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Supplemental Figures and Legends 36	
  
 37	
  

 38	
  
 39	
  
Figure S1. Related to Figure 1. Procedures for automatic cell identification and calcium traces extraction from 40	
  
GCaMP6s Expressing Neurons. A. Representative confocal images (Zeiss LSM 710; 63× objective; 255µm×255µm) from 41	
  
brain slices of D1-Cre mouse (Left panel) or D2-Cre mouse (Right panel) injected with 42	
  
AAV1.CAG.Flex.GCaMP6s.WPRE.SV40, 2 months after AAV injection. A total of 97.6 % ± 0.9% (mean ± s.e.m.) of 43	
  
neurons showed nuclear exclusion of GCaMP6s (n = 8 brain slices from eight mice), indicating that both D1- and D2- MSN 44	
  
were in good health after 2 month of GCaMP6 expression. Yellow arrow indicated an example of nuclear exclusion of 45	
  
GCaMP6 in healthy neuron. Red arrow indicated an example of nuclear filling of GCaMP6 in unhealthy neuron. Scale bar, 46	
  
25 µm. B. A diagram of the Spatio-Temporal Gradient Matching (STGM) cell identification algorithm workflow: after 47	
  
background subtraction and 5x5 Gaussian filtering, the x and y gradients of the pixel intensity were independently calculated 48	
  
(Gradient X and Gradient Y), a threshold was then applied (Thresholding), then matched to a typical cell template (Cell 49	
  
template matching); if the match was positive in the same location for both the x- and y- gradient (xy spatio-matching) for a 50	
  
minimum of 3 consecutive frames (temporal-matching), a new cell was added to the overall cell map (Cell map expansion). 51	
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See Supplemental Experimental Procedures for more detail in cell identification. C. A representative background 52	
  
subtracted image of a frame showing the position of a candidate cell at the cross-point of the horizontal and vertical lines. For 53	
  
any given line, fluorescent value along the line is expressed as F(x, y). Therefore, the horizontal x line shown in C is 54	
  
expressed as F(x, 121) for y=121; the vertical line shown in C is expressed as F(70, y) for x=70. The cross point of line x and 55	
  
y is expressed as F(70, 121). D. Pixel intensities (top traces) and gradient (bottom traces) for the horizontal line (left panels, 56	
  
F(x, 121), green line in C) and vertical line (right panels, F(70, y), yellow line in C). Cell centroid F(70, 121) (cross point of 57	
  
green and yellow lines in C) were identified by a sequence of positive and negative peaks in the gradient trace (lower panels, 58	
  
blue shaded areas). The cell was added to the cell map if its centroid was detected at the same location (F(70, 121)) both in x 59	
  
gradient (F(x, 121)) and in y gradient (F(70,y)) for 3 consecutive frames (spatio-temporal matching). E. Two identified 60	
  
neurons were highlighted in an image stack projection of standard deviation (to give the overall intensity map of the 61	
  
neurons). Blue circle indicated neuron N1 and orange circle indicates neuron N2. Inset showed a zoom-in view of N1 and N2 62	
  
neuron area (time point corresponding to the time indicated by the dash line in b). In the inset panel, the soma ROI (gray 63	
  
filled circle) and contamination background region (gray annular ring) were shown for N1 and N2. F. Traces showing the 64	
  
resulting calcium transients from ROI before (top panel) and after (bottom panel) removing the contamination fluorescent 65	
  
activity within the annular region. The contamination signal (green arrow) were removed after the annular background 66	
  
subtraction. See Supplementary Experimental Procedures for more details. 67	
  
 68	
  
 69	
  
  70	
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Figure S2. Related to Figure 1. Comparison of three difference methods in extracting calcium traces from synthetic 72	
  
data mimicking in vivo epi-fluorescent calcium imaging. A. Representative standard deviation projection images for a 73	
  
100-second simulated experiment, with highlighted position for three different types of simulated signals: in-focus neurons 74	
  
(green circles, top panel), out-of-focus neurons (orange circles, middle panel) and local background regions (blue dashed 75	
  
circles, bottom panel); Red circles in the top panel indicated the location of all neurons identified by the proposed gradient 76	
  
based Spatio-Temporal Gradient Matching (STGM ) cell identification algorithm, showing that the STGM algorithm 77	
  
correctly identified all simulated in-focus neurons while eliminated out-of-focus neurons. B. Comparison of the actual 78	
  
simulated calcium traces with extracted fluorescent traces using PCA/ICA (principal component analysis / Independent 79	
  
Component Analysis; top panel), CNMF (middle panel) and the Annular Region Subtraction method (ARS) used in this work 80	
  
(bottom). Red traces on each panel indicate actual simulated calcium traces (ground truth), and blue traces indicate calcium 81	
  
traces extracted using method as indicated. This result suggests that ARS can reliably extract fluorescent traces from the 82	
  
synthetic dataset. C. Representative standard deviation projection image for a 100-second simulated experiment (top panel), 83	
  
and high magnification images from boxed area at 4 different time instants (T1 through T4). Boxed  area contained three in- 84	
  
focus neurons (green circles, N6, N8, and N20), one out-of-focus neuron (orange circle), and one local background region 85	
  
(blue dashed circle). D. Comparison of extracted calcium traces of N6, N8 and N20 in a 10-second time window using 86	
  
different methods. In the actual simulation data (black traces), N6 and N20 displayed one peak activity at T1 and T2, 87	
  
respectively; but N8 displayed no calcium activity (being silent) in the considered 10-second time window. All three 88	
  
methods: PCA/ICA (cyan traces), CNMF (green traces), and ARS (red traces), were able to efficiently separate calcium 89	
  
transients of the three neighboring neurons (green circles in C), with no appreciable cross talk. However, the calcium activity 90	
  
from the nearby out-of-focus neuron (dashed orange traces) and local background (dashed blue traces) had substantial effects 91	
  
on the calcium traces calculated with the PCA/ICA (cyan traces) and CNMF (green traces) methods, leading to false activity 92	
  
peaks for N8. By contrast, the ARS method was able to correctly identify the lack of activity of N8 during the indicated 10- 93	
  
second period (note: N8 was identified using the 100-second simulated data and has activity outside of this 10-second time 94	
  
window). E. Average inter-neuron Pearson’s correlation coefficient as a function of distance for the three types of signals 95	
  
considered (bin size 3 pixel): in-focus neurons (N), out-of-focus neurons (O), and local background fluorescent flashes (B). 96	
  
