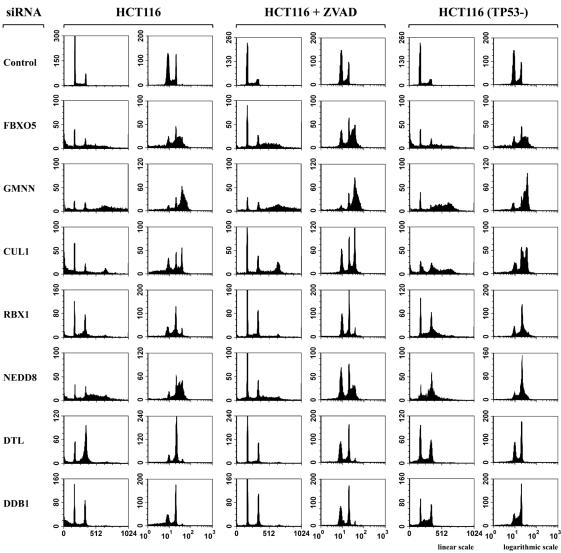
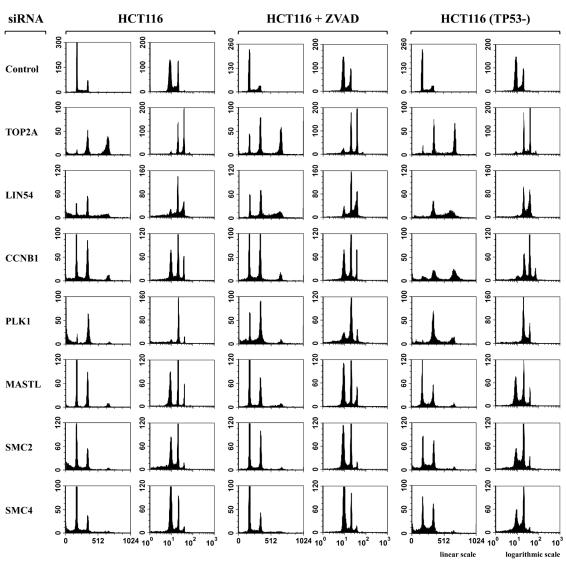
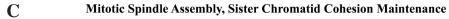
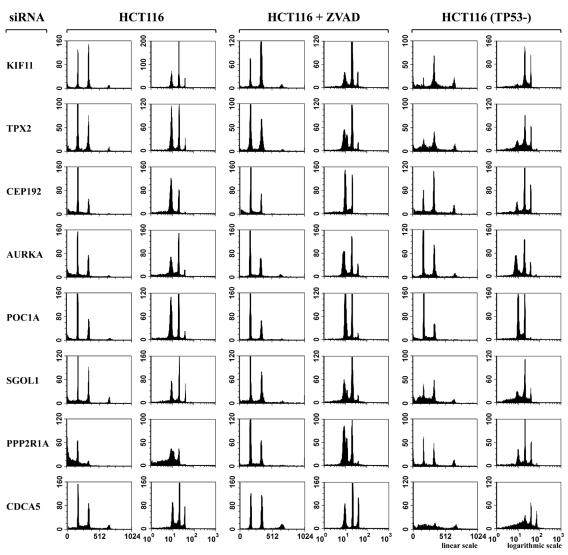

