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1 Derivation of the Model

The model introduced in the main text essentially describes the following set of chemical reactions:

Ai + T
k+
i−−⇀↽−−
k−
i

[AiT ],

Ai + S
k+
S−−⇀↽−−
k−
S

[AiS],

(S1)

Here, k±i are the forward and backward rates for aptamer Ai and target T complex association and dissociation, and k±S the
corresponding rates for binding of aptamers with the substrate S. Furthermore, as in the main text, i = 1, . . . ,MB denotes a
label enumerating the different aptamers (unique aptamers, or aptamers with similar rate constants binned together). There
are several mathematical techniques which can be used to describe such reactions. The most common is to use ordinary
differential equations describing the time-evolution of the concentrations Ai, T and S of aptamers, target, and substrate,
respectively, using the law of mass-action [1]. The differential equations corresponding to reactions (S1) are given by

dAi

dt
= −k+i AiT − k+SAiS + k−i [AiT ] + k−S [AiS],

d[AiT ]

dt
= k+i AiT − k−i [AiT ],

dT

dt
= −k+i AiT + k−i [AiT ],

d[AiS]

dt
= k+SAiS − k−S [AiS],

dS

dt
= −k+SAiS + k−S [AiS].

(S2)

While these equations describe a dynamic system, SELEX experiments are typically performed at timescales where chemical
equilibrium is reached. The timescale to reach equilibrium can be on the order of hours [2, 3, 4], but this depends strongly on
ligand pool design, substrate and target used, and the involved concentrations. For instance, nucleic acid hybridization, which
forms the basis of substrate-ligand binding in [2], is dependent on conditions such as temperature and salt concentration.
Accordingly, equilibrium may require up to a day to reach [5]. Assuming experiments are performed under equilibrium

conditions, Eqs. (S2) can be approximated by its steady state solution. If T tot =
∑MB

i=1 [TAi] + T free denotes the total

concentration of target molecules, Stot =
∑MB

i=1 [SAi] +Sfree denotes the total concentration of substrate, and AI
i is the total

concentration of aptamer i present before the reactions (S1) occur, then the steady-state equations are given by

[SAi] =
1

KS
(AI

i − [SAi]− [TAi])S
free,

[TAi] =
1

KD,i
(AI

i − [SAi]− [TAi])T
free,

Stot =

MB∑
i=1

[SAi] + Sfree,

T tot =

MB∑
i=1

[TAi] + T free,

i = 1, . . . ,MB .

(S3)

These are the same equations as given in Eq. (1) in the main text. The dissociation constants are obtained from the forward
and backward rates through

KD,i =
k−i
k+i

(S4)

KS =
k−S
k+S

(S5)
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Notice that while Eqs. (S2) are structurally simple equations, they are quadratic in the 2MB unknowns [AiS] and [AiT ], since
Sfree and T free also depend on [AiS] and [AiT ], respectively. Now, as we argued in the main text, neither the steady-state
Eqs. (S3) nor their dynamic analogues Eqs. (S2) are expected to be valid when the number of molecules is very small.
Certainly, if there is only one aptamer of type i present, then a deterministic model does not apply. We thus need to describe
reactions involving molecules in low copy number with a stochastic approach. We will employ the chemical master equation
[6, 7] to describe those reactions. First of all, we note that from a theoretical perspective, it will be straight-forward to derive
a master equation for the whole system of reactions given by (S1). However, such a system will not be solvable analytically,
nor can it be simulated with standard techniques, such as the Gillespie algorithm [8], due to the large number of involved
molecules. We thus treat only those aptamers present in low copy number stochastically, whereas those aptamers present in
large copy numbers as well as the target and the substrate concentrations are treated deterministically; their concentrations
are obtained by Eqs. (S3). Moreover, since we only treat those aptamers present in low copy numbers stochastically, as
long as the free target and substrate concentrations predicted by the deterministic model are sufficiently larger than the
sum of the stochastic aptamers, the outcome of the stochastic binding of those aptamers will not significantly alter the free
target and substrate concentrations. However, this implies that all of the stochastic reactions decouple and can be treated
independently. Thus, we consider, without loss of generality, that only one kind of aptamer is present in low copy number,
and let this be aptamer i = 1.