In the simulated data set (blue traces), we set the correlation between N to N, N to O, and N to B to zero. All three methods 97	
  
were able to greatly reduce neuron and out of focus neuron (N to O) correlation to a similar degree (Orange, Green, and Red 98	
  
dashed traces). But PCA/ICA does not perform as well in reducing correlation with nearby neurons (N to N) and local 99	
  
background regions (N to B). Better performance in terms reducing N to N correlation was achieved with CNMF, but N to B 100	
  
correlation could not be efficiently reduced using CNMF. The ARS method used in this paper to extract calcium fluorescent 101	
  
traces further reduced N to N compared to CNMF, and reduced N to B to zero, indicating efficient elimination of local 102	
  
background fluorescent flashes from our final calcium traces. These results suggest that our ARS method is at least as good 103	
  
as CNMF in extracting fluorescent traces, and that both ARS and CNMF performed better than PCA/ICA. 104	
  
 105	
  
Details of the application of PCA/ICA, CNMF to the synthetic data: 106	
  
PCA/ICA: Cell sort algorithm (PCA/ICA) was used based on previous study (Mukamel et al., 2009). The PCA was first used 107	
  
for data dimensionality reduction. Usually 50 principal components (PC) were compute for the dataset. The high boundary 108	
  
number for the PC was chosen roughly based on the converging point of the slopes of the signal and noise spectra. The low 109	
  
boundary number was set around 12. Then the ICA was used to obtain the spatial filters. The number of independent 110	
  
components (ICs) was chosen between 16 to 25 based on the number of the neurons. Further steps including ROI separation 111	
  
and ROI selection were performed to obtain spatial filters for the in-focus neurons. Calcium traces (ΔF/F) were then extracted 112	
  
and compared with the synthetic data (ground truth). 113	
  
CNMF: The recent published CNMF method by Pnevmatikakis and colleagues was used (Pnevmatikakis et al., 2016). To 114	
  
simplify the calculation, the true positions of the 20 in-focus neurons were used as the input of the greedy initialization 115	
  
algorithm. The size of the filter kernel was set to 3×3 and window of 6×6.  The autoregressive (AR) order was chosen to be 1 116	
  
since our imaging frame rate is 10Hz, as suggested by the authors (Pnevmatikakis et al., 2016), and the ROI merging was 117	
  
applied with a threshold of 0.8. Lastly, the calcium traces (ΔF/F) were calculated and compared with the synthetic data 118	
  
(ground truth). 119	
  
  120	
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 124	
  
Figure S3. Related to Figure 1. Comparison of performance between CNMF and ARS methods on mouse in vivo 125	
  
GCamp6s calcium imaging dataset. A. Representative raster plots showing high degree of similarity between the calcium 126	
  
traces for a D2-Cre mouse in vivo recording, extracted with CNMF (top panel) and with ARS (bottom panel). B. Comparison 127	
  
of cell map identified using CNMF and our Spatio-Temporal Gradient Matching (STGM) algorithm. Green mask contours 128	
  
indicated neurons identified using the CNMF framework, blue dots indicated cell centroid identified using our spatio- 129	
  
temporal gradient matching method. This result demonstrated that our STGM method and CNMF framework identified 130	
  
majority of neurons at the same location and the overall cell map were almost identical. C. Comparison of calcium traces 131	
  
extracted using CNMF and ARS showed similar results. The 10 representative neurons were distributed throughout the cell 132	
  
map (marked in red on the cell map shown in B. D. Inter-neuron correlation coefficient as a function of cell distance. ARS 133	
  
method showed a slightly better decoupling of neighboring neurons than CNMF. E. Pearson’s correlation matrix of the 134	
  
calcium traces calculated with CNMF (top) and with the ARS method (bottom). Neuron pairs from CNMF extraction method 135	
  
displayed a slightly higher correlated activity than ARS, demonstrating that ARS method offered a more efficient decoupling 136	
  
of neural activity in spatially adjacent neurons. 137	
  
Details of the application of CNMF to a representative D2 data: the identified positions from our gradient based cell 138	
  
identification algorithm was used as the input of the greedy initialization algorithm. The size of the filter kernel was set to 139	
  
3x3 and window of 6x6.  The autoregressive (AR) order was chosen to be 2 as suggested by the report since our imaging 140	
  
frame rate is 10Hz. And a merging threshold of 0.8 was applied. Lastly, the calcium traces were calculated for the 141	
  
comparison. 142	
  
 143	
  
  144	
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Figure S4. Related to Figure 2. Details of the clustering analysis of the D1-MSN and D2-MSN in vivo GCamp6s 147	
  
calcium imaging dataset. A. Steps for neural cluster analysis: calcium traces (left panel) were grouped based on their 148	
  
activity correlation based on K-means clustering (middle panel), and final cluster was performed using meta-cluster analysis 149	
  
based on pair-wise correlation between any pair of neurons (See Supplementary Experimental Procedures for details). B. 150	
  
Pseudo-code of the k-means based cell clustering algorithm. C. Top panel. An example of the average Dunn’s index as a 151	
  
function of k: the peak in the Dunn’s index is typically used to find the value of k to use in the k-means algorithm to best 152	
  
describe the dataset, but in this case it fails to provide a reliable estimate. Bottom panel. Average Rand index of the final 153	
  
clustering schemes for different values of k: for low values of k the final clustering can be quite different from trial to trial, 154	
  
but a plateau is reached where the final outcome of the clustering algorithm is consistent within different trials. In our 155	
  
calculations we used the square root of the total number of neurons (dashed line in the figure) as the optimal k.  D. Mean 156	
  
Rand index for different runs of the clustering algorithm within the same dataset (diagonal terms) and across 5 different days 157	
  
(off-diagonal terms). Rand index is a measure of classification quality between two clustering methods, and expresses the 158	
  
ratio between all pairs of elements placed in both cases in the same cluster or in different clusters over all possible pairings. 159	
  
Despite the high indices within the same dataset, the meta k-means algorithm has poor consistency across different sessions, 160	
  
indicating that it can capture dataset-specific functional features of the neurons, but it fails to group cells according to a more 161	
  
general statistical description of the calcium traces. E. Direct comparison of the mean intra-dataset and inter-dataset Rand 162	
  
indices, showing a significant improvement in the overall consistency of the final clustering structure. F. Histogram showing 163	
  
the distribution of the average inter-dataset absolute difference in the co-occurrence matrix elements for the meta k-means 164	
  
