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Supporting Information  

 

Materials and Methods: 

Tissue Samples and Population: 

The data investigated in this study is from two previous studies that used a histology-defined 

biomarker workflow to identify biomarkers associated with different clinical phenotypes. The 

first sample set consisted of 63 gastric cancer samples obtained from patients who underwent 

primary surgical resection and were matched to their UICC-pT status (pT=2) and Lauren’s 

classification (intestinal type) (1). This set was used to investigate the effect of intratumor 

heterogeneity on the overall survival time of patients after surgery. Follow-up data was available 

for all gastric cancer patients (median overall survival time was 33.1 [0-53.4] months).  

The second data set consisted of MSI data from breast cancer samples that were are all from 

invasive ductal carcinoma. This set was used to investigate metastatic potential and thus patients 

without (pN0, n=11) and with nodal metastases (matched to pN1, n=21) were involved (2). 

The clinicopathological data of both patient series are listed in Supplementary Tables S1 and S2. 

 

MSI Experiments and Data Preprocessing:  

MSI experiments and data processing were conducted as described in Balluff et al (2). Briefly, 

MSI was used to obtain spatially-resolved mass spectrometric data from tissue sections of both 

patient series’, in which each pixel has an associated mass spectrum that is representative of the 

local protein content of the tissue. All MSI data acquisition was performed in a black-
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randomized manner using in-house established standard operating protocols, which include 

weekly QC checks, to minimize the impact of any known/unknown source of bias (batch effects) 

on the measurements and on the subsequent statistical comparisons. 

Following MSI data acquisition the intact tissue sections were stained by hematoxylin and eosin, 

scanned with a digital slide scanner, and co-registered to the MSI data using FlexImaging 

(BrukerDaltonics, Bremen, Germany). In this manner each tissue section is characterized by a 

histological image aligned to 2D matrix of position-correlated mass spectra. A virtual-

microdissection was then performed in the FlexImaging software to select tumor areas and 

thereby focus the subsequent analyses on tumor-specific MSI data only. This resulted in 54,833 

pixels for the gastric cancer set and in 48,426 pixels for the breast cancer data set. This tumor-

cell specific MSI data of each patient tissue were then read into MATLAB R2012a (MathWorks, 

Natick, Massachusetts) into a project-specific data cube using spatial offsets to separate the 

different patient samples. The project data cube contains total-ion-count-normalized (3) MSI data 

of all samples, with the corresponding mass spectral data (peaks) in the z-dimension, and is 

available as supplementary information.  

Preprocessing MSI images towards m/z values 

An automated routine comprising peak detection, mass spectral alignment and peak extraction 

was applied, which reduced the gastric cancer dataset to 82 protein peaks and the breast cancer 

data set to 62 peaks. Peak picking was performed on the global basepeak mass spectrum after 

smoothing, resampling and baseline subtraction, and was performed using an adapted version of 

the LIMPIC package (4), a package specifically designed for the low resolution peaks detected 

by linear MALDI TOF analysis of proteins (5). The basepeak spectrum displays the maximum 
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intensity detected in the entire imaging dataset for every peak and is more effective for detecting 

peaks with localized expressions (4). Peak areas were extracted from all spectra and this reduced 

and more computationally manageable representation of a mass spectrum was then placed, based 

on its original coordinate information, as a pixel into a project-specific data cube (available in 

supporting information, e.g. breast_cancer_dataset.mat).  

 

Non-Linear Dimensionality Reduction: 

The high dimensionality MSI data was reduced to a single (three dimensional) map 

representation in which every pixel of the MSI image of every patient represents one point. 

Dimension reduction was performed using t-distributed Stochastic Neighbor Embedding (t-

SNE), which emphasizes retaining the distance between neighboring data points at the cost of 

faithfully representing distances between distant data points, which makes this technique a non-

linear embedding. We used the recent fast implementation of t-SNE, the Barnes-Hut Stochastic 

Neighbor Embedding (4), which has been optimized for the analysis of large datasets (with 

computational complexity N log N, where N is the number of data points). t-SNE uses a 

stochastic optimization leading to different maps when running the algorithm multiple times. To 

produce a fully reproducible map, we run the algorithm first using the default settings as 

described by van der Maaten (4) with a fixed seed point of zero, which results in the reduced 

map. Then, we used this result as an initialization map for the second t-SNE run to achieve 

global convergence. We used the freely available Barnes-Hut implementation for Matlab 

