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Supplemental Figures

Supplemental Figure S1: Template strand inheritance patterns of inversions, as 
visualized by Strand-seq
 Each parental homologue (M, maternal; P, paternal) is composed of a Watson 

(W, orange) and Crick (C, blue) strand. During mitosis each strand serves as a template 

for DNA synthesis, and following cell division the template strands of each homologue 

segregate into daughter cells as either WW and CC, or WC and CW. After Strand-seq 

library preparation (Falconer et al. 2012) and sequencing, the orientation of these tem-

plate strands can be visualized by aligning the sequencing reads to the reference ge-

nome using BAIT software (Hills et al. 2013) (zoom inset). 

 At any given locus, a pair of homologues can contain no inversions with respect 

to the reference genome (homozygous reference), a single inversion on one homo-

logue (heterozygous), or an inversion on both homologues (homozygous). In Strand-

seq libraries, inversions appear as segmental changes in template strand orientation, 

and the number of homologues harboring an inversion at the locus can be discerned 

by the magnitude of change seen in the template strands. For instance, heterozygous 

inversions appear as a ‘partial’ change in strand orientation, where a WW chromosome 

switches to WC along the inversion, and a WC chromosome will switch to WW along 
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the inversion. Heterozygous inversions will be evident in all chromosomes. On the other 

hand, homozygous inversions result in a ‘complete’ change in template strand orienta-

tion, where a WW chromosome switches to CC along the inversion and a WC chromo-

some switches to CW. Consequently, homozygous inversions are masked in WC chro-

mosomes, as they appear to have the same template strand orientation as homozygous 

reference loci in WC chromosomes. For homozygous inversions, only WW and CC 

chromosomes are informative. 

Supplemental Figure S2: Detectable size range of rearrangements visible in 
Strand-seq libraries
 To demonstrate the range of inversions reliably detected by Invert.R, we per-

formed a down-sampling experiment by randomly subsetting reads from a single 

Strand-seq library (between 10 - 90% of the original library) and testing when specific 

inversion classes were no longer detected, along with the total range of inversions that 

were predicted in each subset. A) Example of a ~ 40 kb heterozygous inversion mapped 

to Chr 17p11.2. i) UCSC Genome Browser view of the down-sampled library, and ii) 

corresponding Invert.R (bin = 25) histograms of the region. Invert.R did not accurately 

detect the inversion until 40% of the reads were sampled. B) Plotted results of eight 
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inversion examples representing various lengths and genotypes illustrating the genomic 

coverage at which an inversion class was no longer detected. For example, at 90% (cor-

responding to 0.19x coverage) all inversion classes were reliably detected by Invert.R, 

at 80% (0.16x) the ~ 9 kb heterozygous inversion was not called and at 40% (0.03x) the 

20kb homozygous inversion was not called. C, D) For this down-sampled library, the 

total number and size distribution of inversions predicted by Invert.R was directly cor-

related to the genomic coverage of the individual library. This allowed us to predict the 

limits of detection for our technology. E) A predictive model of the minimal depth require-

ments to accurately locate various inversion classes. The shaded yellow box marks the 

range of genomic coverage of the single cell libraries used in this study, with the overall 

average indicated (dotted red line). Abbreviations: Region of interest (ROI); heterozy-

gous inversion (het); homozygous inversion (hom); kilobase (kb); basepair (bp).
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Supplemental Figure S3: Invert.R  analyis of a homozygous and heterozygous 
inversion in single cells 
 Ten single Strand-seq libraries from a male donor who has a homozygous inver-

sion on Chr 8p23 (upper panel) and a heterozygous inversion on and Chr 7q11 (lower 

panel). Zoom insets (red box) of the W/C ratio values calculated by Invert.R (bin = 25 

reads) are shown as histograms for each cell. Watson (orange) and Crick (blue) Strand-

seq reads are shown above each histogram, along with sequence gaps in the reference 
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genome (grey). A ‘complete’ change in template strand orientation along the homozy-

gous inversion (e.g. WW chromosome of HsSs_0035 changes to CC at the Chr 8 inver-

sion), and a ‘partial’ change in template strand orientation at the heterozygous inversion 