As in the main text, let Ã1 denote the number of aptamers of type i = 1. Now, since we model an experimental approach
in which S and T are present in concentrations of nM or more, this translates into billions of molecules of T and S. Likewise,
we assumed that the other aptamers for i = 2, . . . ,MB are present in much higher copy numbers, so that the deterministic
steady-state Eqs. (S3) remain valid for i = 2, . . . ,MB . We can thus consider the reaction of aptamer i = 1 with either
a free target molecule T free or a free substrate molecule Sfree, where those free concentrations are given by Eq. (S3)
for i = 2, . . . ,MB . We thus only need to model the numbers Ã1, [Ã1T̃ ] and [Ã1S̃] of free aptamer, aptamer-target and
aptamer-substrate complexes, respectively. The joint probability p(Ã1, [Ã1T̃ ], [Ã1S̃]) to have Ã1, [Ã1T̃ ] and [Ã1S̃] present in
the system is given by the master equation

dp(Ã1, [Ã1T̃ ], [Ã1S̃])

dt
= k+1

1

NAV

(
(Ã1 + 1)(T̃ free + 1)p(Ã1 + 1, [Ã1T̃ ]− 1, [Ã1S̃])− Ã1T̃

freep(Ã1, [Ã1T̃ ], [Ã1S̃])
)

+ k−1

(
[Ã1T̃ ] + 1)p(Ã1 − 1, [Ã1T̃ ] + 1, [Ã1S̃])− [Ã1T̃ ]p(Ã1, [Ã1T̃ ], [Ã1S̃])

)
+ k+S

1

NAV

(
(Ã1 + 1)(S̃free + 1)p(Ã1 + 1, [Ã1T̃ ], [Ã1S̃]− 1)− Ã1S̃

freep(Ã1, [Ã1T̃ ], [Ã1S̃])
)

+ k−S

(
[Ã1S̃] + 1)p(Ã1 − 1, [Ã1T̃ ], [Ã1S̃] + 1)− [Ã1S̃])p(Ã1, [Ã1T̃ ], [Ã1S̃])

)
.

(S6)

Here, T̃ free and S̃free denote the number of free target and substrate molecules. Since we consider the other aptamers for
i > 2 to be in deterministic steady state, T̃ free and S̃free are fixed. Furthermore, since we assume that target and substrate
concentration are in the nM range, it is safe to assume that T̃ free � 1 and S̃free � 1. Thus, we have T̃ free + 1 ≈ T̃ free and
S̃free+1 ≈ S̃free. Then, we can absorb the factor 1

NAV into the two forward reactions, so we will introduce the concentrations

T free = T̃ free

NAV and Sfree = S̃free

NAV , respectively. Next, we notice that since Ã1 + [Ã1T̃ ] + [Ã1S̃] = ÃI
1, which is a constant in

each round, only two of the three variable in the master equation are independent. Furthermore, the number of aptamers
which are selected into the next round is the sum of the free ones and the aptamer-target complexes,

ÃS,D
1 = [TÃ1] + Ã1 = ÃI

1 − [SÃ1]. (S7)

This is the same as Eq. (2) for concentrations given in the main text. Thus, it is sufficient if we can calculate the probability
p([Ã1S̃]), which is obtained as a marginal distribution from p(Ã1, [Ã1T̃ ], [Ã1S̃]). We can also identify Ã1 with the number of

free, unbound aptamers Ãfree
1 . We thus have

p
(

[Ã1S̃]
)

=

ÃI
1∑

[Ã1T̃ ]=0

p
(
Ã1 = ÃI

1 − [Ã1T̃ ]− [Ã1S̃], [Ã1T̃ ], [Ã1S̃]
)
,

=

ÃI
1∑

[Ã1T̃ ]=0

p
(

[Ã1T̃ ], [Ã1S̃]
)
.

(S8)

In the last step, we simply eliminated Ã1 since it is fully determined by Eq. (S7). We thus plug Eq. (S8) into Eq. (S6) and
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obtain the master equation for p
(

[Ã1S̃]
)

:

dp
(

[Ã1S̃]
)

dt
=

ÃI
1∑

[Ã1T̃ ]=0

(
k+1

(
(Ã1 + 1)T freep

(
[Ã1T̃ ]− 1, [Ã1S̃]

)
− Ã1T

freep
(

[Ã1T̃ ], [Ã1S̃]
))

(S9)

+ k−1

(
([Ã1T̃ ] + 1)p

(
[Ã1T̃ ] + 1, [Ã1S̃]

)
− [Ã1T̃ ]p

(
[Ã1T̃ ], [Ã1S̃]

))
(S10)

+ k+S

(
(Ã1 + 1)Sfreep

(
[Ã1T̃ ], [Ã1S̃]− 1

)
− Ã1S

freep
(

[Ã1T̃ ], [Ã1S̃]
))