SUPPLEMENTARY FIGURES

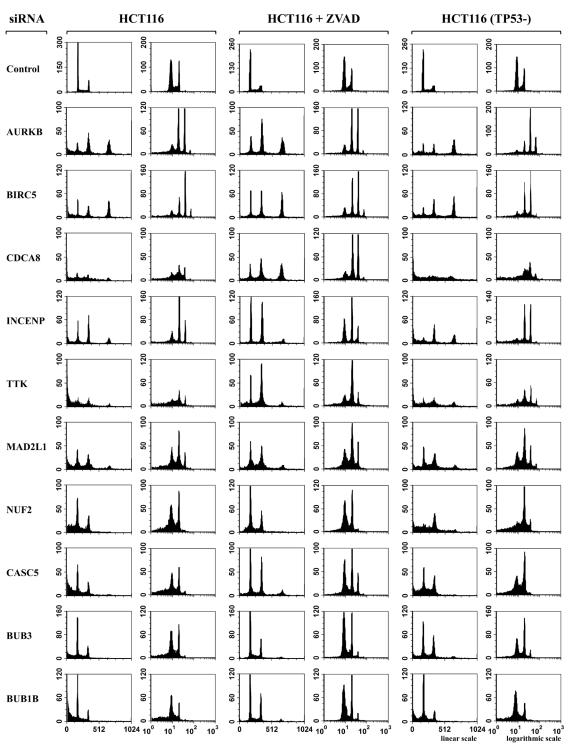

A

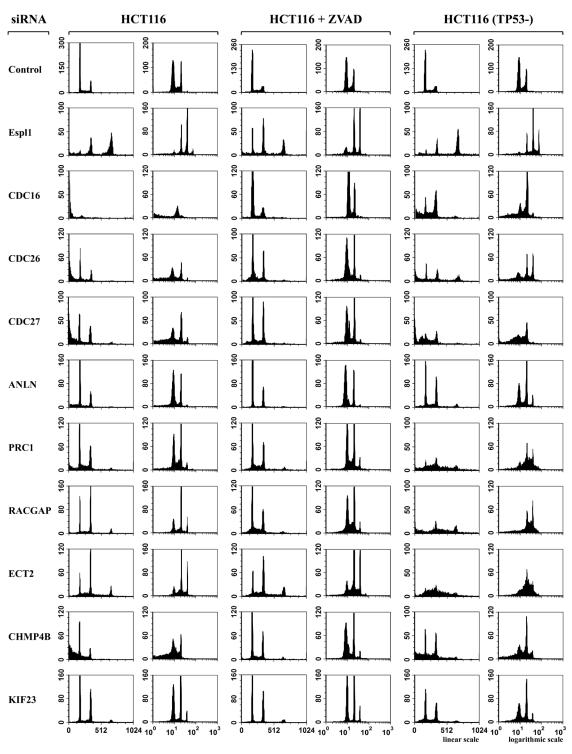
apopt.		G1		s	G2/M		excess										Т											
<2N			+-		4N		•	≥5	5N							_		~	12	NΤ	┨		۸	Şe			A	
			,,	~	-		~	\vdash		~	_		~	_		~	_			\neg	J	l t	<2N DNA	G1 phase	S phase	5	≥5N DNA	
-3.6	- 66	9 -	11	13	149	16	18	- 199	21(23	146	5 6	- 282	- 299	- 316	- 332	- 349	- 366	- 382	339	- max	20	Z	1 p	ph	G2/M	N	l o l
0 - 16 17 - 32 33 - 49	50 - 66	83	6	117 - 132	<u>ښ</u>	150 - 166	167 - 182	60	200 - 216	217 - 232	233 - 149	ò	7	'n	0	7-	ά	ò	•		3	Cell count						Gene
			2	11	13	12	16	183	20	21	23	22	267	283	300	317	333	320	367	383	400	🎖	%	%	%	%	%	ן ט
																				1		5074	11	39	8	17	11	control
		П																				375	14	8	6	10	62	FBXO5
													-							П		513	8	8	11	20	53	TPX2
																						419	12	17	9	16	47	INCENP
																						765	16	17	8	13	47	GMNN
																						962	14	17	12	12	46	BIRC5
																						1606	14	18	10	13	45	
																				П		1800	11	16	13	17		TOP2A
																				-1		569	13	20	11	14	42	
																						959	14	20	10	14		CDCA8
		ш																				1104	10	20	9	19		CUL1
		Ш	L										U	H,						ı		228	12	14	11	22		PLK1
												U	Ш,	J						4		245	8	9	6	33		KIF11
																				1		869	10	22	11	19		ANLN
		۰																		1		500	15	23	12	12	37	AURKB
	L	л																		ц		1577	9	26	15	16	34	
																				1	L	721	5	25	14	22		LOC728689
																				4	L	773	10	24	13	21	33	
	ш.																			4	L	2876	6	30	14	18		PPP2R1A
																				4	ŀ	1329	7	22	14	25	33	
		۰																		4	ŀ	552	10	22	11	24	33	
	•																			4	H	2873	11	20	13	24		LIN54
-			Н																	н		3381	9	27	13	19	32	
-			Н																	4	H	2177	8	31	13	16		BBC3
	-				-	-	-													1		1300 2398	13	19 17	15	22 33	31	FLJ40448 LIN9
-	-				_		_													н	ŀ	1154	6 16	22	14 13	18	31	
-	•	٠	Н																	1	Н	895	10	31	13	14	31	
				-																1	H	1136	9	19	19	23	31	
	_	•																		ı		1475	12	28	17	13	31	
																				1	H	993	10	29	13	16	31	
			П																	d	H	1825	7	29	12	22		LIN37
	•	o				_														1	r	3590	7	21	15	28		CDC26
	-																			d	r	555	8	18	16	27		CDC27
	•																			п	ı	772	11	29	12	19		CEP192
-		۰		_																1	ı	2702		25	15			BUB3
																						1898	7	21	19	23	_	RBX1
																						854	_	16	14	32		DTL
																						786		29	14	15		MSRB2
																						1305	8	34	12	17	_	CRKL
																						1420		29	5	21		CCNB1
																						1746	9	26	16	21	_	WDR51A
																						2179	9	26	15	21		BUB1B

