## **Supplementary Information**

Antileukemic Scalarane Sesterterpenoids and Meroditerpenoid from *Carteriospongia (Phyllospongia)* sp., Induce Apoptosis via Dual Inhibitory Effects on Topoisomerase II and Hsp90

Kuei-Hung Lai<sup>1,2,3,4,+</sup>, Yi-Chang Liu<sup>5,6,+</sup>, Jui-Hsin Su<sup>1,2</sup>, Mohamed El-Shazly<sup>7</sup>, Chih-Fung Wu<sup>8</sup>, Ying-Chi Du<sup>1,2,3</sup>, Yu-Ming Hsu<sup>3</sup>, Juan-Cheng Yang<sup>9,10</sup>, Ming-Kai Weng<sup>1</sup>, Chia-Hua Chou<sup>1,2</sup>, Guan-Yu Chen<sup>9,10</sup>, Yu-Cheng Chen<sup>11</sup> & Mei-Chin Lu<sup>1,2,\*</sup>

<sup>1</sup>Graduate Institute of Marine Biology, National Dong Hwa University, Pingtung, 944, Taiwan. <sup>2</sup>National Museum of Marine Biology & Aquarium, Pingtung 944, Taiwan. <sup>3</sup>Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung 807, Taiwan. <sup>4</sup>Division of Pharmacognosy, Department of Medicinal Chemistry, Uppsala University, Uppsala, Sweden. <sup>5</sup>Division of Hematology-Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, 807, Taiwan. <sup>6</sup>Department of Internal Medicine, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, 807, Taiwan. <sup>7</sup>Department of Pharmacognosy and Natural Products Chemistry, Faculty of Pharmacy, Ain-Shams University, Organization of African Unity Street, Abassia, Cairo 11566, Egypt. <sup>8</sup>Division of Surgical Oncology, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan. <sup>9</sup>School of Pharmacy, College of Pharmacy, China Medical University, Taichung, Taiwan. <sup>10</sup>Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan. <sup>11</sup>The Ph.D. Program for Cancer Biology and Drug Discovery, China Medical University and Academia Sinica, Taichung, Taiwan. <sup>\*</sup>K.-H. L. and Y.-C. L. contributed equally to this study. <sup>\*</sup>Correspondence and requests for materials should be addressed to M.-C. Lu (jinx6609@ayahoo.com.tw).

## **Table of Contents**

| Figure S1: <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of 1                  | 3    |
|--------------------------------------------------------------------------------------------|------|
| <b>Figure S2</b> : <sup>13</sup> C NMR (125 MHz, CDCl <sub>3</sub> ) spectrum of <b>1</b>  | 4    |
| Figure S3: DEPT NMR (125 MHz, CDCl <sub>3</sub> ) spectrum of 1                            | 5    |
| Figure S4: COSY NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of 1                            | 6    |
| Figure S5: NOESY NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of 1                           | 7    |
| Figure S6: HSQC NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of 1                            | 8    |
| Figure S7: HMBC NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of 1                            | 9    |
| Figure S8: HRESIMS spectrum of 1                                                           | 10   |
| Figure S9: IR spectrum of 1                                                                | 11   |
| <b>Figure S10</b> : <sup>1</sup> H NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of <b>2</b>  | 12   |
| <b>Figure S11</b> : <sup>13</sup> C NMR (125 MHz, CDCl <sub>3</sub> ) spectrum of <b>2</b> | 13   |
| Figure S12: DEPT NMR (125 MHz, CDCl <sub>3</sub> ) spectrum of 2                           | 14   |
| <b>Figure S13</b> : COSY NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of <b>2</b>            | - 15 |
| Figure S14: NOESY NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of 2                          | - 16 |
| <b>Figure S15</b> : HSQC NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of <b>2</b>            | 17   |
| Figure S16: HMBC NMR (500 MHz, CDCl <sub>3</sub> ) spectrum of 2                           | 18   |
| Figure S17: HRESIMS spectrum of 2                                                          | 19   |
| Figure S18: IR spectrum of 2                                                               | 20   |
| <b>Figure S19</b> : Values of $\Delta \delta_{S-R}$ of the MTPA esters of <b>2</b> .       | - 21 |
| <b>Figure S20</b> : The full length gel of Topo IIα activity                               | 22   |
| Figure S21: The full length blots of caspase 9, 8 and 3 expressions                        | 23   |



**Figure S1**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 1.



Figure S2: <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectrum of 1.



Figure S3: DEPT NMR (125 MHz, CDCl<sub>3</sub>) spectrum of 1.



Figure S4: COSY NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 1.



Figure S5: NOESY NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 1.



Figure S6: HSQC NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 1.



Figure S7: HMBC NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 1.



Figure S8: HRESIMS spectrum of 1.



Figure S9: IR spectrum of 1.



**Figure S10**: <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>) spectrum of **2**.



Figure S11: <sup>13</sup>C NMR (125 MHz, CDCl<sub>3</sub>) spectrum of **2**.



Figure S12: DEPT NMR (125 MHz, CDCl<sub>3</sub>) spectrum of 2.



Figure S13: COSY NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 2.



Figure S14: NOESY NMR (500 MHz, CDCl<sub>3</sub>) spectrum of **2**.



Figure S15: HSQC NMR (500 MHz, CDCl<sub>3</sub>) spectrum of **2**.



Figure S16: HMBC NMR (500 MHz, CDCl<sub>3</sub>) spectrum of 2.



Figure S17: HRESIMS spectrum of 2.



Figure S18: IR spectrum of 2.



**Figure S19**: Values of  $\Delta \delta_{S-R}$  of the MTPA esters of **2**.



**Figure S20**: The full length gel of Topo IIα activity.

Effect of compounds 1-3 on topo II activity. Lanes 1-5: **3** (0.08, 0.3125, 1.25, 5, and 20  $\mu$ g/mL); Lanes 6-10: **1** (0.08, 0.3125, 1.25, 5, and 20  $\mu$ g/mL); Lanes 11-15: **2** (0.08, 0.3125, 1.25, 5, and 20  $\mu$ g/mL); Lane 16: positive control, etoposide (500  $\mu$ M), as topo II poison (induction of linear DNA); Lane 17: plasmid DNA + topo II + solvent control (induction of DNA relaxation); Lane 18: Linear DNA; Lane 19: negative control plasmid DNA (supercoiled DNA)



Figure S21: The full length blots of caspase 9, 8 and 3 expressions.

Molt 4 cells were treated with 0.0625 µg/mL of compound 1 for the indicated time. Western blot analysis of Caspase 9 at 47 and 37 KDa, Caspase 8 at 57 and 43 KDa, as well as Caspase 3 at 19 and 17 KDa.