1	Supplementary Information:
2	
3	Orexin signaling regulates both the hippocampal clock and the expression of
4	Alzheimer's disease-risk genes
5	
6	Zhixiong Ma ^{1, 2} , Weiliang Jiang ³ , & Eric Erquan Zhang ^{2*}
7	
8	¹ College of Life Sciences, Beijing Normal University, Beijing 100875, China.
9	² National Institute of Biological Sciences, Beijing 102206, China.
10	³ Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao
11	Tong University, Shanghai, 200080, China.
12	
13	

14 *Corresponding Email: <u>zhangerquan@nibs.ac.cn</u>

18

Supplementary Figure1: Orexin A shortens the period of hippocampal circadian
 clock.

A and B: Orexin A shortens the period of hippocampal circadian clock in a dose dependent manner. (C) pre-orexin A treatment and post-orexin A shows the orexin A shortens the period of hippocampal circadian clock (n=4, * p< 0.05, paired T-test). D and E: The EMPA block the effect of orexin B induced shorted period in hippocampus (n=6-10, * p<0.05, student's T-test). F and G: The period of hippocampal circadian clock in aging APP/PS1 mice is shorter than the one in the normal WT mice (n=8-18, ** p< 0.01, student's T-test)

28

29 Supplementary Figure 2: Diurnal expression pattern of *orexins*

(A)Diurnal expression pattern of *orexin precursor* gene in hypothalamus. Expression
orexin precursor mRNA was detected by qPCR in the hypothalamus of WT. the
expression of the orexin precursor mRNA is significant different at ZT5 and ZT17 (n=4-5,
* p< 0.05, student's T-test). (B) Immunostaining of orexin A peptide shows that the
diurnal expression pattern of orexin A is consistent with the one of *orexin precursor* gene
in later hypothalamus area.

36

Supplementary Figure3: The genes are insusceptible to the AD pathology. (A) Rhythmicity of BACE1 and GSK3 α was unchanged in hippocampus of APP/PS1 mice (n=3-5, N.S. p>0.05, student's T-test). (B) Rhythmicity of Bmal1, Clock, NR1D1, and NR1D2 was unchanged in hippocampus of APP/PS1 mice (n=4, * p< 0.05; N.S. p>0.05, student's T-test).

Figure S1

Figure S2

Figure S3

1 Supplementary Tables:

2

3 Supplementary Table 1: qPCR primers of AD-risk genes

A2m-1F	TCAAAGTTGCAGTACCAGAG
A2m-1R	TCCCATAGGTGTATATGCCA
Abcal-1F	GTGTTTCTGGATGAACCAACC
Abcal-1R	CTTGACAATGCTTAGGGCAC
Ache-1F	CCTGAAGCCCTTAGAGGTG
Ache-1R	CTCGTCCAGAGTATCGGTG
Adam10-1F	CTGGACATATTTATGGTGAAGAAGG
Adam10-1R	CCACGAGTCTTGATGAAACC
Adam9-1F	AGATTGCCAGTTCCTTCCA
Adam9-1R	GAACCGTTGCAGTACTCAG
Apbb1-1F	ATTGTATCCGCCAGCTCTC
Apbb1-1R	GCAGATCCTTTCCCTCTCC
Apbb2-1F	GGGCAAAGACATGTACCTG
Apbb2-1R	GTAAGCAAAGTCCGTCTCAC
APH1A-1F	AGCTCCTTAAGAAGGCAGATG
APH1A-1R	TGATGATACCGAAGGACAGAC
Aplp1-1F	GCGAATGAATCAGAGCCTG
Aplp1-1R	AGAAGCTCCTGGATCTGTG
Aplp2-1F	GGAAATTGATGAGCTCCTTCAG
Aplp2-1R	GGGATCTCCTCACTCTCCT
Apoal-1F	TGTGGATGCGGTCAAAGACA
Apoal-1R	TCCCAGAAGTCCCGAGTCAA
Apoe-1F	CACATTGCTGACAGGATGC
Apoe-1R	TAATCCCAGAAGCGGTTCAG
Apbal-1F	GAATGGAATTATCTGCAGCCT
Apbal-1R	ATTTCGATGATCCGATGTCC
Apba3-1F	CTCACAGAGACAAGAGAAATCC
Apba3-1R	TACTGGTTGTTCCTGTCCC
App-1F	ATGTCCCAGGTCATGAGAG
App-1R	GATAACGGCCTTCTTGTCAG
Bacel-1F	GTTTCCAAGCTCAACATCCTG
Bacel-1R	AGTAGCGATGCAGGAAAGG
Bace2-1F	CACGAACATCTCTGATTCCA
Bace2-1R	GCGTTTCAGAATTTGTCCAG
Bche-1F	AAATATGGACATCCCAATGGG
Bche-1R	GGGAGCACGAAGTTTAGAG
BDNF-1F	TCATACTTCGGTTGCATGAAGG