(S11)

+ k−S

(
([Ã1S̃] + 1)p([Ã1T̃ ], [Ã1S̃] + 1)− [Ã1S̃]p

(
[Ã1T̃ ], [Ã1S̃]

)))
(S12)

We now calculate the four contributions to the equation above. Eq. (S9) is given by:

k+1 T
free

ÃI
1∑

[Ã1T̃ ]=0

(
(Ã1 + 1)p

(
[Ã1T̃ ]− 1, [Ã1S̃]

)
− Ã1p

(
[Ã1T̃ ], [Ã1S̃]

))

=k+1 T
free

ÃI
1∑

[Ã1T̃ ]=0

(
(ÃI

1 − [Ã1T̃ ]− [Ã1S̃] + 1)p
(

[Ã1T̃ ]− 1, [Ã1S̃]
)
− (ÃI

1 − [Ã1T̃ ]− [Ã1S̃])p
(

[Ã1T̃ ], [Ã1S̃]
))

=k+1 T
free

(
ÃI

1 − ÃI
1 − [Ã1S̃]

)
p
(

[Ã1T̃ ] = ÃI
1, [Ã1S̃]

)
=0

(S13)

In the first step, we find that this is a telescoping sum, so only the term with [Ã1T̃ ] = ÃI
1 survives. Finally, if [Ã1T̃ ] = ÃI

1,
this necessitates [Ã1S̃] = 0 and the last term vanishes. Next, Eq. (S10) gives:

k−1

ÃI
1∑

[Ã1T̃ ]=0

(
([Ã1T̃ ] + 1)p

(
[Ã1T̃ ] + 1, [Ã1S̃]

)
− [Ã1T̃ ]p

(
[Ã1T̃ ], [Ã1S̃]

))
= −k−1 × 0× p

(
[Ã1T̃ ] = 0, [Ã1S̃]

)
= 0

(S14)

This is again a telescoping sum with the term [Ã1T̃ ] = 0 surviving. However, this term is multiplied by [Ã1T̃ ] and thus
vanishes. Next, Eq. (S11) gives:

k+S S
free

ÃI
1∑

[Ã1T̃ ]=0

(
(Ã1 + 1)p

(
[Ã1T̃ ], [Ã1S̃]− 1

)
− Ã1p

(
[Ã1T̃ ], [Ã1S̃]

))

=k+S S
free

ÃI
1∑

[Ã1T̃ ]=0

(
(ÃI

1 − [Ã1T̃ ]− [Ã1S̃] + 1)p
(

[Ã1T̃ ], [Ã1S̃]− 1
)
− (ÃI

1 − [Ã1T̃ ]− [Ã1S̃])p
(

[Ã1T̃ ], [Ã1S̃]
))

=k+S S
free

(
(ÃI

1 − E
(

[Ã1T̃ ] | [Ã1S̃]− 1
)
− [Ã1S̃] + 1)p

(
[Ã1S̃]− 1

)
− (ÃI

1 − E
(

[Ã1T̃ ] | [Ã1S̃]
)
− [Ã1S̃])p

(
[Ã1S̃]

))
(S15)

Here, we have introduced the conditional expectation

E
(

[Ã1T̃ ] | [Ã1S̃]
)

=

ÃI
1∑

[Ã1T̃ ]=0

[Ã1T̃ ]p
(

[Ã1T̃ ] | [Ã1S̃]
)
. (S16)

We thus need to find the conditional probability p([Ã1T̃ ] | [Ã1S̃]). However, this probability can be simply found by noticing

that when [Ã1S̃] is given, then only the reaction A1 + T
k+
1−−⇀↽−−
k−
1

[A1T ] matters. The total number of aptamer molecules for

this reaction is now not ÃI
1, but ÃI

1 − [Ã1S̃], since [Ã1S̃] aptamers are bound in a complex with the substrate. The master
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equation for p([Ã1T̃ ] | [Ã1S̃]) is given by

∂p
(

[Ã1T̃ ] | [Ã1S̃]
)

∂t
= k+1 T

free
(

(Ã1 + 1)p
(

[Ã1T̃ ]− 1 | [Ã1S̃]
)
− Ã1p

(
[Ã1T̃ ] | [Ã1S̃]

))
+ k−1

(
([Ã1T̃ ] + 1)p

(
[Ã1T̃ ] + 1 | [Ã1S̃]

)
− [Ã1T̃ ]p

(
[Ã1T̃ ] | [Ã1S̃]

))
= k+1 T

free
(

(ÃI
1 − [Ã1S̃]− [Ã1T̃ ] + 1)p

(
[Ã1T̃ ]− 1 | [Ã1S̃]

)
− (ÃI

1 − [Ã1S̃]− [Ã1T̃ ])p
(

[Ã1T̃ ] | [Ã1S̃]
))

+ k−1

(
([Ã1T̃ ] + 1)p

(
[Ã1T̃ ] + 1 | [Ã1S̃]

)
− [Ã1T̃ ]p

(
[Ã1T̃ ] | [Ã1S̃]

))
.