(top) and the proposed algorithm (bottom): the long tail in the meta k-means variation distribution, which indicates 165	
  
significant differences in the individual partitioning schemes, is considerably reduced in the proposed algorithm. Five 166	
  
datasets were considered for 5 different days, and the mean absolute variance (dotted red line) was 20.48% for the meta k- 167	
  
means and 7.31% for the proposed clustering algorithm.  168	
  
 169	
  
 170	
  
 171	
  
 172	
  
 173	
  
 174	
  
 175	
  
 176	
  
 177	
  
 178	
  
 179	
  
 180	
  
 181	
  
 182	
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 184	
  
Movie S1 185	
  
Simultaneous display of the mouse locomotion, GCaMP6 recording images, and identified neuronal calcium transients for a 186	
  
representative D2-Cre mouse.  187	
  
Section 1.  188	
  
Left Panel: A freely moving mouse with a head-mounted miniScope in an open field. The centroid of the mouse was tracked 189	
  
and shown as a green dot. The green line indicates the trajectory of the mouse locomotion. Text on northwest shows time 190	
  
stamps. Scale bar: 3 cm. The red histogram bar indicates the locomotion velocity of the mouse.  191	
  
Middle Panel: GCaMP6 calcium images from miniScope during mouse locomotion. Scale bar: 100 µm. Right Panel: Calcium 192	
  
transients of the neurons identified in the field of view in a 20-s time window. The x-axis indicates time in seconds, and each 193	
  
line on the Y-axis indicates calcium transient for one neuron. 194	
  
Section 2.  195	
  
Left Panel: A freely moving mouse with a head-mounted miniScope in an open field, details same as described in Section 1.  196	
  
Middle Panel: GCaMP6 calcium images from miniScope during the mouse locomotion. Green dots indicate the centroids of 197	
  
the neurons identified in the field of view (Cell map; Neurons stay active for 5 days). Red dots show the centroids of active 198	
  
neurons among the cell map during the mouse locomotion. Scale bar: 100 µm.  199	
  
Right Panel: Same as described in Section 1. 200	
  
 201	
  
 202	
  
 203	
  
Movie S2 204	
  
Example of automatic cell identification algorithm and calcium traces extraction. 205	
  
Section 1.  206	
  
Application of the automatic gradient based cell identification algorithm for a representative D2-Cre mouse: GCaMP6 207	
  
calcium images from miniScope during locomotion. The neural map updated at each timestep is overlayed in green. Scale 208	
  
bar: 100 µm.  209	
  
Section 2.  210	
  
Calcium traces extraction for a representative D2-Cre mouse:  211	
  
Left panel: GCaMP6 calcium images from miniScope during locomotion; 6 neurons are randomly selected from a densely 212	
  
populated region. 213	
  
Right panel: Calcium traces extracted with the Annular Ring Subtraction method for the six neurons highlighted in the right 214	
  
panel. Despite the proximity of the neurons with each other, their calcium traces do not show appreciable correlation. 215	
  
 216	
  
 217	
  
 218	
  
Table S1 Summary of the statistical analysis of the results presented in Figure 1-4 (see attached excel file for details). 219	
  
  220	
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Supplemental Experimental Procedures 221	
  
 222	
  
Design of Miniature Epifluorescence Microscope 223	
  
 224	
  
A custom-built miniature epifluorescence microscope (miniScope) was used to image GCaMP6 fluorescence. The miniScope 225	
  
has a 2.4-gram weight and approximately 1.1 mm×1.1 mm maximum field of view with a cellular spatial resolution.  226	
  
 227	
  
Optics: A 3.5 mm×3.5 mm blue LED (XLamp XP-E, Cree) with 465 nm peak wavelength was used as the excitation light 228	
  
source. The illumination light was collimated using a 4-mm diameter, 2.73-mm focal length aspherical lens (#83-605, 229	
  
Edmund optics), passing through a 3 mm×3 mm square excitation filter (ET470/40, Chroma Technology), and was reflected 230	
  
by a 5 mm×5 mm dichroic mirror (FF495, Semrock) with a cutoff wavelength of 495 nm. Another 4-mm diameter aspherical 231	
  
lens (#83-605, Edmund optics) was used as an objective lens to collect fluorescence originated from dorsal striatum and 232	
  
relayed via the GRIN lens. The fluorescence emission passed through the dichroic mirror and emission filter (EM525/50, 233	
  
Chroma Technology), and was focused by a 4-mm diameter 6-mm focal length achromatic doublet lens (#63-690, Edmund 234	
  
optics), to form the fluorescent image on a complementary metal-oxide semiconductor (CMOS) sensor (MT9V022IA7ATM, 235	
  
Aptina). The distance between objective lens and imaging lens was optimized using optical design software ZEMAX 236	
  
(Zemax).  237	
  
 238	
  
Mechanical Design: Solidworks (Dassault Systèmes) was used for mechanical design of the microscope parts. 239	
  
Stereolithography technique (Proto Labs) was used for 3D printing of the miniScope housing. The material was SLArmor 240	
  
Nickel-NanoTool (Proto Labs) that is ultra-stiff, lightweight and light-tight.  The miniScope consists of a main body, a filter 241	
  
cube, and a base. The main body and the base were connected using 0.5-mm pitch thread, which allows for focus adjustment 242	
  
within ~2.0 mm range. A side locking screw on the base was designed for locking the in-focus position of the miniScope 243	
  
body. The height of the base was designed taking into consideration of both the height of GRIN lens on the top of the skull 244	
  
and the working distance of the miniScope. 245	
  
 246	
  
Data Acquisition System: The data acquisition system was built based on a field-programmable gate array (FPGA; 247	
  
XEM3001v2, Opal Kelly). The FPGA was used to control the CMOS image sensor and the microscope excitation LED. A 248	
  
custom control program was developed in C++ to communicate with the FPGA board from PC through a USB port.  The 249	
  
imaging sensor was integrated into a small lightweight PCB board containing all the components to transmit the acquired 250	
  
images through low-voltage differential signaling (LVDS) serial interface. The size of the entire imaging PCB is 11 mm×10 251	
  
mm×6 mm. A custom built cable was used to connect the sensor and data acquisition system. The cable consists of a slip ring 252	
  
and a 12-wire bundle. The frame rate for calcium imaging was 10 Hz with a 400×400 pixels image covering a 1.1 mm×1.1 253	
  
mm field of view. The time stamps were recorded for synchronization with the behavioral video recording system. 254	
  