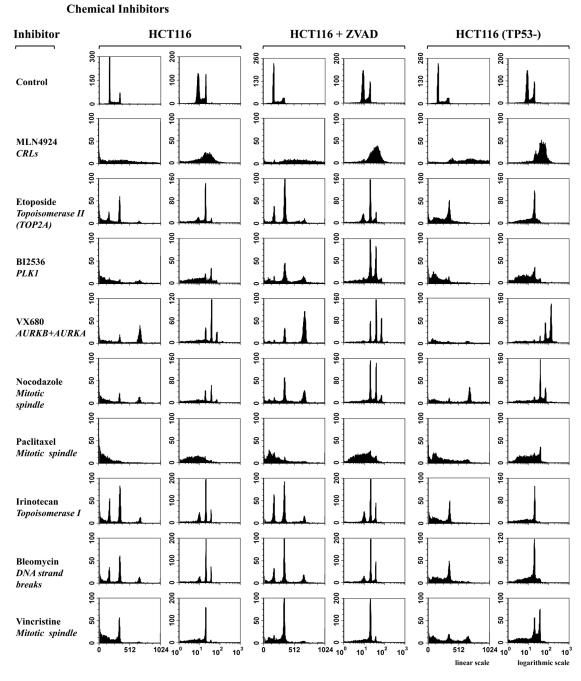


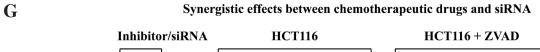

Supplementary Figure S1: DNA content analysis results for 85 genes selected for validation. Each histogram of the DNA content per cell in each well was extrapolated to represent 1000 cells. The fluorescence intensities were distributed into 25 intervals that covered the entire range of detected fluorescence. The results for each siRNA were then plotted as heat-maps in which the intensity of the color was proportional to the number of cells in the interval. In some cases, the position of nuclei with 2N DNA content (G1 phase cells) differed from the controls in the same plate. Differences in the amount of fluorescence per DNA unit that causes shifts in the DNA peaks positions of cell populations are routinely corrected during FACS by adjusting the laser PMT voltage of the instrument until the positions of the 2N or the 4N peak are the same for each sample (1). These data allowed calculation of fraction of cells with nuclear DNA content equivalent to G1 phase (2N), S phase (>2N<4N), G2/M phase (4N), apoptosis (<2N), or EDR (>5N). Gene names are from the Human Gene Nomenclature Committee (HUGO).

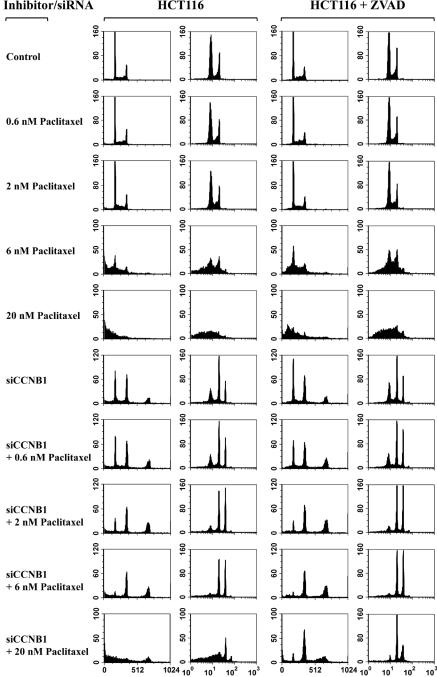



B Chromatin Untangling, and Mitotic Entry and Maintenance




D Spindle Assembly Checkpoint




E Chromosome Segregation, Cytokinesis

F

Supplementary Figure S2: Validation FACS profiles of all genes confirmed as essential for prevention of EDR. The results of the three validation assays (TP53+ cells, TP53+ cells +ZVAD, and TP53- cells) carried out on each validation siRNA are included. The genes are arranged according to their known function during the cell cycle.