(S17)

This is a simple master equation with all coefficients linear in the unknown [Ã1T̃ ]. It follows that in the steady state

distribution
∂p([Ã1T̃ ]|[Ã1S̃])

∂t = 0, the distribution is binomial:

p
(

[Ã1T̃ ] | [Ã1S̃]
)
∼ B

(
ÃI

1 − [Ã1S̃],
k+1 T

free

k+1 T
free + k−1

)
= B

(
ÃI

1 − [Ã1S̃],
T free

T free +KD1

) (S18)

Thus, we get for the conditional expectation value

E
(

[Ã1T̃ ] | [Ã1S̃]
)

=
(
ÃI

1 − [Ã1S̃]
) T free

T free +KD1
. (S19)

Finally, we get for Eq. (S12):

k−S

ÃI
1∑

[Ã1T̃ ]=0

(
([Ã1S̃] + 1)p

(
[Ã1T̃ ], [Ã1S̃] + 1

)
− [Ã1S̃]p

(
[Ã1T̃ ], [Ã1S̃]

))
=k−S

(
([Ã1S̃] + 1)p

(
[Ã1S̃] + 1

)
− [Ã1S̃]p

(
[Ã1S̃]

)) (S20)

Collecting all terms together, we get the master equation for the marginal distribution p
(

[Ã1S̃]
)

dp
(

[Ã1S̃]
)

dt
= k+S S

free

(
(ÃI

1 −
(
ÃI

1 − [Ã1S̃] + 1
) T free

T free +KD1
− [Ã1S̃] + 1)p

(
[Ã1S̃]− 1

)
−
(
ÃI

1 −
(
ÃI

1 − [Ã1S̃]
) T free

T free +KD1
− [Ã1S̃]

)
p
(

[Ã1S̃]
))

+ k−S

((
[Ã1S̃] + 1

)
p
(

[Ã1S̃] + 1
)
− [Ã1S̃]p

(
[Ã1S̃]

))
.

(S21)

We observe that while Eq. (S21) has more complicated coefficients, it is structurally of the same type as Eq. (S17). Thus,
the solution to the steady state problem is a Binomial distribution

p
(

[Ã1S̃]
)
∼ B

(
ÃI

1,
k+S k

−
1 S

free

k+S k
−
1 S

free + k−S (k+1 T
free + k−1 )

)
= B

(
ÃI

1,
KD1

T free

KD1

T free + KS

Sfree + KD1

T free
KS

Sfree

) (S22)

We have thus established the distribution of [Ã1S̃], given in terms of the number of aptamers ÃI
1, which are present after the

non-specific binding steps, the rate constants, and the concentration of free target and substrate T free and Sfree, which is
obtained from solving the deterministic Eqs. (S3). We also note that if we solve the deterministic equations for i = 1 also,
then those equations predict a steady state for [SA1] of

[SA1] = ÃI
1

KD1

T free

KD1

T free + KS

Sfree + KD1

T free
KS

Sfree

, (S23)

which is exactly the expected value of Eq. (S22). This suggests the following strategy to solve the full model, including the
deterministically modeled aptamers for i > 1. We first solve the full deterministic Eqs. (S3) for all 1 ≤ i ≤ MB . Then, for
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those aptamers which we model stochastically, i.e. those which are predicted to fall below the threshold condition given in the
main text as AI

i − [SAi] < Θ for a given threshold Θ, we can simply simulate the specific binding reactions by drawing a single
random number sampled from a binomial Eq. (S22). The parameter for this binomial is then obtained from the steady state
solution Eq. (S23). Finally, non-specific losses such as washing contribute an additional probability to the total selection
probability for a single aptamer. As such losses constitute independent events, the total selection probability for a given
aptamer that incorporates both specific binding and non-specific loss is thus the product of their respective probabilities.
This is reflected in Eq. (4) in the main text.

