1	Characterization of an LPMO from the brown-rot fungus <i>Gloeophyllum</i>
2	trabeum with broad xyloglucan specificity, and its action on cellulose-
3	xyloglucan complexes – Supplemental material
4	
5	Authors : Yuka Kojima ^{1,*} , Anikó Várnai ^{2,*} , Takuya Ishida ³ , Naoki Sunagawa ³ , Dejan M. Petrovic ² ,
6	Kiyohiko Igarashi ^{3,4,} , Jody Jellison ⁵ , Barry Goodell ⁶ , Gry Alfredsen ⁷ , Bjørge Westereng ² , Vincent
7	G.H. Eijsink ^{2,#} , Makoto Yoshida ^{1,#}
8	
9	Running title (max. 56 char): Enzymatic properties of a brown-rot LPMO

11 Section 1. Alternative splicing of the gene encoding GtLPMO9A (Fig.

- 12 *S1)*.
- 13

ATGTTCCGTGCCCAATCCTTCCTACCCGTCCTTGCTTTGGTTCTGCGGGTCGCTGCCCATGGATATGTTG ATCAAGTCACGATAGGCGGACAAGTTTACACCGGATATCAGCCCTACCAGGACCCATACGAAAGCCCCGT AGTTGTTCAATGGGTACCTGAAGAGACGTACTGACTGTCACTCGCCGTGAAAGCATCCAATGTAATGGCT CAGGGGGCTCCGGTACGAAGCCCGCCGCTCTCATAGCTTCAGCAGCCGCTGGGGATGAGATTGCCTTCCA CTGGACTACATGGCCCAGTTCGCATGTCGTAAGTCACAAACGCTACGCAACTCATATAGCTCCCCATAAT TTACCGCCAACAGGGCCCAGTCATTACTTACATGGGGAAAGTGCCTAGCAACACCGATATCACCAGCTAT TCCCCCACTGGCTCCGACGTCATTTGGTTCAAGATTGACGAAGCAGGTTACGAGAACGGCAAGTGGGCCG GTACATTGTCCGTCATGAAATGTGAGAGATCGAAGGTTTTGCTGTATCGACCGGACCACTCAGCTCCATC TTAAGAATCGCCCTGCACCAAGCTGAGACCTATCCCGGTGCTCAGTTTTACCCTGACTGCTTCCAAGTCC AAGTCACCGGCCCTGGTACGGAGACACCCCACATCTCAGGCTCTCGTGTCCTTCCCAGGCGGCTATACTCC CACCACTCCCGGCATCACCTTCAACGTCTATAGCGGTAAGCACAGAGGTGACGTCATTAGACAAATCCTA ACACAAATAAATTCATAGGTAGTAGTATTACTTCATACCCCATCCCCGGTCCGGCCTGTCTGGACGAGGAATGA TCCTCATCCTCTGCGGCCGCCACCCAGTCCTCCGCCGCCGCCGCTCCGGGCTCCGCAGCACCCTCTAGCT CTGCTATAGGTACGAGCACGGCTAGCTCCGCTGCCGCTAGCGGGACCGCCATCGTCGACGCGAACACCTG CATGAACAGTGCGTAGTGTCTTCTACGCGTTATAAGGCACTTTACTGATTTTGGCGGCCCTTTCCAGATTA CAACAAGTGCATCGACGCCGGCCAGCCCGACCCTGACTGGAGCGGCTGCACCGCGACTAAAGATGCCTGC CTGGCTGGCGCGACGTACCAGCGACTTGCTCGTTCTGGTACCCTGGGACGTCTCTCTTTCTAA

14

Figure S1. Splicing variants of the gene encoding *GtLPMO9A*. Black colored regions indicate
exons. Red colored regions indicate introns. The green colored region is an exon in the splicing
variant that encodes *GtLPMO9A-1* but an intron in the splicing variant that encodes *GtLPMO9A-*2. The stop codons for *GtLPMO9A-1* (TAG) and *GtLPMO9A-2* (TAA) are boxed.

