

where  t j

  denotes the normalized phase shift of the same cell along grid lattice j. The second is the 

phase offset between two grid cells within the same trial, i.e.,    1 2 1 2, ,x x     where j

  denotes the 

normalized phase offset between two cells along grid lattice j. Note that SIFM grid cells in this work are 

phase matched so the ideal noise-free grid offset is zero. Third, the change in the phase offset between a pair 

of grid cells is calculated across two trials within the same arena, i.e.,        1 2 1 2, ,t tx x       where 

 t j

  denotes the normalized change in phase offset between a pair of cells along grid lattice j. Since the 

ideal SIFM grid axes are separated by 60, both for simplicity and following the analysis of [38], the 

normalized radial magnitude of each phase change is given by 

      
2 2 2 2

2 1 2 1 2 1 2sin 60 cos 60Magnitude x x x x x x x          (S52) 
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