(e.g. WW chromosome of HsSs_0027 changes to WC at the Chr 7 inversion) is shown 

by the magnitude of the change in the Invert.R histograms. The putative inversion pre-

dictions made by Invert.R are shown below (red bars), and the ∆W/C of the inversion is 

listed for each cell. In some cases, multiple inversions were predicted along the Chr 7 

locus because the W/C ratios crossed the threshold more than once along the inverted 

segment (e.g. HsSs_0041). The variability seen between the individual cells is likely 

due to the changes in read densities across the locus, particularly near the inversion 

breakpoints, which are near large blocks of segmental duplications (see Fig. 2B). When 

multiple inversions were predicted within the region the average ∆W/C is provided. The 

reads/megabase (Mb) was also calculated for the region and listed for each library. 

These ten histograms were overlaid (in Fig. 2B, iii) and used to refine the inversion 

breakpoints.
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(Invert.R bin=25)

mixed CB donor population 
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Supplemental Figure S4: Putative inversions in a pooled donor cell population, as predicted by Invert.R 
 Overlaid histograms of W/C ratios, as generated by Invert.R (bin=25), for each chromosome of the pooled donor 

population cells. Number of cells (n) analyzed and average reads/megabase (Av Reads/Mb) is indicated. Each line in the 

histogram represents the W/C ratio at a genomic location in a single cell. A change in the W/C ratios along a chromosome 

represents a change in strand orientation, indicative of a putative inversion. Putative inversions overlapping in at least two 

cells appear as red heat maps below each histogram, where the intensity of the red hat map reflects the number of cells 

with a predicted inversion within the region. Reference assembly sequence gaps are shown as grey bars above each his-

togram. 
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Supplemental Figure S5: Examples of different genomic features evident on Chr 
10q11 
 Zoomed inset (red box) of a UCSC Genome Browser (GrCh37/hg19) view of 12 

representative Strand-seq libraries from the pooled donor population. Within this 4 Mb 

domain, Invert.R predicted three regions of interest (ROIs, upper green bars), which 

were further refined and categorized based on the genotype frequencies calculated for 

each ROI. ROIno.10.7 was heterozygous in ≥ 80% of cells, and was categorized as an 

Always Watson Crick (AWC) region (dark blue bar). Two ROIs (ROIno.10.9 and ROI-

no.10.10) were homozygous in ≥ 80% of cells, and were categorized as potential misori-

ents or minor alleles (red bars). ROIno.10.8 is a polymorphic inversion found in at least 

two cells, with different genotypes (dark purple bar). The domain has several reference 

sequence gaps (uppermost, black bars) and segmental duplications (SegDups) flank-

ing the ROIs, and Database of Genomic Variants (DGV) inversions overlapping with the 

ROIs. 

 Note that the AWC (ROIno.10.7) is flanked by large blocks of segmental dupli-
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cations and is in a region where few high-quality reads align, while the read density at 

this AWC itself is quite high. We predict that ROIs classified as AWCs identify repetitive 

sequences in the human genome that are currently underrepresented in the reference 

assembly. If these sequences are present on multiple chromosomes, they are expected 

to have template strand inheritance patterns that match the chromosomes they reside 

on, and will frequently appear WC since each chromosome that harbors these sequenc-

es will have independent segregation patterns. Also, note that at ROIno.10.9 two cells 

(HsSs_0266 and HsSs_0273) harbor a heterozygous inversion whereas the remaining 

cells appear to have a homozygous inversion at the locus, making this ROI a probable 

minor allele present in the reference assembly. This is distinguished from ROIno.10.10, 

where every cell has a homozygous inversion, making this ROI a probable sequence 

fragment that is misoriented in the reference assembly. The ROIs classified as misori-

ents or minor alleles point to regions in the human reference genome where the as-

sembled sequence is not representative of the vast majority of individuals seen in our 

population. 