20 Section 2. Sequence analysis of the C-terminal domains of

21 GtLPMO9A-2 and GtLPMO9D (Figs. S2-S4 + additional text).

22

23 Fig. S2 shows the sequence of the C-terminal extensions of GtLPMO9A-2 and GtLPMO9D. These 24 start with a region of low sequence complexity, followed by a domain of unknown function. 25 BLAST searches with the C-terminus of GtLPMO9A-2 domain revealed similarities with domains 26 found in a few LPMOs and two GH131s (broad specificity exo- β -1,3/1,6-glucanases with endo- β -27 1,4-glucanase activity), all being uncharacterized proteins with predicted domains. A multiple sequence alignment (Fig. S3) revealed conspicuous features, namely four conserved Cys 28 29 residues (Cys304, 311, 324, and 331) and three conserved aromatic residues (Tyr308, Trp321, 30 Tyr337), which are features characteristic of CBM1s, i.e. small fungal, cellulose-specific 31 carbohydrate-binding modules. The unknown domain ends with a short, positively charged 32 motif containing 3-5 arginine/lysine (Fig.S3), which is atypical for CBM1s.

33

BLAST searches with the C-terminal domain of *Gt*LPMO9D revealed similarity with the Cterminal regions of a few basidiomycete LPMOs only (Fig. S4). This domain seems to consist of two positively charged, short sequences that are connected by 5 to 20 hydrophobic amino acids (Fig. S4). The first positively charged motif contains 3-5 lysines/arginines while the second motif contains 4-6 arginines/lysines with a conserved P+H Φ SR Φ M++ motif (where + is R or K, and Φ is a hydrophobic amino acid), which is likely to be an α -helix with a positive patch on one side.

41	Interestingly, none of the few LPMOs that have been characterized so far (or any cellulases and
42	hemicellulases) carry a C-terminal domain with sequence homologous to that of GtLPMO9A-2
43	or 9D. LPMO9s characterized so far carry 1) no CBM (some of the N. crassa LPMOs, M.
44	thermophila LPMO9A, T. terrestris LPMO9E, P. chrysosporium LPMO9D), 2) the cellulose-binding
45	CBM1 domain (e.g. some of the N. crassa and P. anserina LPMOs), or 3) an unknown C-terminal
46	region (so far only A. niger LPMO AN3046; Jagadeeswaran et al. (1)).

- 47
- 48

GtLPM09A-2234EAFSGGSSSSAAASSTAVASSTADSSSSAAATQSSSAAASGSAAPSSSAIGTSTASSAAA294SGTAIVDANTCMNNYNKCIDAGQPDPDWSGCTATKDACLAGATYQRLARSGTLGRLSFGtLPM09D223VSGDSGTVDGQGGSTSSAILSGGAAPTGTASGSTPAGTSQPSSTTGTGNAGANPSSGKCS
283LKSRAAPTTSGNLSANYPRHFSRVMKRLLNDFQTTAHQW

49

50 Figure S2. Sequences of the C-terminal extensions of GtLPMO9A-2 and GtLPMO9D. The C-

- 51 terminal regions that were analyzed further by sequence alignment (see Figs. S3 & S4) are
- 52 printed in bold and underlined.