BDNF-1R	ACACCTGGGTAGGCCAAGTT
Capn1-1F	CTATGAGTGGAACAAAGTGGAC
Capn1-1R	AACGACATCCAGAACTCCC
Casp3-1F	AATGGATTATCCTGAAATGGGC
Casp3-1R	GAGCGAGATGACATTCCAG
Casp4-1F	CAACAATTGCCACTGTCCA
Casp4-1R	TTCTCCAGAGTTCCCACCT
CDC2-1F	AAATTGGAGAAGGTACTTACGG
CDC2-1R	CTCCTTCTTCCTCGCTTTC
Cdk5-1F	GATTGTGAAGTCATTCCTCTTCC
Cdk5-1R	TTCAGGTCCCTATGTAGCAC
Cdkl1-1F	GCACCAGCAAGTATTTAGC
Cdkl1-1R	CAACTCAAGTGTTTCCATGTC
Chat-1F	TGGGATCTGGCAACTTCGTC
Chat-1R	AGCACCTCCTCACAGCTAGA
Clu-1F	ATACCTGCATGAAGTTCTATGC
Clu-1R	GGTTTAGAAACTCCTCTAGCTG
Ctsb-1F	TATCCCTCTGGAGCATGGA
Ctsb-1R	TGGTAAGCAGCCTACATGAG
Ctsc-1F	CACCTACCCTGATCTGCTG
Ctsc-1R	CTTCTGTTGCTTCCATCACC
Ctsd-1F	GATTATCAGAATCCCTCTGCG
Ctsd-1R	ATCAGGTCTTCCACAGAGC
Ctsg-1F	CTCCAGGAGGTGCAGCTAAG
Ctsg-1R	TCCATAGGAGACGATGCCCT
CTSL1-1F	GACTGTATGGCACGAATGAG
CTSL1-1R	TCTTCTCCCATATCGCTCTC
Ep300-1F	TGCGTCTGTAGAGCTGTGAG
Ep300-1R	TCTCTTCTCCGAAACGGGGT
Ern1-1F	AAGAAGATCCAGTCCTGCA
Ern1-1R	AAAGGGAAGTTTCGTCAGG
Gap43-1F	GGAGAAAGACGCTGTAGAC
Gap43-1R	CATGTTCTTGGTCAGCCTC
Gnaol-1F	CACTTCAGGCTGTTTGACG
Gnaol-1R	TGGAGTCGAAGAGCATGAG
GNAZ-1F	GGCAGAGGTCAGAACGCAAA
GNAZ-1R	GCTCGTCTGGTTGTCCTCATA
Gnb1-1F	CCACAAACAAGGTTCATGC
Gnb1-1R	CCACATAATTCCCAGAAGGAG