2 Model Implementation

We have implemented our model in Mathematica 10.3, Wolfram Research, Inc., Champaign, IL (2015). The deterministic
Eqs. (S3) are solved with the FindRoot function of Mathematica. The impact of stochastic processes within the model are
assessed through Monte Carlo simulations based upon the binomial probability distribution described by Eq. (3). For each
simulation and each aptamer bin that is below the threshold Θ, a random number is generated using the RandomVariate
function of Mathematica, which requires a probability distribution from which this variate should be obtained. We provide
Eq. (3) as this distribution, and the parameter is obtained from the solution to the deterministic equation as in Eq. (4).
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Table S1: Default Parameters

Parameter Symbol Default Value
Number of Unique Aptamers MA 425 ≈ 1.13× 1015

Number of Bins MB 100
Number of Cycles C 20

Stochastic Model Threshold Θ 100
Substrate Concentration Cycle 1 Stot 1.66× 10−6M

Substrate Concentration Cycle 2 Onward Stot 1.66× 10−7M
Target Concentration T tot 10−4M
Incubation Volume V 50µl

Aptamer-Substrate Dissociation KS 10−12M
PCR Amplification Factor αPCR 50

Table S2: The Improved Protocol

Cycle Round T tot KS

1 10−3M 10−11M
2 10−4M 10−12M
3 10−4M 10−13M
4 10−4M 10−14M
5 10−5M 10−15M

6-10 10−5M 10−15M
11-20 10−6M 10−18M

Table S3: Alternative protocols used in Fig. S8. The fast KS decrease protocol decreases T tot similarly to the improved
protocol, but KS is decreased faster through the cycles. Likewise, the fast T tot decrease protocol decreases KS similarly to
the improved protocol, but T tot is decreased faster.

Cycle Round fast KS decrease fast T tot decrease
1 10−12M 10−4M
2 10−14M 10−6M
3 10−16M 10−8M
4 10−18M 10−8M
5 10−20M 10−8M

6-10 10−20M 10−10M
11-20 10−22M 10−12M
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(a) (b)

(c) (d)

(e) (f)

Figure S1: SELEX dynamics over 20 cycles for six initial KD distributions: four Gaussians with different means and
standard deviations, an exponential distribution, and one uniform distribution. While we certainly would not expect the real
KD distribution for targets of interest to be exponential or uniform, it is interesting to see the dynamics of SELEX for such
distributions, and illustrates the point that the distribution has an important influence on selection efficiency. We see that
the dynamics of evolution is quite different: in the uniform case, due to the large number of good binders, the bad ones are
quickly removed. The exponential distribution (e) or the broad Gaussian (d) guarantee a sufficient number of good binders
being present, but the protocol is not able to magnify the best binders (here, KD = 10−12M) and slightly worse binders still
form the peak of the distribution. On the other hand, for the Gaussians (a)-(c), the protocol quickly selects the best binders
present in the initial distribution.
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Figure S2: Plot showing the distribution of the mean KD of aptamers present after cycle 20 for the same experimental
condition presented in Fig. 3. The distribution reflects results from 250 identical Monte Carlo simulations. In general,
we notice a decreasing distribution with increasing KD, with a peak at the maximum value of KD = 10−10M . However,
there is a second peak near KD = 10−7M . This peak corresponds to results similar to the first simulation in Fig. 3 (blue
triangles), where all high-affinity aptamers that were introduced as noise outside the continuous Gaussian distribution are
lost by chance.

(a) (b)

Figure S3: Snapshots of φ(c), the fraction of high-affinity aptamers with binding affinities stronger than KD = 10−10M , at
two different cycles as a function of the initial target concentration T tot and the factor λD, by which the target concentration
is decreased with each cycle. We used an initial Gaussian distribution N(−4, 0.8) and about 100 additional high-affinity
aptamers. (a) At cycle c = 8, target concentrations close to 10−6M are the first to yield an increase of high affinity aptamers,
and faster decreases (lower λD) broaden the range of target concentrations which lead to strong binders. (b) At cycle c = 20,
a wide range of target concentrations leads to strong binders, unless the initial concentration is too low (T tot < 10−7M).
Very high concentrations (T tot > 10−1M) can still lead to success, provided the concentration is decreased sufficiently fast
(λD < 0.6).
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(a) (b)