ID	V		• 1	7		
M7WKQ1	SQYT <mark>D-</mark> YTSCMR	<i>}</i>	YNKC	LDAH	IQP	ł
A0A061BI40	SQYT <mark>D-</mark> YTSCMR	<i>}</i>	YN <mark>K</mark> C	LDAH	IQP	┝
GOSWBO	SQYT <mark>D-</mark> YNSCMR	<i>}</i>	YN <mark>K</mark> C	LDAH	IQP	ł
A0A0K3CDZ6	SQYT <mark>D-</mark> YNSCMR	<i>}</i>	YN <mark>K</mark> C	LDAH	IQP	┝
A0A0D7AYH5	-CAKDGYNCCMD	J	YNAC	AA <mark>K</mark> A	NS.	P
A0A0D7BPW0	AGLV <mark>D-</mark> CNTCMN	5	FNQC	ISAS	SQP	┝
GtlPMO9A-2	TAIVD-ANTCMN	J	YN <mark>K</mark> C	IDAG	GQP	┝
A0A0D7AX18	GGVQ <mark>D-</mark> ANACMN	Γ	YN <mark>K</mark> C	IAQI	'QP	┝
D8PQJ8	TGIV <mark>D-</mark> ANACMN	Γ	YNQC	IAQS	SQP	┝
D8QGA8	AATG <mark>D-</mark> ANVCMN	3	YNQC	IA <mark>K</mark> S	SQP	┝
A0A0D7BLY4	SGQV <mark>D-</mark> ANVCMN	5	YN <mark>K</mark> C	IAQS	QP	┝
A0A0D7BKR1	TGVV <mark>D-</mark> ANVCMN)	YN <mark>K</mark> C	IAAS	SQP	┝
D8PXB3	KGIVD-ANCCMN	GKFNIHLLVLLHCYMGRHFLPP <mark>E</mark> SLRSHPRNPAFCQSK	YN <mark>K</mark> C	LAAS	SQP	┝
R7RYA1	TAIVN-ANTCM-					┝
	: . **		:* *	•	:.	l

ID	$\bullet \nabla \nabla \bullet$	<pre>% Identity</pre>
M7WKQ1	-KNGGAADFSACQSMNC <mark>Q</mark> SYQRMARRSARHAARH	37.0%
A0A061BI40	-KNGGAADFSACQSMNCQSYQRMARRSARHAARH	37.0%
GOSWBO	-KNGGAADFSACQSMNCQSYQRMARRSARHAARH	39.1%
A0A0K3CDZ6	-KNGGAADFSACQSMNCQSYQRMARRSARHAARH	39.1%
A0A0D7AYH5	ANNGGNVDFSACSSAKDTCVAGLARRHARQWSRQL-	34.0%
A0A0D7BPW0	SPDWTGCGATKDTCMSTCKYGKRSPSR	56.8%
GtlPMO9A-2	DPDWSGCTATKDACLAGATYQRLARSGTLGRLSF-	100.0%
A0A0D7AX18	NPDWTGCGATKDTCLSTAKYMRRALKSGTLGRRLRA	58.9%
D8PQJ8	NPDWTGCGATKDSCLATATYNVNMAARAKRDGKFGRLLL-	64.3%
D8QGA8	NPDWTGCGATRDTCLSTARYNTNMAARAKRDGKFGRLLL-	55.4%
A0A0D7BLY4	NPDWTGCEATRTACLSNATYNFNMSQRARRDGKFGRLL	61.8%
A0A0D7BKR1	NPDWTGCEGTKAICMQNATYNFNMINRLKRDGKFGRLLV-	60.7%
D8PXB3	NPDFTGCSAAKDTCMTGATYDYNMASRAKRDGKFGRLLL-	58.9%
R7RYA1	RVKRSVRFGRALA-	60.0%
	::. *	

ID	Function	Organism
M7WKQ1	LPMO9	Rhodosporidium toruloides
A0A061BI40	LPMO9	Rhodosporidium toruloides
GOSWBO	LPMO9	Rhodosporidium toruloides
A0A0K3CDZ6	LPMO9	Rhodosporidium toruloides
A0A0D7AYH5	LPMO9	Cylindrobasidium torrendii
A0A0D7BPW0	LPMO9	Cylindrobasidium torrendii
GtlPMO9A-2	LPMO9	Gloeophyllum trabeum
A0A0D7AX18	LPMO10-Chitin-bd	Cylindrobasidium torrendii
D8PQJ8	LPMO9	Schizophyllum commune
D8QGA8	LPMO9	Schizophyllum commune
A0A0D7BLY4	LPMO9	Cylindrobasidium torrendii
A0A0D7BKR1	GH131	Cylindrobasidium torrendii
D8PXB3	putative GH131	Schizophyllum commune
R7RYA1	LPMO9	Stereum hirsutum