Gnb2-1F	ACACTGACCCAGATCACAG
Gnb2-1R	ACCTAGACATACTAAAGCAGGG
Gnb4-1F	GGGCTCCAGCTCTTCACTTG
Gnb4-1R	GAGGGATGGCGTGCATCTTA
Gnb5-1F	GTCTCCATCCTGTTTGGAC
Gnb5-1R	ATGCCCAAACTCTTAGGGT
Gng11-1F	CTTCACATCGAGGATCTGC
Gng11-1R	TTTAGATACCTGTTGTCTCTGC
Gng3-1F	TATGAGTATTGGTCAAGCACG
Gng3-1R	GCCTTGGACACCTTTATCC
Gng4-1F	GACCCTGAGTCAGCTTCTC
Gng4-1R	TTCATTCCTGCACTCCCTG
Gngt1-1F	AAAAACAGCTTCCCTGACAGAA
Gngt1-1R	AGCCTCCTTTGAGTTCCTTGA
Gngt2-1F	TGAGAAGGAGCTGTTGAGG
Gngt2-1R	CCTGTCTTGGAAATCAGATCAC
GSK3A-1F	AAGCTCTGCGATTTTGGCAGT
GSK3A-1R	GAGTTCTGGAGCACGGTAGTA
Gsk3b-1F	CTTGGACAAAGGTCTTCCG
Gsk3b-1R	AATGTGCACAAGCTTCCAG
Hsd17b10-1F	GTGGCCATTAAGACATACCAC
Hsd17b10-1R	AAGATTCACATTGATAACCCGC
Ide-1F	TGCATCAGGGATGAATGCA
Ide-1R	AAGAGATCGCATATAGGCCTC
Illa-1F	ATGATCTGGAAGAGACCATCC
Illa-1R	CGAGCTTCATCAGTTTGTATCTC
Insr-1F	TCAGAAAGTTTGCCCAACC
Insr-1R	GTCATCAGGTTCCGAACAG
Lpl-1F	AGAATTACTGGTTTGGATCCAG
Lpl-1R	AAATCAGCGTCATCAGGAG
Lrp1-1F	TGTATGAAGGTGGAGAGCC
Lrp1-1R	AGTTGGTAGGCTTGTCAGG
Lrp6-1F	GAGGAAGATCTTGATTTCAGAGG
Lrp6-1R	GTCCAATACATGTACCCAACC
Ntrk1-1F	CATACACAGACGCTTCATGAC
Ntrk1-1R	TGTGGGTACACCACAACTG
Ntrk2-1F	AGAACGAGTATGGGAAGGA
Ntrk2-1R	TTGGGTTTGTCTCGTAGTC
Pkn4-1F	TCCATGAAAGTGAGGGATCG

Pkp4-1R	CTTCCTGGTACCCACTGTC
Plat-1F	TTATTGTCGGAATCCAGATGGT
Plat-1R	TCACAGTATTCCCACGTCAG
Plau-1F	ACAATTACTGCAGGAACCC
Plau-1R	ATTCTTGGACAAACTGCCT
Plg-1F	CCACGTACCCAACTACTCTC
Plg-1R	TCATCATTGTCTGGGTTCCT
Prkca-1F	AGTCGGGAAATTTAAGGAGC
Prkca-1R	TTCAGATCCCTGTAAATGATCC
Prkcb-1F	AGAACCACAAATTCACCGC
Prkcb-1R	AAAGCAGCAGACTTGACAC
Prkcd-1F	TGAGTTCTGGCTGGATCTG
Prkcd-1R	GTTTAATGGCTCCACGACG
Prkce-1F	TTTGGCAAGGTCATGTTGG
Prkce-1R	CGTCTTGTAGGATAACGTCCT
PRKCG-1F	CCTGCAATGTCAAGTCTGTAG
PRKCG-1R	ACACTCGAAGGTCACAAATTC
Prkci-1F	ACGATGAGGATATCGATTGGG
Prkci-1R	CTGGAAGCAAGAATGCAGC
Prkcq-1F	AACCGTGGAACTCTACTCC
Prkcq-1R	TGAGGTTTCAGCTCTAACCA
Prkcz-1F	GTGCAGCGAAAGGATATGG
Prkcz-1R	GACAGAATCCATATGCCTCCT
Psen1-1F	GCTCTTATCTATTCCTCAACAATGG
Psen1-1R	CTTGGGTACCCTCCTTTGG
Psen2-1F	CAGAGATGGAAGAAGACTCCT
Psen2-1R	AAGATGAAGTCTCCCAGGC
Snca-1F	GAGTCCTCTATGTAGGTTCCA
Snca-1R	CTTGCTCTTTGGTCTTCTCAG
Sncb-1F	CTATGTCGGAAGCAAGACCA
Sncb-1R	CAGAGAACACAGCTCCTCC
Ubqln1-1F	AATCCTCAGCTGCAGAGTC
Ubqln1-1R	TTCACGGTTCAAGAATCCCA
Uqcrc1-1F	CTTTCAAGGGAACAAAGAATCG
Uqcrc1-1R	TGTAGGCATTAAGATGAGCC
Uqcrc2-1F	AGCAGGCAGTAGATATGAGG
Uqcrc2-1R	CCTTTGGTAGTCAAACTAGATGC
mINS-1 F1	CACCCCACCTGGAGACCTTA
mINS-1 R1	CCACACCAGGTAGAGAGC