(http://lvdmaaten.github.io/tsne/), and mapped the data to a 3D space.   
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Control for systematic biases and batch effects 

A quality control check was performed to check whether there are systematic biases in the data 

due to patient selection or introduced during MALDI MSI sample preparation and data 

acquisition. In the t-SNE mapped space, points where colored, for example, according to cancer 

subtype (Figure S7) and its measurement date (Figure S8). The results indicated that there are no 

prominent batch effects visible in the t-SNE mapped data distributions. 

t-SNE image: 

The three 3 coordinate axes of the t-SNE mapped space can be converted to colors by 

interpreting these dimensions as L*a*b* color system dimensions (5). Every data point (i.e. 

every pixel in the MSI data) can then be assigned a L*a*b* color. Hence, the position of a data 

point (pixel) in the t-SNE mapped can be mapped back to the imaging domain by coloring the 

pixels in the imaging domain according to their corresponding space L*a*b* color. This image 

we call the t-SNE colored image.  We chose for the L*a*b* color space as it is perceptually 

linear, i.e. small distances in the map are perceived as small color differences (5). This way, 

similar colors correspond to similar mass spectra in the t-SNE image.  

 

k-means image:  

Similarly to the t-SNE colored image we can assign color to pixels in the MSI image based on 

the cluster to which they belong. This we denote by the k-means image. 
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Optimizing the number of clusters: spatially mapped t-SNE:  

The t-SNE colored image can be considered a tissue map in which similar colors represent MSI 

pixels with similar mass spectra. Similarly, the k-means image represents the clusters to which 

pixels belong. To choose for the optimal number of clusters we require that both images should 

be similar, i.e. the clustered representation faithfully represents the similarity of pixels inside the 

cluster and dissimilarity between pixels in neighboring clusters. Instead of directly comparing 

the t-SNE colored image with the k-means image, we chose to first detect edges in these images 

and then compare the edge images. The reasons were to overcome the difficulty of comparing 

continuous (t-SNE colored image) and discrete values (k-means image), and to focus on the 

cluster boundaries. To detect edges in the images we used the Canny edge detector (6). Before 

comparing the two images we applied a low pass filter (filter of size 3*3) to reduce pixilation (7). 

The agreement between the two images was then determined by calculating the Pearson 

correlation between the vector forms of the edge representations of the two images. To find the 

optimal number of clusters k was varied from k = 2 to 20, and the value with the highest 

correlation selected. To test whether the method did not oversegment phenotypically 

homogenous regions (which would then lead to false positive identification of subpopulations) 

we constructed synthetic datasets of homogeneous patches of real MALDI MSI spectra, with 

added experimental noise (see SI Appendix fig.S15). The synthetic dataset provides a known 

ground truth but simulates as close as possible the spectra obtained from real biological 

specimens.  These results demonstrated that the method finds the “ground truth” number and 

distribution of clusters, without over-segmenting spectrally homogeneous patches.  
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Association of clinical outcome with clusters: 

The clinical relevance for each of the identified clusters (tumor subpopulations) was assessed by 

investigating their association with the clinical data of the patients. Each cluster contains pixels 

(data points) from different patients, and a patient's MSI dataset may contain more than one 

subpopulation. We associated a patient to a cluster when that cluster represented more pixels 

than would be expected by randomly assigning patient’s pixels to the k different clusters, i.e. a 

patient is assigned to a cluster when more than (1/k)×100% of the pixels of that patient's MSI 

data are assigned to that cluster (2). In this manner every cluster has list of patients that are 

assigned to it, and which can be used to investigate associations with patient survival (gastric 

cancer) and metastasis status (breast cancer). Survival analysis was performed using the Kaplan-

Meier method (8) to evaluate differences in survival times. Associations with the metastasis 

status were investigated using Fisher’s exact test. These statistical analysis were performed using 

the R statistical software environment (R Foundation for Statistical Computing, Vienna, Austria). 