 255	
  
Animal Use 256	
  
 257	
  
All experiments were conducted in accordance with the guidelines of Institutional Animal Care and Use Committee, the 258	
  
Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health. Transgenic mice expressing 259	
  
Cre recombinase under the control of the dopamine D1 receptor (D1-Cre, FK150 line, C57BL/6J congenic, Gensat, 260	
  
RRID:MMRRC_036916-UCD) or dopamine D2 receptor (D2-Cre, ER44 line, C57BL/6J congenic, Gensat, 261	
  
RRID:MMRRC_032108-UCD) were used in the experiments. All mice were male at 3-4 months of age and 25-30 gram of 262	
  
weight. All mice were  maintained in a regular light cycle (7:00am – 7:00pm) and provided with food and water ad libitum.  263	
  
 264	
  
Viral Injection 265	
  
 266	
  
To image GCaMP6 fluorescence in dorsal striatum (DS), we first injected AAV1.CAG.Flex.GCaMP6s.WPRE.SV40 267	
  
(University of Pennsylvania Vector Core) into the dorsal striatum. The AAV viruses were injected using the stereotactic 268	
  
coordinates (A/P: -0.93 mm, M/L: +1.8 mm, D/V: -3.46 mm, with 30° angle shift to caudate). Mice were anaesthetized 269	
  
with 2 % isoflurane in oxygen at a flow rate of 0.4  liter/min and mounted on a stereotactic frame (Model 962, David Kopf 270	
  
Instruments). Mice body temperature was maintained at 37  °C using a temperature control system (TCAT-2DF, 271	
  
Physitemp).  Sterile ocular lubricant ointment (Dechra Veterinary Products) was applied to mouse corneas to prevent drying. 272	
  
Mouse scalp fur was shaved and mouse skin was cleaned with 7.5% betadine and 70 % alcohol. A hole was drilled at the 273	
  
injection site (A/P: -0.93  mm; M/L: +1.8  mm) using a 0.5-mm diameter round burr on a high-speed rotary micro drill (19007- 274	
  
05, Fine Science Tools). A total of 500  nl of virus solution was injected at a rate of 25  nl/min using a micro pump and Micro4 275	
  
controller (World Precision Instruments). After the injections, the injection needle was kept in the parenchyma for 5  min 276	
  
before being slowly withdrawn. The hole on the skull was then sealed with bone wax, and skin was sutured. Mice were 277	
  
returned to their home cage to recover from anesthesia in a 37  °C isothermal chamber (Lyon Technologies, Inc). 278	
  
 279	
  
GRIN Lens Implantation 280	
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 281	
  
One week after viral injection, a 1-mm diameter gradient index (GRIN) lens (GRINTECH GmBH) was directly implanted in 282	
  
the mouse brain right above the dorsal striatum under anesthesia with ketamine/xylazine (ketamine:100mg/kg. 283	
  
xylazine:15mg/kg). In brief, a 1.1mm-diameter craniotomy was made at the coordinates(A/P:+0.9mm. M/L:+1.8mm). The 284	
  
brain tissue above the dorsal striatum was precisely removed using vacuum through a 30-Gauge blunted needle attached on a 285	
  
motorized stereotactic instrument, which was a custom-constructed three-axis motorized translation stage (MTS50Z8, 286	
  
Thorlabs). MATLAB-based software was developed to control the movement of the stereotactic arm to remove the brain 287	
  
tissue automatically by pre-defined trajectory guidance. The GRIN lens above the mouse skull was secured to skull with 288	
  
dental cement (DuraLay) and an additional plastic cap (0.2-mL PCR tube tip) was glued (Loctite) on the skull to protect the 289	
  
imaging surface of the GRIN lens. 290	
  
 291	
  
GCaMP6 Imaging in Freely Moving Mice 292	
  
 293	
  
Two weeks after the GRIN lens implantation, the miniScope base was mounted onto the mouse head. The motorized 294	
  
stereotactic instrument was used to hold the miniScope (including main body and base). After achieving the in-focus position 295	
  
for the entire field of view, the base was fixed on the skull using dental cement. This way, we could attach the miniScope 296	
  
body to mouse head before each experiment and detach it from mouse head after each experiment.  297	
  
 298	
  
Behavioral Tests  299	
  
 300	
  
We conducted a 5-day open-field test with a 34 cm×40 cm×20 cm chamber for all D1-Cre and D2-Cre mice. All the behavior 301	
  
tests were done in the light cycle. The top view of mice locomotion was recorded using a custom video camera controlled by 302	
  
custom software in C++, and the start of the recording was triggered by the start of calcium imaging. Similarly, the time 303	
  
stamps were also recorded for the synchronization between the locomotor behavior and the calcium imaging recording. Mice 304	
  
were anesthetized briefly using isoflurane before the miniScope was mounted. We then waited 25 minutes for mice to 305	
  
recover before the first imaging session. For each strain of mice, we included a cocaine-injected group as the experimental 306	
  
group and a saline-injected group as the control group; the cocaine dose was 20 mg/kg, i.p, the injection volume was 10 307	
  
ml/kg, and cocaine was dissolved in saline.  On each day of recording, we first acquired three sessions of 5-minute 308	
  
simultaneous recording for GCaMP6s fluorescent signal and mouse behavior. A 5-minute resting period was incorporated 309	
  
between two consecutive sessions. After three sessions, we injected mice with either cocaine or saline, and waited for two 310	
  
minutes to avoid injection stress. We then acquired calcium recordings for three more 5-minute sessions, with 5-minute 311	
  
resting period incorporated between two consecutive imaging sessions. The entire experiment on each day lasted 312	
  
approximately one hour per mouse.  313	
  
 314	
  
Calcium Images Analysis 315	
  
 316	
  
The calcium images were processed and analyzed using custom scripts in MATLAB. 317	
  
 318	
  
Image Registration: Raw images for each experiment were stabilized with a Fourier-based phase correlation image 319	
  
registration algorithm (Kuglin, 1975) to compensate for the brain translations caused by mouse movements. 320	
  
 321	
  
Neuron Identification: A gradient-based automatic cell detection algorithm (Lindeberg, 1998), the Spatio-Temporal 322	
  
Gradient Matching (STGM) method, was used to iteratively generate a cell map (centroids for each and all active neurons) 323	
  
for each session frame by frame (Figure S1). Background subtraction was firstly applied for the image stack of each session. 324	
  
Images were then smoothed through convolution with Gaussian kernel of 3×3 pixels standard deviation. Next, the x and y 325	
  
gradients (Gx and Gy) of the smoothed image Ixy were independently calculated by Gx = ∂Ixy/∂x, and Gy = ∂Ixy/∂y. A threshold 326	
  
was then applied to Gx and Gy as the following: 327	
  

𝐺! =
𝑠𝑖𝑔𝑛 𝐺!                 𝑖𝑓   𝐺! ≥ 𝑇!  
0                                            𝑖𝑓   𝐺! < 𝑇!