CCTGAGGAACAGAAGGATGA
ATCTGGTTCTCCTTGAGTCTTCTTG
GCCTCTGCCTCCCTTGATTT
TGACATAAGCAGCATGGGCA
CACGCGCTCCCGTGAAAG
GTCCTTGTCATCTTCTTCCACCA
AGCTCGTGTCCGTTCGTG
CCTGCGCTTCCAAGAAAACC
CTCGACACGCAATAGATGGGA
CTTCCTTGGTCCACGGGTT
TGAAGCAAGACCGGGAGAG
CACACGCCATCACATCAA
GAAAGCTGTCACCACCATAGAA
AACTCGCACTTCCTTTTCAGG
TGGCATGGTGCTACTGTGTAAGG
ATATTCTGTTGGATGCTCCGGCG
GGAGTTCATGCTTGTGAAGGCTGT
CAGACACTTCTTAAAGCGGCACTG

4 Supplementary Table 2: qPCR primers of core clock genes

8 Supplementary Table 3: qPCR primers of housekeeping genes, *orexin precursor* 9 gene and orexin receptors

gene und orexin receptors		
mActin_mrna-nf	GGCTGTATTCCCCTCCATCG	
mActin_mrna-nr	CAGTTGGTAACAATGCCATGT	
mGapdh_mrna-nf	GACCTCAACTACATGGTCTACA	
mGapdh_mrna-nr	ACTCCACGACATACTCAGCAC	
mOrexin-PreF1	CCTGCCGTCTCTACGAACTG	
mOrexinPreR1	GGTGCTAAAGCGGTGGTAGT	
Hcrtr1 F3	CTGTGGCGCGATTATCTCTAC	
Hcrtr1 R3	GCCAGGGACAGGTTGACAA	
Hcrtr2 F3	GAGGATTCCCTCTCGTCG	
Hcrtr2 R3	GGTGTAGGTATTCCCTCCACA	

12 Supplementary Table 4: Primers for amplified the coding sequence of E4BP4 and

Human E4BP4 F	ACCGGCGGCCGCATGCAGCTGAGAAAAATGCA
Human E4BP4 R	ACCGGGCGCGCCTTACCCAGAGTCTGAAGCAG
BACE1 pro gen-REV R	AGCTAAGCTTTTGGGCCAAGGTGGGCCCCG
BACE1 pro 1k	ATCCGGTACCTTGCAGCCTGGAAAAACTCT
BACE2 pro gen-REV R	AGCTAAGCTTGTGCGCCCAAGCCCACGGCG
BACE2 pro 1.4k	ATCCGGTACCTTGTTTTTAAAACAGCCAACATAA

13 the promotor regions of *BACE1* and *BACE2*

14