Building the pixel classifier: 

Given a set of patients we built a pixel classifier as follows. First, a spatially mapped t-SNE was 

run on the training set resulting in mapped data points and k clusters. Each cluster was assigned a 

label by associating patients to the cluster and determining clinical outcome. A significance 

Analysis of Microarrays (SAM) was then used to identify which m/z features significantly 

differentiate between the detected clusters (9). Significant features were determined by setting 

the FDR cutoff at 0.001. A new training set is then built in which every pixel has an outcome 

label based on the label of the cluster to which it was assigned and a feature vector based on the 

selected m/z features obtained by the SAM analysis. On this derived training set we built a k-

Nearest Neighbor classifier with k=5.  New (unlabeled) pixels can then be labeled by searching 



7	  

for the 5 nearest pixels in the derived training set on the basis of the expression values of the 

SAM-selected m/z features. A majority vote on the class labels of these 5 nearest pixels in the 

derived training set then predicts the label of the new (unlabeled) pixel.  

Building the patient-based classifier: 

The pixel classifier was used to predict the label of every pixel in a previously unseen patient’s 

MSI dataset. To arrive at an outcome prediction for the patient we integrate the pixel-based 

predictions as follows: if the patient’s MSI image has more than t1 pixels predicted as poor 

outcome (by the pixel classifier) and less than t2 pixels predicted as good outcome (by the pixel 

classifier), we designate poor outcome for that patient (and vice versa for the good outcome).   

For the breast cancer data set we used the clinically accepted Youden’s index (10), i.e. t1=2% 

and t2=100%. Using these thresholds the clinical outcome was then predicted for an unseen 

patient. The predictions were then checked for clinical concordance by comparing predictions 

with the clinical ground truth for the patients using the Fisher test.  

For the gastric cancer data set the Kaplan Meier analysis revealed the survival characteristics of 

each cluster; the cluster with greatest survival rate was designated as the favorable prognosis 

class, the cluster with least survival rate was designated as the poor prognosis class, and all 

remaining clusters were combined into a medium prognosis class. A patient with poor prognosis 

was found to be characterized by having t1 = 10% of pixels that were predicted by the pixel 

classifier to belong to the poor survival class, and t2 = 50% of pixels that were predicted to 

belong to the favorable survival class. Kaplan-Meier survival curves were then constructed of 

patients predicted to belong to the favorable and poor prognosis groups, and the significance of 

survival difference was determined using the log rank test. 
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Leave-one-patient-out validation of pixel and patient-based classifiers 

The pixel and patient-based classifiers can be evaluated by comparing predicted labels with 

known labels of a patient. But we need to evaluate these classifiers in an unbiased way, i.e. 

information used to build the classifiers should not be shared with the evaluation (such as 

building the spatially-mapped t-SNE, the SAM selection or building the kNN classifier). To 

achieve this we made use of a Leave-One-Patient-Out (LOPO) cross validation procedure (see SI 

Appendix Figure S9). We removed the data of a single patient from the data set representing the 

complete cohort. The data of the remaining patients was then considered training data and used 

to build the pixel-based and patient-based classifiers, i.e. all aspects of building the classifiers 

were performed on the training data only, and did not utilize any information from the left-out 

patient. The performance of both classifiers can then safely be determined on the left-out patient 

in an unbiased way. We repeated this procedure of leaving one patient out of the cohort data set 

for all patients (thus every patient is left out once, training as many classifiers as there are 

patients). The performance of the pixel and patient-based classifiers can then be derived from the 

average performance over all left out patients.  

 

 

	  
  



9	  

 

    Gastric carcinoma Breast carcinoma 

Number of patients 63 32 

Primary tumor extension   

 pT1 0 13 

 pT2 63 13 

 pT3 0 2 

 pT4 0 4 

Regional lymph nodes metastasis   

 pN0 18 11 

 pN1 24 21 

 pN2 16 0 

 pN3 5 0 

Resection status     

 R0 53 28 

 R1 9 1 

 Rx 1 3 

Distant metastasis   

 M0 54 32 

 M1 9 0 
Table S1 Clinicopathological information for the patient series 
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Her2_positive Luminal_A Luminal_B Triple_Negative 

1 23 5 2 

3% 74% 16% 6% 

Table S2. Clinical data of the breast cancer dataset 

 

	  

k=3 Supopulation2 Supopulation3 

Supopulation1 0.0215* 0.4570 

Supopulation2 - 0.0868 

Table S3.1. p-values of comparing survivals of different subpopulations in the gastric cancer 
dataset for k =3; numbers refer to data shown in the top row of Figure S3. * indicates p<0.05. 