           𝐺! =
𝑠𝑖𝑔𝑛 𝐺!                 𝑖𝑓   𝐺! ≥ 𝑇!  
0                                            𝑖𝑓   𝐺! < 𝑇!

 , 328	
  

where the thresholds Tx and Ty are set to 4 times the root mean square (RMS) of Gx and Gy, respectively. Subsequently, a 329	
  
simple template matching algorithm was applied to detect all sequences of positive and negative gradient peaks (indicating 330	
  
the edges of in-focus neurons) within a maximum distance D = 30 µm (12 pixels). If the template was matched at the same x- 331	
  
y location for both Gx and Gy for 3 consecutive frames, a 2×2 pixel mask was added as a new cell to the overall cell map of 332	
  
the current recording session. Finally, for each session, the cumulative cell map was segmented, and each cell’s location was 333	
  
calculated as the centroid of each segmented region. An example of the application of the automatic cell identification 334	
  
algorithm is shown in Movie S2.  335	
  
 336	
  
Alignment of cells across different days of imaging: For the alignment of images from recording sessions across different 337	
  
days we used standard methods similar to other previous studies (Pinto and Dan, 2015; Ziv et al., 2013) to adjust and 338	
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compensate for the image translation rotation and dilation caused by repositioning of the microscope. After the day-to-day 339	
  
registration, an overall cell map was generated by merging the 5 day cell map. To confirm the performance of the neuron 340	
  
identification, visual inspection was conducted by overlaying the cell map on the calcium images. 341	
  
 342	
  
Calcium traces calculation: The calcium traces were extracted using the Annular Region Subtraction (ARS) method for each 343	
  
identified neuron through the following procedure (Also see Figure S1): first a neuron ROI (region of interest) was assigned 344	
  
as a circular region corresponding to the size of soma (diameter = 15 µm) of D1 and D2 neurons with the centroid as 345	
  
detected. The image stack minimum F0 was used as the baseline fluorescence of the background. The ROI fluorescence FROI 346	
  
was calculated as the maximum fluorescence value of the background subtracted images over the ROI, FROI = max(FRaw – 347	
  
F0)ROI, where Fraw is the raw image. Next, a commonly used formula (Chen et al., 2013b; Kerlin et al., 2010; Pinto and Dan, 348	
  
2015) was applied to correct the potential contamination from out-of-focus neurons or/and neuropil fluorescence, i.e.  Fsig = 349	
  
FROI  - γ Fcon where Fsig is the true fluorescence signal, Fcon is contamination fluorescence and was calculated as the minimum 350	
  
value of the background subtracted images over an annular region (d1 = 20 µm, d2 = 30 µm) surrounding the soma ROI (Fcon  351	
  
= min(Fraw – F0 )annular), and γ is the contamination factor, empirically estimated by the ratio of fluorescence in blood vessel 352	
  
region and  fluorescence in the annular region. The values of γ in this study ranged from 0.57 to 0.99 (mean ± s.e.m.: 0.88 ± 353	
  
0.02; n = 18 from 6 mice), which are higher than other studies using two-photon calcium imaging.  This is due to higher 354	
  
contamination from out of focus fluorescence in epi-fluorescence microscopy used in the current study as opposed to two- 355	
  
photon microscopy. In our final calculation, γ = 1 was used to minimize the effects of the  contamination fluorescent signals. 356	
  
Consequently, each calcium trace ΔF/F was calculated as  Fsig/Fb, where Fb = <F0>ROI is the baseline fluorescence over the 357	
  
soma ROI. The binary rasterplots used in some of the data analyses were generated by applying a threshold of three times the 358	
  
root mean square (RMS) of each neuron’s baseline fluorescence. Calcium transient onset was defined as ΔF/F crossing the 359	
  
threshold of three times the RMS of the calcium trace baseline. For each calcium transient, the local maxima (3s window 360	
  
from transient onset) was identified, and the amplitude and time decay constant can be estimated by fitting the transient decay 361	
  
data (3 s window from the local maxima) with an exponential function Aexp(-t/τ0) , where A is the amplitude and τ0 is the 362	
  
time decay constant. 363	
  
 364	
  
Detailed procedure for the generation of synthetic data: In a field of view of 100 × 100 pixels, three types of Gaussian 365	
  
shaped signals were placed: 20 regular cells (standard deviation σ1 = 2 pixels, based on average measured cell size) 366	
  
representing the in-focus neurons, 10 out-of-focus cells (standard deviation σ2 = 5 pixels) simulating the blurry neurons and 367	
  
the spillover effects from the neurons with high intensity of activations (Ziv et al., 2013), and 5 large regions (standard 368	
  
deviation σ3 = 20 pixels), simulating the activation of large out-of-focus neuronal populations or neuropils (Figure S2A). The 369	
  
position of the centroid of each signal was chosen with uniform distribution across the field of view. Under the simplified 370	
  
assumption that the fluorescent trace is a linear observation of the calcium concentration [CA2+] (Vogelstein et al., 2009), the 371	
  
underlying spike trains were generated from a Bernoulli process with probability λ = 0.001. The calcium concentration was 372	
  
then calculated according to the model (Vogelstein et al., 2009): 373	
  

CA!! ! − CA!! !!! = −
T!
τ

CA!! !!! − CA!! ! + An! + σ!ε!,! T! 
where Tc is the sampling period for calcium imaging, τ is the exponential decay time constant, [CA2+]b is the calcium 374	
  
concentration bias, A is a proportional constant, nt is the total number of spikes during the t-th frame, and σcεc,t√Tc is the 375	
  
noise of the calcium concentration model scaled with the time period Tc. To evaluate the performance of the proposed 376	
  
algorithm for a wide spectrum of SNR (signal to noise ratio), the single pixel signal was corrupted with Gaussian noise of 377	
  
standard deviation  σp = 0.01, 0.05, 0.1, 0.3, 0.5 and 1, respectively; five simulations were run with different initial cell 378	
  
positions for each value of σp. Details of the application of calcium analysis methods to the synthetic data are shown in 379	
  