Figure S3. Multiple sequence alignment of the C-terminal domain of *Gt***LPMO9A-2 with**

homologous domains. This domain seems to contain four conserved cysteines (grey triangles),

- 57 three conserved aromatic residues (green diamonds), and a motif that is rich in positively
- 58 charged amino acids. Aromatic amino acids (F, W, Y) are colored in green; positively charged
- 59 amino acids (R, K) are colored in blue; negatively charged amino acids (D, E) are colored in red.
- 60 The consensus symbols are indicated for the alignment excluding R7RYA1.
- 61

			α-helix?
ID			>
A0A137QF73	SSPS <mark>K-CKLK</mark>	KTAQPTASADASNSNSRRSLGDDSTSTGRSLNVKYY	PKHISRVMRDLA
A0A0D2M3B5	-TTG <mark>KTCKIQ</mark>	KRAVSNDEVDIFVVR	PRHLSRIMRRLA
A0A0C2XEH9	-APTKSCKIK	KRAATSDEQNLVVRR	PRHVSRIMRRLA
A0A067SZR5	-PASKSCKIK	KRAAAQDNELVVR	PRHISRIMRRLA
A0A0L6WMG1	-KSSGTCKLK	RKASSSSLTVAASIIR	PRHLSRIMRGLIAN
W4K048	-SPS <mark>KQCNLK</mark>	KRTAVNATKRDVASR	PKHLSRIMRDLI
I7DL47	-SPS <mark>KQCNLK</mark>	KRAAGSATKRDVASR	PKHLSRIMRDLI
R7SQR2	-GSNAQCRLK	KP <mark>SASNSSDLFVVR</mark>	PRHLSRVMARLL
A0A067P992	HHHT <mark>K-CSLK</mark>	IS <mark>SPAATSTGALR</mark>	PRHVSRVMRRMLVD
GtlPMO9D	PSSG <mark>K-</mark> CSLK	SRAAPTTSGNLSANY	PRHFSRVMKRLLND
A0A0C3C9X4	SKSG <mark>K-</mark> CQLQ	KQNTVALY	PRHFSRAMRRLL
A8NLH8	-SSKKVCKLK	KS <mark>KRSTTSDSAL</mark> Y	PRHFSRVMRRFI
A0A0C9WJR9	SK-GKTCKLK	KG <mark>K</mark> SASSSVVPSASAAAASATTTDMY	PRHFSRVMRRLA
B0DGU6	SK-G <mark>KSCKLK</mark>	KG <mark>KTASSSVVPSASAAAASATTTD</mark> MY	PRHFSRVMRRLA
B0CQE5	TKS-KSCKLR	QT <mark>KSASSSALSATGAANATD</mark> LY	PRHFSRIMRKVV
A0A0C9WMV0	TKS-KTCKLR	QT <mark>KSASSSVSSSTGAGYATD</mark> LY	PRHFSRIMRKVV
	* :.		*.*.** * .