				TD52	<u>+1</u>	HCT116			To	tal ce	llc .	211	4N c	alla		ZVAD		Δ TP53			
	HTS	5	HCT116(TP53+) (-)ZVAD (+)ZVAD					\exists	ı	С111 ГР53	- 1		f con	- 1	1	f con		As	eff		effect
		4	—	12 V A		\ \frac{1}{2}	JZVAD	-	,		<u>′</u>	(700			(700		,	effective siRNAs	-		
Gene	¥	DNA	I∡	∡	<u>a</u>	∡	∡	ੂ ∐	≰	≰	<u> </u>							le Si		Δ Apoposis	Δ EDR Δ Apoposis
	siRNAs	2S	8	DNA	ᇤ	🛚	DNA	<u>ا</u> يا	DNA	DNA	🛓	±	A P	<u> </u>	#	Ð	<u>"</u>	हं	<u>چ</u>	ᇰ	일 얼
	'8	% >5N	≥5N DNA	^2N	abnorma	≥5N DNA	^2N	abnorma	>5N I	2N SN	abnorma	TP53+	+ZVAD	TP53-	TP53+	+ZVAD	TP53-	l ffe	A EDR	۱¥	Δ EDR Δ Apop
control		11	1.3	3.4	4.7	1.5		5.8	1.9	3.8		100	100	100	95	93	94		0	2	1 0
							Ori	gin	Lice	nsin	g Inl	nibitio	on								
FBXO5	7/7(5)	62	38	50	88	46	21	67	44	36	80	13	18	10	2	6	2	8	8	-29	6 -14
GMNN	7/7(5)	47	59	26	85	73	11	84	62	20	81	21	23	23	3	4	4	8	15	-16	3 -7
CUL1	3/7(5)	42	23	52	75	46		59	46	23	68	39	35	12	10	14	4	4	23	-40	23 -30
NEDD8	4/7(5)	33	56	17	73	57		67	29	11	40	17	19	32	5	6	19	5	1	-8	-27 -7
RBX1	5/7(5)	30	26	6	32	19	_	28	35	7	42	40	19	33	27	14	19	6	-8	4	9 1
DTL	2/3(3)	29	17	14	32	10	_	19	6	14	20	44	42	50	30	34	40	3	-8	-5	-11 0
DDB1	2/3(3)	26	8	22	30	11		21	7	20	26	35	31	63	25	24	47	3	3	-12	-1 -3
TOP2A	7/7(5)	43	47	22	68	46	_	nro 60	mat 57	_	_	gling		25	-	12	8	0	-1	0	10 -12
TOPZA	[///(5)	45	47	22	80							16	31		5	12	٥	8	-1	-8	10 -12
LINEA	2/2/2	22	20	25	C2	_	∕litoti	_	<u> </u>		_				12	20	0		10	20	27 24
LIN54 CCNB1	2/3(3) 4/7(5)	32 29	29 17	35 22	63 38	45 17	_	51 28	56 57	11 21	68 78	35 35	40 40	27 18	13 22	20 29	9	3 5	16 1	-29 -11	27 -24 40 -1
MASTL	2/3(3)	28	12	9	21	15	_	28 22	15	9	24	54	50	10 E4	43	39	41	3	3	-3	3 0
PLK1	7/7(5)	40	11	56	67	18	_	31	56	11	68	28	32	30	9	22	10	8	7	-43	45 -44
SMC2	3/7(5)	29	6	34	40	9		15	13	18	31	40	45	55	24	38	38	4	2	-28	6 -16
SMC4	3/7(3)	27	8	22	30	9		15	12	24	36	49	47	64	34	40	41	4	1	-15	4 2
Sivica	3,7(3)				30							semb		04	J-1	-10	72			13	T
TPX2	5/7(5)	53	7	20	27	14		26	26	26	53	23	20	11	17	15	5	6	7	-8	19 6
KIF11	7/7(5)	39	10	32	42	15		30	31	27	58	10	13	6	6	9	3	8	5	-17	22 -6
CEP192	2/3(3)	30	2	35	37	3		12	26	26	52	37	65	44	23	57	21	3	1	-26	24 -9
AURKA	5/7(5)	29	11	27	38	14	_	22	15	12	27	39	38	40	24	30	29	6	2	-18	4 -15
POC1A	3/7(3)	29	6	27	33	7	11	17	4	19	23	18	25	28	12	21	22	4	0	-16	-2 -8
							Spino	lle /	Asse	mbl	y Ch	eckp	oint								
INCENP	7/7(5)	47	14	39	53	17		28	22	49	71	62	66	56	29	48	16	8	3	-28	9 10
BIRC5	4/7(5)	46	31	23	54	43	12	55	42	23	65	30	44	22	14	20	8	5	12	-11	11 -1
CDCA8	5/7(5)	42	12	67	79	40	22	62	33	48	81	32	29	14	7	11	3	6	28	-45	22 -20