Figure S2. 380	
  
 381	
  
Neural Clustering Analysis 382	
  
 383	
  
Clusters of neurons were identified based solely on their neural activity information (ΔF/F), through a clustering algorithm 384	
  
based on the meta k-means algorithm (Ozden et al., 2008) and outlined in Figure S4. The similarity metric chosen for the 385	
  
cluster assignment was the Pearson’s correlation coefficient. The basic k-means algorithm with k-means++ seeding (Arther, 386	
  
2007) was run 100 times on each of 1000 randomly sampled 30 s subsequences. For the choice of k, the use of Dunn’s index 387	
  
(Dombeck et al., 2009) could not provide useful information in our dataset due to the lack of a clear peak (Figure S4C, top 388	
  
panel). Instead we found that by using the square root of the number of neurons in the field of view (a common approach in 389	
  
literature (Pham, 2005) when no a priori information about the clustering scheme is available) yields consistent results in 390	
  
terms of reiteration of the clustering algorithm on the same dataset (Figure S4C, bottom panel). Rand index (Rand, 1971) is 391	
  
used here as a similarity metric to compare two different clustering schemes, ranging from 0 (no pair of elements are 392	
  
clustered together in both clustering schemes) to 1 (the two clustering schemes are identical). Based on the outcome of this 393	
  
iterative clustering step, we generated a pairwise co-occurrence matrix containing on each entry (i, j) the number of times that 394	
  
cells i and j are clustered together. The final clusters were defined as the largest sets of cells clustered together at least T 395	
  
times. This threshold T was chosen to maximize the ratio between number of final clusters and number of unclustered cells. 396	
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The proposed clustering method substantially improves the consistency of the meta k-means algorithm outcome across 397	
  
different imaging sessions (Figure S4). 398	
  
 399	
  
Intra-cluster pairwise cell distance was defined as the average of all pairwise cell distances in each cluster. The centroid of 400	
  
cluster was defined as the average centroid of all neurons in this cluster. Intra-cluster pairwise correlation coefficient was 401	
  
defined as the average of all pairwise Pearson’s correlation coefficients of neurons in each cluster. The neightboring (or 402	
  
adjacent) cluster pairwise correlation coefficient for cluster A was defined as the average of all pairwise Pearson’s correlation 403	
  
coefficients of neurons in cluster A with the neurons in nearest cluster B (minimum cluster centroid to centroid distance). 404	
  
The spatical distubution of neurons in each cluster can be estimated by Parzen probability density estimation method with a 405	
  
Gaussian kernel (Duda et al., 2000). Thus a smoothed contour of each cluster was estimated. 406	
  
 407	
  
Activity Synchronization Analysis 408	
  
 409	
  
Each calcium transient onset was identified with the threshold crossing of three times the RMS of the calcium trace baseline, 410	
  
and a binary matrix of the calcium transient onsets for all cells was created. In order to compensate for the ±1 frame 411	
  
uncertainty in the threshold crossing detection, each event is represented in the binary sequence as a 300 ms (3 frames) pulse 412	
  
centered at the calcium transient onset. In pairwise cell analysis, two events are considered to be synchronous if they overlap 413	
  
during at least one time instant. We then calculated the asymmetric correlation coefficient (Schwartz et al., 1998), defined for 414	
  
any pair of cells (i, j) as the ratio of the times both cells are simultaneously active over the total activations of cell i. The 415	
  
asymmetric correlation coefficients were calculated for each daily imaging session (before and after i.p injection) and 416	
  
averaged over 5 days. 417	
  
 418	
  
In order to identify cells with statistically significant simultaneous activity (p < 0.05), we used an approach similar to the one 419	
  
proposed by Schwartz et. al. (Schwartz et al., 1998), by running 1000 Monte Carlo simulations based on the measured 420	
  
calcium transient frequency with uniform distribution (using a uniform time delay on each calcium trace as a null hypothesis 421	
  
of independent neural activations produced similar results). This method allowed one to distinguish cells with a high 422	
  
likelihood of being simultaneously active and cells without significant simultaneous activations. The pairwise asymmetric 423	
  
correlation coefficient was calculated as the average of the two asymmetric correlation coefficients between two neurons. For 424	
  
each cluster, the intra-cluster synchrony S was calculated as the average of the pairwise asymmetric correlation coefficients 425	
  
of neurons within the cluster. The intra-cluster synchrony change ΔS before and after cocaine injection was then calculated 426	
  
by ΔS = (S2 – S1)/ (S2+S1), where S1 is the intra-cluster synchrony before cocaine injection and S2 is the intra-cluster 427	
  
synchrony after cocaine injection. Similarly, the intra-cluster synchrony change before and after saline or between fine 428	
  
movement (FM) and ambulation (AM) states can be calculated. The inter-cluster synchrony X was calculated as the average 429	
  
of the pairwise asymmetric correlation coefficients of neurons in each cluster with the neurons from the other clusters. The 430	
  
inter-cluster synchrony change ΔX  before and after cocaine injection was then calculated by ΔX = (X2 – X1)/ (X2+X1), where 431	
  
X1 is the inter-cluster synchrony before cocaine injection and X2 is the inter-cluster synchrony after cocaine injection. 432	
  
Similarly, the inter-cluster synchrony change before and after saline injection or between fine movement (FM) and 433	
  
ambulation (AM) states can be calculated. Similarly to the synchrony change, the cluster activity ΔF/F change ΔK before and 434	
  
after cocaine injection was calculated by ΔK = (K2 – K1)/ (K2+K1), where K1 is the cluster ΔF/F before cocaine injection and 435	
  