ID		<pre>% Identity</pre>	Function	Organism
A0A137QF73	FG <mark>K</mark> SH	43.9%	LPMO9	Leucoagaricus sp.
A0A0D2M3B5	ESMY	27.5%	LPMO9	Hypholoma sublateritium
A0A0C2XEH9	FGESIH	40.5%	LPMO9	Hebeloma cylindrosporum
A0A067SZR5	FNGLSH	42.5%	LPMO9	Galerina marginata
A0A0L6WMG1	HALSL	34.9%	LPMO9	Termitomyces sp.
W4K048	HHP	33.3%	LPMO9	Heterobasidion irregulare
I7DL47	HHS	35.9%	LPMO9	Heterobasidion parviporum
R7SQR2	HHSS	41.0%	LPMO9	Dichomitus squalens
A0A067P992	FDRRRSW	44.2%	LPMO9	Jaapia argillacea
GtlPMO9D	FQTTVHQW-	100.0%	LPMO9	Gloeophyllum trabeum
A0A0C3C9X4	FGSSF	52.9%	LPMO9	Piloderma croceum
A8NLH8	ETGSFERRH	45.2%	LPMO9	Coprinopsis cinerea
A0A0C9WJR9	LG <mark>R</mark> SI	36.6%	LPMO9	Laccaria amethystine
B0DGU6	LG <mark>R</mark> SI	36.6%	LPMO9	Laccaria bicolor
B0CQE5	ARRSI	29.3%	LPMO9	Laccaria bicolor
A0A0C9WMV0	ARRSI	29.3%	LPMO9	Laccaria amethystine

63 Figure S4. Multiple sequence alignment of the C-terminus of *GtLPMO9D* with similar C-

64 **termini of LPMOs.** This domain contains two conserved motifs that are rich in positively

65 charged amino acids. The second motif, with ca. every fourth amino acid being arginine/lysine,

is likely to be an α -helix with a positive patch on one side. Aromatic amino acids (F, W, Y) are

67 colored in green; positively charged amino acids (R, K) are colored in blue; negatively charged

68 amino acids (D, E) are colored in red. The consensus symbols are indicated for the full

69 alignment.

70 Section 3. Purification of GtLPMO9A-2 (Fig. S5).

- 73 Figure S5. SDS-PAGE of recombinant GtLPMO9A-2 produced in Pichia pastoris. Lane M,
- standard; Lane 1, purified recombinant *Gt*LPMO9A-2 treated with EndoH.

77 Section 4. Activity of GtLPMO9A-2 (Figs. S6-11).

78

Figure S6. Comparison of the product profile of *GtLPMO9A-2* on PASC with ascorbic acid (ASC) or DTT as electron donor. The figure shows HPAEC-PAD chromatograms with cellooligosaccharides released by *GtLPMO9A-2* from PASC; the peaks were assigned as in Fig. 3A. Grey dashed lines indicate oxidized oligosaccharides. The reaction conditions were as in Fig. 3.

Figure S7. Products generated by GtLPMO9A-2 or NcLPMO9C from oligosaccharides. The 86 figures show HPAEC-PAD chromatograms with peaks reflecting oligosaccharides released by 87 GtLPMO9A-2 (blue) or NcLPMO9C (red) from cellopentaose (A) and xyloglucan oligosaccharides 88 (B). Peaks were assigned based on previous assignments by Isaksen et al. (2) and Agger et al. (3). 89 90 Native cello-oligosaccharides are labeled as Glc_n where n is the degree of polymerization; 91 xyloglucan oligosaccharides are labeled according to the nomenclature proposed by York et al. (4): X, glucose with xylose substitution; L, X with additional galactose substitution. Note that 92 93 NcLPMO9C is able to cleave cellopentaose (2), as is indeed visible in panel A.

95 Figure S8. Products generated by *GtLPMO9A-2* or *NcLPMO9C* from carboxymethylcellulose.

96 HPAEC-PAD chromatograms showing oligosaccharides released by *Gt*LPMO9A-2 from CMC 97 (blue) and PASC (red). Native cello-oligosaccharides with DP 2-5 (orange) were used as a 98 standard.

