1	+SUPPLEMENTAL INFORMATION				
2	Targeting Non-classical Myelin Epitopes to Treat Experimental Autoimmune				
3	Encephalomyelitis				
4	Xiaohua Wang ^{1,4} , Jintao Zhang ^{1,7} , David J. Baylink ¹ , Chih-Huang Li ^{1,5,6} , Douglas M. Watts ² , Yi				
5	Xu ¹ , Xuezhong Qin ^{1,3} , Michael H. Walter ¹ , Xiaolei Tang ^{1*}				
6					
7	¹ Department of Medicine, Division of Regenerative Medicine, Loma Linda University, Loma				
8	Linda, California, USA; ² Department of Biological Sciences, University of Texas at El Paso, El				
9	Paso, TX, USA; ³ Musculoskeletal Disease Center, Jerry L. Pettis Memorial Veterans Affairs				
10	Medical Center, Loma Linda, California, USA. ⁴ Jinan Infectious Disease Hospital, Shandong				
11	University, Shandong, China; ⁵ Department of Emergency Medicine, Chang-Gung Memorial				
12	Hospital, Linkou Medical Center, Taoyuan, Taiwan; ⁶ Graduate Institute of Clinical Medical				
13	Sciences, School of Medicine, Chang-Gung university, Taoyuan, Taiwan. ⁷ Institute of Medicine,				
14	University of Zhengzhou, Henan, China.				
15					
16	*Correspondence should be addressed to Xiaolei Tang, <u>xitang@llu.edu</u> .				
17					
18	Correspondence:				
19	Xiaolei Tang, MD/PhD,				
20	Department of Medicine,				
21	Division of Regenerative Medicine,				
22	Loma Linda University,				
23	Loma Linda, CA. 92354.				
24	Phone: (909) 651-5891;				
25	Fax: (909) 558-0428.				
26	Email: Xitang@llu.edu.				

Figure S1.

m LVALIICYNWLHRRLAGQFLr LVALIICYNWLHRRLAGQFLC Jacchus LVALIICYNWLHRRLAGQFLh LVALIICYNWLHRRLAGQFL

- 27
- Figure S1. MOG₁₉₆ sequence is conserved across species. The data show an alignment of the
 sequences surrounding MOG₁₉₆ in four different species. "m": mice; "r": rats; "C Jacchus":
 Callithrix jacchus; "h": humans.
- 32

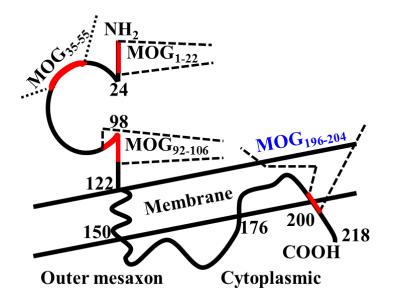
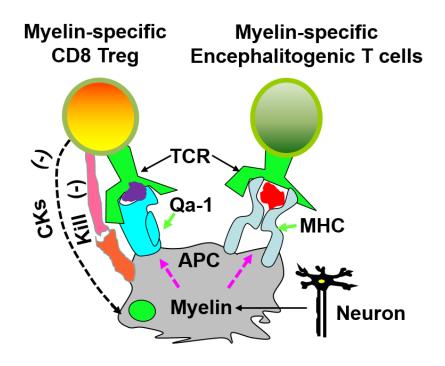



Figure S2. MOG₁₉₆ sequence is located in the intracellular domain of myelin oligodendrocyte glycoprotein (MOG). The three highlighted extracellular epitopes, i.e. MOG_{35} . 55, MOG_{1-22} , and MOG_{92-106} , are encephalitogenic (or pathogenic) epitopes. The intracellular

37 MOG_{196} epitope is a regulatory (or protective) Qa-1^b epitope.

38

40

Figure S3. A model of immune regulation mediated by myelin-specific, Qa-1-restricted CD8 Treg. Myelin-specific, Qa-1-restricted CD8 Treg cells can recognize and tolerize/eliminate antigen-presenting cells (APCs) that otherwise activate myelin-specific encephalitogenic T cells in the CNS and/or peripheral lymphoid tissues. Tolerization/elimination of APCs, which present myelin epitopes, is mediated by regulatory cytokines (CKs), inhibitory molecules, or direct cytotoxicity. Consequently, activation of myelin-specific encephalitogenic T cells and autoimmune attacks of myelin sheath are thwarted.

48

49

Table S1. Immunization with MOG₁₉₆-pulsed K^{b-/-}D^{b-/-}DCs suppressed MOG₃₅₋₅₅-induced experimental autoimmune encephalomyelitis

Treatments	# of animals with disease/# of total animals (peak scores of individual animals)	Mean days of disease onset	Mean maximal disease score
No Tx ¹	5/5 (4, 5, 4, 5, 4)	10.8 ± 0.8	4.4 ± 0.5
DC/Qdm ²	4/5 (5, 5, 4, 0, 3)	11.0 ± 0.8	3.4 ± 2.1
DC/MOG ₁₉₆ ³	1/5 (0, 0, 0, 0, 3)	11 ± 0.0	0.6 ± 1.3

- ¹No treatment. ²Qdm-pulsed $K^{b-/-}D^{b-/-}DCs$. ³MOG₁₉₆-pulsed $K^{b-/-}D^{b-/-}DCs$.

Table S2. Immunization with MOG₁₉₆-pulsed C57BL/6 DCs suppressed MOG₃₅₋₅₅-induced experimental autoimmune encephalomyelitis

Treatments	# of animals with disease/# of total animals (peak scores of individual animals)	Mean days of disease onset	Mean maximal disease score
DCs/HSP60 _{p216} ¹	5/5 (5, 5, 3.5, 2.5, 2)	14.2 ± 1.0	3.1 ± 0.3
DCs/Qdm ²	5/5 (3.5, 3.5, 3.5, 2.5, 2)	15 ± 1.1	3.2 ± 0.3
DCs/MOG ₁₉₆ ³	3/5 (2.5, 2.5, 1.5, 0, 0)	16.7 ± 0.3	1.3 ± 0.6

¹HSP60_{p216}-pulsed C57BL/6 DCs.

²Qdm-pulsed C57BL/6 DCs.

³MOG₁₉₆-pulsed C57BL/6 DCs.

70

71 72

Table S3. Suppression of ongoing MOG₃₅₋₅₅-induced experimental autoimmune encephalomyelitis by MOG₁₉₆ immunization was dependent on CD8⁺ T cells

Treatments	# of animals with disease/# of total animals (peak scores of individual animals)	Mean days of disease onset	Mean maximal disease score
No Tx ¹	5/5 (3.5, 4, 4, 4, 3)	8.4 ± 0.9	3.7 ± 0.4
DCs/ MOG ₁₉₆ ²	5/5 (3, 1.5, 3, 0.5, 0.5)	8 ± 0	1.7 ± 1.3
$DCs/MOG_{196} + mAb^3$	4/5 (3, 5, 3, 3) ⁴	8.3 ± 0.5	3.5 ± 1

73 74

¹No Treatment. ²MOG₁₉₆-pulsed C57BL/6 DCs. ³MOG₁₉₆-pulsed C57BL/6 DCs + anti-CD8 mAb.

⁴One animal that died before treatment was excluded from this analysis.