K2 is the cluster ΔF/F after cocaine injection. The cluster activity ΔF/F change before and after saline injection or between 436	
  
fine movement (FM) and ambulation (AM) states was calculated. 437	
  
 438	
  
Definitions of Mouse Behavior 439	
  
 440	
  
The behavioral analysis was performed using custom scripts in MATLAB. Based on the behavioral videos, the centroids of 441	
  
the mouse body were tracked (Ziv et al., 2013). Subsequently, the behavioral variables such as locomotion distance and 442	
  
velocity were calculated. The velocity data were smoothed by a moving average filter with a 0.5-second time window. We 443	
  
define six behavioral variables: ambulation, immobility, fine movement, motion initiation, motion termination, and maximum 444	
  
velocity. We followed the definition by Kravitz et. al. (Kravitz et al., 2010) for the calculation of ambulation, immobility, and 445	
  
fine movement. Ambulation was defined as the periods when the mouse’s velocity is greater than 2 cm/s for at least 0.5 446	
  
second. Immobility was defined as the periods when the mouse’s velocity is less than 0.05 cm/s for at least 1 s. And 447	
  
movement that was not ambulation or immobility was defined as fine movement. For behavioral variable Ambulation, 448	
  
Immobility, and Fine movement, the binary behavior vectors were generated based on the behavior status (1 - yes, 0 - no). 449	
  
We defined two velocity thresholds: 0.2 cm/s and 2 cm/s. The motion initiation (MI) was defined as described by Polack et. 450	
  
al. (Polack et al., 2013), and was first identified by the time (T1) at which the velocity crossed the second level of velocity 451	
  
threshold (2 cm/s) and remained greater than this threshold for at least 1 s, and then the motion initiation time onset was 452	
  
defined as the time (prior to T1) at which the velocity reach the first threshold (0.2 cm/s). The motion termination (MT) was 453	
  
first identified as the time (T2) at which mouse locomotion velocity from higher velocity crossed the higher threshold (2 454	
  
cm/s) and remained below this level for at least one second, and then the motion termination time onset was defined as the 455	
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time (after T2) at which the velocity reach the lower threshold (0.2 cm/s). The maximum velocity (Vmax) onset time is the 456	
  
time at which there is a maximum velocity. 457	
  
 458	
  
Neuronal activities for Different Behavioral Variables 459	
  
 460	
  
For the behavior variables motion initiation, motion termination, and maximum velocity, the calcium activity and the 461	
  
locomotion velocity in the period of interest (from -4 s to +4 s relative to the behavior time onset) were extracted for all the 462	
  
neurons recorded from the D1-Cre and D2-Cre mice. For each mouse, the averaged activity of behavior variable MI, MT and 463	
  
Vmax from all neurons and all periods of interert were calculated as ΔF/FB = Σm=1:MΣn=1:NΔF/F(m,n), where B indicates 464	
  
behavior variable MI, MT or VMax, M is the neuron number, N is the case number of behavior variable B and ΔF/F(m,n) is 465	
  
the calcium activity for neuron m in the nth period of interest. So we  calculated the the normalized calcium activity as 466	
  
ΔF/FN= (ΔF/FB -ΔF/FMIN)/( ΔF/FMAX -ΔF/FMIN), where ΔF/FMAX  = max{ ΔF/FMI , ΔF/FMT , ΔF/FVmax }, and ΔF/FMIN  = 467	
  
min{ ΔF/FMI , ΔF/FMT , ΔF/FVmax }. 468	
  
 469	
  
The average calcium activity during AM, IM and FM behavior were calculated by ΔF/FB = (1/TB)Σt∈B ΔF/F(t), where B 470	
  
indicates AM, FM, or IM, TB is the duration of behavior B. Thus the activity change by cocaine(or saline) injection can be 471	
  
calculated by ΔM = (ΔF/FB2 – ΔF/FB1)/ (ΔF/FB1+ ΔF/FB2), where ΔF/FB1 is the average calcium activity before cocaine (or 472	
  
saline) injection and ΔF/FB2 is the average calcium activity after cocaine injection. Also, by dividing the velocity into 473	
  
different ranges we also calculated  the mean neural activity, defined as the time averaged fluorescent change, at discrete 474	
  
steps as a function of velocity. 475	
  
  476	
  
Correlation Analysis of Cluster Activities and Behavior Variables  477	
  
 478	
  
Correlations were calculated between the locomotion velocity in the period of interest (Vmax) and the averaged cluster 479	
  
fluorescent change (defined as the averaged ΔF/F of all neurons in each cluster).  For the Vmax, the behavioral vectors(B)  480	
  
were constructed as the locomotion velocity ranging from -4 s to +4 s relative to the Vmax time onset as defined above. And 481	
  
the corresponding cluster fluorescent changes signal was extracted as the cluster vector (C).  The cluster fluorescent changes 482	
  
in the immobility behavior were extracted as the baseline. A bootstrap resampling (n = 2000) was used to test the statistical 483	
  
significance of the fluorescent response relative to the baseline fluorescent changes. Only the significant cluster (p < 0.05) 484	
  
was kept for further correlation analysis. For each Vmax time onset point, the sample cross correlation of behavioral vector 485	
  
and the cluster vector was calculated as the following (Chen et al., 2013a): 486	
  
For data pair (B, C), an estimate of the lag k cross-covariance is 487	
  
 488	
  

𝐶𝑂𝑉!"(𝑘) =

1
𝑛

𝐵! − 𝐵 𝐶!!! − 𝐶
!!!

!!!

, 𝑘 =   0, 1, 2…

1
𝑛

𝐶! − 𝐶 𝐵!!! − 𝐵
!!!

!!!

, 𝑘 =   −1,−2…

 

 489	
  
where 𝐵 and 𝐶 are sample mean of behavioral vector and cluster vector. Thus an estimate of the sample cross correlation is 490	
  
calculated by: 491	
  
 492	
  

R!" 𝑘 =
COV!" 𝑘

COV!! 0 COV!! 0
, 𝑘 =   0,±1,±2… 

 493	
  
Where COVBB(0) and COVCC(0) are the standard deviation of the behavioral vector and the cluster vector. For each sample 494	
  
cross correlation, the positive peak (R) represents the correlation between the cluster vector and behavioral vector. The 495	
  
statistical significance of the correlation R was determined by a permutation test as the following: Each data point along the 496	
  
cluster vector was randomly shuffled, and thus a distribution of 2000 correlation values RRand were generated by calculating 497	
  
the sample cross correlation between the behavioral vector and the randomly shuffled cluster vector. The p value for the 498	
  
significance of R was calculated as the fraction of the total number of RRand with the values greater than R. The data pair with 499	
  
p < 0.05 was denoted as correlated pair, otherwise denoted as uncorrelated pair. The cross correlation R of the uncorrelated 500	
  
pair was set to zero. For each cluster, a 2000-time bootstrap resampling was performed on all the data pairs to obtain the 501	
  
mean and the 95% confidence intervals of the cross correlation R. For each animal, the averaged cross correlation of all 502	
  
clusters was calculated. The averaged cross correlations of all the D1 and D2 mice for five days were calculated to show the 503	
  
reliability of the correlation between cluster activity and locomotion velocity. 504	
  