AURKB	7/7(5)	37	33	31	64	39	10	49	55	21	76	18	25	20	6	13	5	8	6	-21	22 -10
CASC5	4/7(5)	33	6	53	60	18	15	32	6	33	39	31	41	57	13	28	35	5	12	-39	0 -21
BUB3	2/3(3)	30	3	38	41	8	7	14	11	24	36	55	43	59	32	37	38	3	4	-31	8 -13
BUB1B	2/3(3)	29	2	65	67	7		15	4	32	36	57	54	56	19	46	36	3	5	-57	2 -33
MAD2L1	2/3(3)	27	17	39	55	25	_	41	27	21	48	34	25	49	15	15	26	3	9	-23	11 -18
TTK	4/7(5)	27	12	61	73	18	_	31	28	43	71	21	23	16	6	16	5	5	6	-49	16 -18
NUF2	2/3(3)	26	6	39	45	9		24	20	33	53	43	41	20	24	31	9	3	3	-23	14 -6
	\\				_		Chro	_		_	_			_					_		
CDCA5	5/7(5)	42	15	47	62	21		31	40		68	10	12	12	4	8	4 8	6	7	-38	25 -19
PPP2R1A	2/7(5)	33	3	18 28	20	8		20	17	47	64	28	30	23	22 8	24	12	3 4	5	-5	14 30
SGOL1	3/7(5)	32	11	28	39	11		29	17	30	47	14	33	22	8	23	12	4	0	-10	6 2
ECDI 4	7/7/5	45	E4	10	co	ac.					_	egatio		20	-	_			-	_	47 7
ESPL1 CDC16	7/7(5) 2/3(3)	45 26	51 2	19 94	69 95	46		67 17	68 8	12 33	80 40	22 87	20 107	20 82	7 4	7 88	49	8	-5 5	-83	17 -7 6 -61
CDC16	2/3(3)	30	3	62	65	7	_	21	28	39	67	48	69	32	17		11	3	4	-48	25 -23
CDC27	2/3(3)	30	5	59	64	9		20	5		67	73	80	40	26	64	13	3	4	-49	0 3
		- 30		33	-						esis	,,,	50	- 10		54			-	- 10	_ J_ J
ANLN	2/7(5)	38	3	23	26	3	3	6	13	9	22	57	55	53	42	52	41	3	1	-21	10 -14
PRC1	3/7(5)	34	9	24	33	13		19	41	19	60	38	34	16	25	27	6	4	4	-18	32 -5
RACGAP1	2/7(5)	29	12	9	21	12	_	25	46	32	77	15	19	15	12	14	3	3	0	4	34 23
ECT2	4/7(5)	28	27	9	36	30		36	42	12	54	15	16	18	10	10	8	5	2	-3	15 3
СНМР4В	2/3(3)	27	2	57	59	8	_	20	16	36	53	54	45	20	22	36	10	3	6	-45	14 -21
KIF23	2/7(5)	26	8	11	19	10		15	11	14	25	17	12	18	14	10	14	3	2	-6	3 3
										-									_		

Supplementary Figure S3: Genes essential to prevent EDR in HCT116 cells. HTS siRNAs are the number of positive siRNAs/ number of siRNAs tested in HTS (\geq MAD value) from 'statistical analysis'. HTS \geq 5N DNA is the fraction (%) of cells with \geq 5N nuclear DNA content based on the median of the three siRNAs from DNA content analysis. Total cells are the number of cells counted relative to the number of cells in control (%) at end of experiment (3 days). ' Δ EDR' and ' Δ Apoptosis' are the differences \pm ZVAD. They were calculated by subtracting the corresponding percentage for the TP53+ assay from the ZVAD assay. ' Δ EDR' and ' Δ Apoptosis' for the TP53 effect were calculated by subtracting the corresponding percentage for the TP53+ assay from the TP53- assay. Red indicates a reduction in EDR or Apoptosis, whereas blue indicates an increase. Gene names are from the Human Gene Nomenclature Committee (HUGO).