 

k = 6 Cluster#2 Cluster#3 Cluster#4 Cluster#5 Cluster#6 
Cluster#1 0. 3800 0. 2630 0.1920 0.3610 0.0771 
Cluster#2 - 0.0719 0.0351 0.0740 0.0084* 
Cluster#3 0.0719 -  0.8150 0.6620 0.7190 
Cluster#4 0.0351* 0.8150 - 0.5400 0.8210 
Cluster#5 0.3610 0.6620 0.5400 -  0.3160 
Table S3.2. p-values of comparing survivals of different subpopulations in the gastric cancer 
dataset for k = 6; numbers refer to data shown in the middle row of Figure S3. * indicates 
p<0.05. 

	  

k = 8 Cluster#2 Cluster#3 Cluster#4 Cluster#5 Cluster#6 Cluster#7 Cluster#8 
Cluster#1 0.3400  0.9710  0.3990  0.3900  0.6200  0.5560  0.1840 
Cluster#2 - 0.2570  0.0714  0.0246*  0.1110  0.0892  0.0050* 
Cluster#3 0.2570  - 0.3940  0.2720  0.5570  0.5940  0.1430 
Cluster#4 0.0714  0.3940  - 0.9650  0.9040  0.6630  0.6860 
Cluster#5 0.0246*  0.2720  0.9650  - 0.7510  0.6320  0.5980 
Cluster#6 0.1110  0.5570  0.9040  0.7510  - 0.8650  0.4980 
Cluster#7 0.0892  0.5940  0.6630  0.6320  0.8650  - 0.4980 
Table S3.3. p-values of comparing survivals of different subpopulations in the gastric cancer 
dataset for k = 8; numbers refer to data shown in the bottom row of Figure S3. * indicates 
p<0.05. 
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Metastasis'
subpopulation'

Patient'without'
metastasis'

Patient'with'
metastasis'

<='2%' 5' 2'
>'2%' 6' 19'

Fisher'test:'p>value'='0.0318'
!

Table S4.	  Clinical evaluation of LOPO cross validation results for breast cancer patients. A 
threshold-based classifier on the pixel contribution of the metastasis-associated 
subpopulation was created using Youden’s index (Youden, Cancer, 1950) to find the 
optimum threshold (2%). This threshold was then applied to each unknown patient of each 
LOPO run and the predictions were tested for concordance with the ground truth using the 
Fisher test.	  
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Figure S1.	  Visualization of the contributions to the molecular heterogeneity in the gastric cancer 

MSI data due to intratumor heterogeneity (top row) and patient variability (bottom row). In (a) 

the data points from one patient have been colored green, another blue, and another red; the data 

from the remaining 60 patients are colored black. When the data from the remaining 60 are made 

invisible (b) it can be seen that the molecular signals from some tumors are highly dispersed 

indicating a high intratumor heterogeneity. Figures (c) and (d) show the same plots but for 

patients that are less heterogeneous and whose MSI signatures were found to be quite distinct 

(inter-patient heterogeneity).	  
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Figure S2. ACCENSE, a density-based analysis of the data points in the t-SNE space found 25 

clusters (a); while their corresponding Kaplan-Maier curves, (b), displayed apparent trends the 

low number of patients contributing to each cluster led to the results lacking statistical 

significance. 
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Figure S3. Kaplan-Meier survival analysis of the clusters found for the three highest ranking 

values of k for the gastric cancer MSI dataset: k = 3, top row; k = 6, middle row; k = 8, bottom 

row. There are significant differences in survival associated with clusters 1 and 2 (k = 3, top 

row); clusters 2, 4, and 6 (k = 6, middle row); and cluster 2, 5, and 8 (k = 8, bottom row). 
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Figure S4. Survival analysis of all subpopulations in the gastric cancer dataset for the k-means 

cluster representations that exhibited the highest gradient correlations to the t-SNE map. The 

results are presented as bar plots showing the number of patients contributing to the different 

subpopulations, in which the bar is colored according to the hazard ratio (survival) of the patient 

group. 
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Figure S5. Non-linear visualization of tumor cell specific MSI data from 32 breast cancer 

patients using t-SNE (a). An edge-based image correlation is then used to determine the discrete 

representation with the highest correlation, (b), here k=8. The t-SNE image, (c), is formed by 

coloring each pixel according to its location in the t-SNE space. The k=8 discrete approximation 

of the 32-tumor sample t-SNE image is shown in (d).  