 505	
  
The Clusters in Dorsomedial Striatum and Dorsolateral Striatum 506	
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 507	
  
To examine the differences in cluster activity and cluster synchrony changes between dorsomedial and dorsolateral striatum, 508	
  
we splitted the medial-lateral axis to three region, dorsomedial striatum (DMS), dorsolateral stiatum (DLS) and region 509	
  
between DMS and DLS (MIDDLE). The range of the cluster centroid in medial-lateral axis from all the mice was from –390 510	
  
to 390 µm relative to the center of the field of view.  So the clusters with centroid coordinates along the medial-lateral axis 511	
  
less than –130 µm was classified to DMS cluster, and clusters with centroid coordinates along the medial-lateral axis greater 512	
  
than 130 µm was classified to DLS cluster. The clusters with centroid coordinates along the medial-lateral axis between – 513	
  
130 µm and 130 µm was classified as MIDDLE cluster.  514	
  
 515	
  
Behavior decoding analysis 516	
  
 517	
  
Two types of decoding experiments, i.e., behavioral state decoding (binary variables) and velocity decoding (continuous 518	
  
variables), were conducted to determine if cluster activities, the randomly selected subset of single neurons,or population 519	
  
activities of D1-MSN and D2-MSN encode the behavioral relevant information. Machine learning algorithms were used for 520	
  
different decoding tasks.  521	
  
 522	
  
Behavioral state decoding: We decoded four different behavioral states (AM, IM, FM and CO) based on (1) cluster 523	
  
activities (Clusters), (2) the activities of randomly selected subset of single neurons (Rand Neurons; the number of randomly 524	
  
selected neurons was equal to the number of clusters for each animal), and (3) population activities (Population) of D1-MSN 525	
  
and D2-MSN. We constructed a C5.0 decision tree classifier (Quinlan, 1986) for each behavioral state. Decoding 526	
  
performance was evaluated based on ten-fold cross-validation (Duda et al., 2000). The original sample is randomly 527	
  
partitioned into 10 equal sized subsamples. In each iteration, the C5.0 classifier was trained by 90% subset of the data 528	
  
(Clusters: {C1,C2,…, Ci,…,CN; Bt}Train, where Ci is the cluster ΔF/F of each mouse, N is the number of clusters, and Bt is the 529	
  
training behavior state vector; Rand Neurons: {RN1,RN2,…, RNi,…, RNN; Bt}Train, where RNi is the ΔF/F of the selected 530	
  
neuron of each mouse, N is the number of clusters, and Bt is the training behavior state vector; Population: {P; Bt}Train, where 531	
  
P is the averaged ΔF/F from all neurons of each mouse, Bt is the training behavior state vector), and tested by the remaining 532	
  
10% subset of data (Clusters: {C1,C2,…,Ci,…,CN}Test; Rand Neurons: {RN1,RN2,…,RNi,…,RNN}Test; Population: PTest). The 533	
  
decoding accuracy was calculated as the ratio of the number of corrected labeled cases to the total number of cases. To 534	
  
correct for imbalanced class distribution, we used the balanced accuracy(Brodersen et al., 2010). In Rand Neurons decoding 535	
  
experiments, decoding accuracy was calculated as the average of accuracies from 20 independent runs with different random 536	
  
combinations of randomly selected single neurons (Note: the number of randomly selected single neurons was equal to the 537	
  
number of clusters for each mouse, therefore the number of decoding inputs between cluster activities and randomly selected 538	
  
single neurons remained the same). The machine learning algorithm were  implemented in an R package C50 (https://cran.r- 539	
  
project.org/). More details about the algorithm were described in previous study (Chen and Herskovits, 2010). For behavioral 540	
  
state AM, IM and FM, the dataset of the first three sessions in day one were used. For behavioral state CO, dataset of all six 541	
  
sessions in each day and all five days were used. In cluster decoding tasks, for each predictor, the receiver operating 542	
  
characteristic (ROC) curve analysis was conducted and the variable importance of each predictor was measured as the area 543	
  
under the ROC curve (Hanley and McNeil, 1982). The variable importance of cluster indicates the weighted contribution of 544	
  
each cluster in the decoding. Spearman rank correlation was used as the metric of the similarity for the variable importance 545	
  
for different behavior states (AM, IM, FM, and CO) decoding. The averaged similarity of the normal locomotion behavior 546	
  
state was calculated as the average of pairwise similarity {AM, FM}, {AM, IM},  and {FM, IM}. And the averaged 547	
  
similarity of the cocaine-locomotion behavior state was calculated as the average of pairwise similarity {CO, AM}, {CO, 548	
  
IM},  and {CO, FM}. 549	
  
 550	
  
Velocity decoding: Gradient boosting machine, or GBM, (Friedman, 2002) algorithm were used for continuous velocity 551	
  
decoding. GBM was  implemented in R with the gbm and plyr packages (https://cran.r-project.org/). GBM iteratively added 552	
  
basis functions in a greedy fashion to reduce the root mean square loss function. The base learner was a tree model and 553	
  
parameters were tuned by using internal cross-valdiation. Three decoding tasks were conducted by using cluster activity, the 554	
  
activities of randomly selected subset of single neurons (the number of randomly selected neurons equals to the number of 555	
  
clusters for each animal), and population activity to predict the locomotion velocity. Similar to the C5.0 classifier, the GBM 556	
  
model was evaluated using ten-folder cross-valifdation. The decoding performance was measured by the root mean square of 557	
  
error (RMSE). For each mouse, the first three sessions of dataset in day one were used in the velocity decoding tasks. 558	
  
 559	
  
Statistics 560	
  
 561	
  
All reported sample numbers represent biological replicates.  All data were presented as mean ± sem unless otherwise stated. 562	
  
All statistical analyses were performed with Graphpad Prism (Graphpad) and Matlab (Mathworks). Mann Whitney test, 563	
  
Wilcoxon matched-pairs signed rank test, Pearson's correlation, Spearman’s rank correlation, bootstrap resampling, random 564	
  
permutation and  Monte Carlo simulations were used for statistical analysis.   565	
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