100

101 Figure S9. HPAEC-PAD analysis of reaction products generated from konjac glucomannan (GM) 102 by GtLPMO9A-2 or NcLPMO9C in the dynamic viscosity experiments. Samples were taken after 16 hours of incubation and the chromatograms show the product profiles before (A) and after 103 104 (B) a subsequent treatment with TaCel5A. Orange line: native cello-oligosaccharides with DP 2-105 6. Black line: GM incubated with DTT only. Red lines: products generated from GM by 106 GtLPMO9A-2 in the presence (dark red) or absence (light red) of DTT. Blue lines: products 107 generated by NcLPMO9C in the presence (dark blue) or absence (light blue) of DTT; the small 108 peaks between 40 and 55 minutes visible in panel B for the reaction with NcLPMO9C are likely

109	to be oxidized GM fragments. The reaction conditions are specified in the Materials and
110	Methods section. Note that the chromatograms are identically scaled and that we thus observe
111	an increase in the polymer detector signal upon partial depolymerization (panel A).
112	

114 Figure S10. Details of the (A) Hex₆Pen₃ and (B) Hex₇Pen₅/Hex₈Pen₄ ion clusters in the MALDI-115 ToF spectrum for the end-point sample from the dynamic viscosity analysis where GtLPMO9A-2 116 (blue lines) or NcLPMO9C (red lines) reacted with tamarind xyloglucan (XG) in the presence of 117 reducing agent (DTT). The clusters are marked with brackets; possible products in these clusters 118 are the native (m/z 1409.8, 1836.0, and 1866.0), the C1-oxidized lactone or C4-oxidized 119 ketoaldose (anhydrated species, m/z 1407.8, 1834.0, and 1864.0) and the C1-oxidized aldonic 120 acid or C4-oxidized gemdiol (hydrated species, m/z 1425.8, 1852.0, and 1882.0). Signals 121 corresponding to the double-oxidized species (m/z 1405.8, 1423.8, 1832.0, 1862.0) were very 122 low, and signals corresponding to the sodium adduct of the aldonic acid sodium salt (m/z1447.8, 1874.0, and 1904.0) could not be detected; the positions of these weak/absent signals 123 124 are indicated.

127 Figure S11. HPAEC-PAD analysis of reaction products generated by (A) GtLPMO9A-2 or (B) 128 NcLPMO9C on glucomannan-coated PASC. Yellow line: native cello-oligosaccharides with DP 2-6. Brown line: mixture of PASC and konjac glucomannan (GM) incubated with LPMO only. Black 129 130 line: mixture of PASC and GM incubated with ascorbic acid (ASC) only. Blue line: products 131 generated from PASC with LPMO in the presence of ASC. Red line: products generated from GM 132 with LPMO in the presence of ASC. Purple line: products generated from glucomannan-coated PASC with LPMO in the presence of ASC. The reaction conditions are specified in the Materials 133 134 and Methods section.

135 References

136	1.	Jagadeeswaran G, Gainey L, Prade R, Mort AJ. 2016. A family of AA9 lytic
137		polysaccharide monooxygenases in Aspergillus nidulans is differentially regulated by
138		multiple substrates and at least one is active on cellulose and xyloglucan. Appl Microbiol
139		Biotechnol 100: 4535-4547.
140	2.	Isaksen T, Westereng B, Aachmann FL, Agger JW, Kracher D, Kittl R, Ludwig R, Haltrich
141		D, Eijsink VG, Horn SJ. 2014. A C4-oxidizing lytic polysaccharide monooxygenase
142		cleaving both cellulose and cello-oligosaccharides. J Biol Chem 289:2632-2642.
143	3.	Agger JW, Isaksen T, Várnai A, Vidal-Melgosa S, Willats WGT, Ludwig R, Horn SJ, Eijsink
144		VGH, Westereng B. 2014. Discovery of LPMO activity on hemicelluloses shows the
145		importance of oxidative processes in plant cell wall degradation. Proc Natl Acad Sci U S A
146		111: 6287-6292.
147	4.	York WS, van Halbeek H, Darvill AG, Albersheim P. 1990. Structural analysis of
148		xyloglucan oligosaccharides by 1H-n.m.r. spectroscopy and fast-atom-bombardment
149		mass spectrometry. Carbohydr Res 200:9-31.