 



18	  

 

Figure S6. Visualization of the metastasis-associated subpopulations in the breast cancer MSI 

data as revealed by t-SNE. The top-row (k = 8) shows the contributions of metastatic (black) and 

non-metastatic patients (grey) to the eight clusters in a grouped histogram. A statistical analysis 

detected cluster subpopulation 7 to be exclusively associated with metastasis. This subpopulation 

is highlighted in red in the t-SNE scatterplot. The middle and bottom rows show the results for 

second and third ranked k, namely k = 7 and 6, respectively (re. Figure S5b). 
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Figure S7. tSNE plot of the breast cancer MALDI MSI data in which the data points are colored 

based on the clinical data of the breast cancer patients, demonstrating the data structure is not 

defined by the subtypes. 
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Figure S8. (a) tSNE map is colored based on the MSI data measurement date (labeled simply as 

1-20). Clustering analysis with different clustering numbers (k = 3, 6 and 8) showing different 

clusters hold data from different batches. 
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Figure S9. Schematic diagram for the LOPO cross validation in which the left-out patient is not 
seen during the feature extraction and the classifier training and thus clinical outcome prediction 
of that unseen patient is unbiased. The LOPO predication results were validated by comparing it 
with the clinical ground truth(see Figure S10 and Table S4). 
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Figure S10. Clinical evaluation of LOPO cross validation results for gastric cancer patients. A 

rule-based classifier on the pixel contributions was determined, >10% poor survival class and 

<50% favorable survival class, which were then applied to each totally unknown patient of each 

LOPO run. The predictions resulted in significant survival time differences as shown by Kaplan-

Meier survival analysis and the log rank test (p=0.0104). 
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Figure S11. (a) Bar plot showing the frequency of SAM-identified protein ions for the LOPO 

cross validation performed on MALDI MSI dataset of gastric cancer; (b) Coloring 3D-tSNE map 

of the full dataset (see Figure S3) with intensity profiles of highly stable prognostic signatures –

m/z features that are commonly detected by the SAM analysis in at least 80% of all LOPO 

experiments. It can be seen that these 7 protein ions preserve the separation between the 

clinically significant subpopulations, for example m/z features of 3374 and 3445, were detected 

in 100% of all LOPO runs, are highly discriminating for the poor survival cluster with exclusive 

over-expression (yellow cluster in top-panel of Figure S3). 
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Figure S12. (a) Bar plot showing the frequency of SAM-identified protein ions for the LOPO 

cross validation performed on MALDI MSI dataset of breast cancer; (b)  Coloring 3D-tSNE map 

of the full dataset (see Figure S6) with intensity profiles of highly stable prognostic signatures –

m/z features that are commonly detected by the SAM analysis in at least 80% of all LOPO 

experiments. It can be seen that these 8 protein ions preserve the separation between the 

clinically significant subpopulations, for example m/z features of 4965 and 4999, were detected 

in 100% of all LOPO runs, are highly discriminating for the metastatic exclusive cluster with 

under-expression profile (see location of metastasis-exclusive cluster in Figure S6). 
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m/z	  =	  7009	  

(i)	  

Figure	  S13.	  Breast	  cancer	  tissues:	  H&E	  stained	  histology	  (a),	  and	  ion	  intensity	  expressions	  of	  the	  
potential	  prognostic	  m/z	  features	  (b-‐i).	  
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m/z	  =	  4967	  

m/z	  =	  3711	  

(g)	  

(h)	  

Figure	  S14.	  Gastric	  cancer	  tissues:	  H&E	  stained	  histology	  (a),	  and	  ion	  intensity	  expressions	  of	  the	  
potential	  prognostic	  m/z	  features	  (b-‐h).	  
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Figure	   S15.	   Four	   synthetic	   datasets	   (different	   rows),	   each	  with	   a	   size	   of	   (80*80*389)	   and	   containing	   patches	  with	  
different	  real	  MALDI-‐MSI	  spectra	  with	  added	  experimental	  noise	  from	  a	  uniform	  distribution.	  The	  proposed	  pipeline	  
could	   detect	   the	   “ground	   truth”	   number	  of	  piece-‐wise	  homogeneous	   regions	   (b-‐f).	   The	   last	   row	  shows	   results	  of	   a	  
dataset	  in	  which	  the	  number	  of	  patches	  are	  greater	  than	  the	  number	  of	  phenotypes	  (i.e.	  here,	  similar	  spectrum),	  and	  
the	  algorithm	  could	  separate	  the	  different	  regions	  properly.	  

	  