Figure S4: Snapshots of φ(c), the fraction of high-affinity aptamers with binding affinities stronger than KD = 10−10M , at
two different cycles as a function of the initial KS and the factor λS , by which KS is decreased with each cycle. We used
an initial Gaussian distribution N(−4, 0.8) and about 100 additional high-affinity aptamers. (a) At cycle c = 8, lower initial
values of KS and faster decreases (lower λS) result in faster enrichment of high-affinity aptamers. (b) At cycle c = 20, most
initial values of KS eventually lead to enrichment of high-affinity aptamers, provided the affinity is decreased sufficiently fast
(λS < 0.8).
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(a) (b)

(c) (d)

(e) (f)

Figure S5: Fraction φ of high-affinity binders with cycle. Comparison of SELEX dynamics between the original SELEX
protocol (Table S1) with constant T tot and KS , and the improved protocol with decreasing target concentration and KS ,
for six different Gaussian distributions with means −3,−4,−5 and standard deviations 0.4, 0.8. Plot shows fraction of good
binders (binding stronger than KD = 10−10M) over SELEX cycles and the standard deviation observed over 50 Monte Carlo
simulations. We notice that the improved case reaches higher or equal plateaus as the constant protocol, and it reaches the
plateau much faster. There is less variability in the success measures when the initial Gaussian is broader, as in those cases
there is initially a large number of good binders present, so stochastic effects play only a small role ((d), (f)). Fig. 8 in the
main text shows the final fraction at cycle 20 and the speed with which this fraction is reached.
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(a) (b)

(c) (d)

Figure S6: We show the dependence of simulation results on the threshold Θ which defines when we use the stochastic or the
deterministic model. In each case the initial distribution is a Gaussian N(−4, 0.4) with added noise. (a) and (b) show sample
realization for Θ = 0 and Θ = 1000. The case of Θ = 0 means that we always use the deterministic model. Thus, there is no
loss of molecular species, and the handful of aptamers in the low KD range (KD < 10−7M) always outperform the ones with
higher KD. The case Θ = 1000 does appear qualitatively similar to the case Θ = 100 used in the main text, so repeated runs
are required to obtain statistical data. (c) and (d) show the dependence of the mean KD value, as a measure of protocol
performance, for different values of Θ. Each graph is obtained from averaging 150 Monte Carlo simulations and shown with
the corresponding error bars. In (c), we notice no visible differences between thresholds between Θ = 0 and Θ = 1000 before
cycle 10. This is because in those initial cycles, the randomness seen in low KD ligands does not affect the bulk of the ligand
distribution, and thus does not affect the mean KD significantly. From cycle 10 on, the results of the non-zero thresholds
deviate from the case Θ = 0, which predicts lower mean KD values. This is because for deterministic dynamics, there is no
loss of ligands possible throughout the cycles, and those high affinity ligands always take over the distribution after some
time, as seen in (a). (d) shows the same data zoomed in, focusing on the non-zero thresholds from cycle 10 on. We see that
from Θ = 100 to Θ = 1000 there is no visible difference, justifying the choice of Θ = 100 in other simulations performed in
this work.
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(a) (b)

(c) (d)

(e) (f)

Figure S7: The dependence of the mean KD value on target concentration T tot and substrate binding affinity KS is shown at
cycle 20 for 9 different initial distributions of ligands, as in Figs. 5, 7, respectively. The difference is that here we added noise
to the initial distribution. This noise results in different quantitative, but similar qualitative results. For each data point, 50
Monte Carlo simulations were performed and the mean and standard deviation were computed in log-space. Compared to
Figs. 5, 7, we only show three graphs to make the standard deviation, visualized by the added bars, more readable. We see
that the noise in the initial distribution results in considerable variability of the obtained mean KD.
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(a) (b)

(c) (d)

(e) (f)

Figure S8: The mean KD of the distribution as a performance metric for the protocol is shown for 6 different initial Gaussian
distributions with added noise, and 4 different protocols. The averages from 100 Monte Carlo simulations are shown in each
case. We compare the original protocol where KS and T tot are constant (Table S1) to the improved protocol discussed in
the main text (Table S2), and 2 other protocols where we decrease KS or T tot faster than in the improved protocol (Table
S3). The protocol with the fast T tot decrease does not significantly improve the initial distribution in the cases of the narrow
initial Gaussian distribution ((a), (c), (e)), which is expected since we have seen before that decreasing T tot has more of an
adverse effect than decreasing KS (compare Figs. 5 and 7). Deceasing KS faster than in the improved protocol can often
lead to small improvements ((b), (c), (e)) , but can also lead to a much worse outcome ((a)), so such a protocol should only
be used if a narrow initial distribution as in (a) can be ruled out.
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