Supplemental Figure S6: Genotype frequency of regions of interest in the mixed 
population 
 All cells were genotyped at all regions of interest (ROIs) to assess the frequency 

of heterozygosity (blue diamonds) and homozygosity (red squares) for each ROI, as 

plotted. The genotype was determined by counting the number of Watson and Crick 

reads in the region, where at least ten reads were required for inclusion, and then per-

Regions of Interest (ROIs)

he
te

ro
zy

go
us

 fr
eq

ue
nc

y

0.0

0.5

1.0 Potential Misorients
& Minor Alleles

(n = 24)

Always Watson Crick
(n = 46)

hom
ozygous frequency

0.0

0.5

1.0



Sanders A.D. et al (2016) Genome Research - Supplemental Information pg 9

forming three Fisher’s exact tests (for a homozygous reference, heterozygous inversion, 

and homozygous inversion) to determine the best fit genotype based on p-values (see 

Supplemental Methods for details). Frequencies were calculated as the proportion of 

genotyped cells showing either a heterozygous or homozygous state at each ROI. 46 

ROIs had a minimum of ten cells with a heterozygous frequency of at least 0.8 (dotted 

line) and are defined as Always Watson Crick (AWC) regions. 24 ROIs had a minimum 

of ten cells with homozygous frequency of at least 0.8, and are misorients or minor al-

leles present in the human genome reference assembly. See Supplemental Tables S2 

and S3 for the genomic coordinates of these ROIs, as well as Hardy-Weinberg statisti-

cal tests

Supplemental Figure S7: AWC regions mark repetitive elements with complex 
architecture 
 Self-alignment lastz dot plots of Chr 8 (coordinates listed above) illustrate the ar-

chitecture of Always Watson-Crick regions (AWCs; blue bars). A) The two AWC regions 

flanking Chr 8p23 inversion had heterozygous frequencies of 85% (ROIno.8.2) and 95% 

(ROIno.8.4) and coincided with known segmental duplications (Seg Dups; depicted ad-

jacent to axes). We can see the degree and orientation of sequence similarity between 
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the AWCs, where ROIno.8.2 was a repeated palindrome of about 500 kb that was par-

tially duplicated in ROIno.8.4.  B) Zoomed inset (dotted red box in i) of ROIno.8.2 illus-

trating the palindromic duplication contains 4 copies of a minisatellite of variable sizes, 

highlighting the complex architecture at the locus. 

Supplemental Figure S8: Cluster analysis of the inversion profiles for each pooled 
donor cell. 
 A clustered heat map of all pooled cord blood (CB) cells based on their inversion 

profiles. To characterize each cell’s inversion profile we interrogated the 111 polymor-

phic inversions and (providing sufficient reads were present) genotyped the cell based 

on the number of W and C reads at each inversion, as determined by Fisher’s exact 

test. We then compared the inversion profiles of all the cells to each other using a hier-

archical clustering model based on these genotypes, from a pairwise dissimilarity matrix 
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(see Methods). The heat map shows how each cell is identical to itself (diagonal line 

of black pixels). Cells that show similar profiles cluster together in deep red, whereas 

cells that are highly dissimilar are in yellow clusters. Related cells are grouped together 

based on their inversion profiles (e.g. upper left-hand and right-hand corners), however 

no two cells had an identical set of inversions, suggesting they each represent a unique 

individual from the pooled donor sample. Note that since only WW or CC chromosomes 

were included, the inversions analyzed in each cell may not represent the entire inver-

sion load for each cell. Nevertheless, relationships between individual cells in a hetero-

geneous sample can be visualized by the set of inversions present in a single Strand-

seq library.

Supplemental Figure S9: Allelic frequencies of polymorphic inversions in the 
mixed population. 
 The bar graph depicts the allelic frequencies found for all 111 polymorphic inver-

sions identified in the pooled donor population. The frequency of alleles in a reference 

versus inverted state was calculated based on the genotypes found for each cell (see 

Supplemental Methods). The height of each bar represents the frequency of the invert-

ed allele, where the proportion contributed by cells in a heterozygous state is shown in 

grey, and the proportion contributed by homozygous cells in black. The minimal inver-
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sion frequency possible in this study was limited to 0.04, based on the requirement 

of detecting the event in a minimum of two individual cells. Inversions with an allelic 

frequency > 0.5 (red dotted line) represent alleles commonly inverted in the sampled 

population. For additional information of the ROIs, including their genomic coordinates, 

see Supplemental Tables S4.

Supplemental Figure S10: Generating directional composite files from multiple 
Strand-seq libraries 
 We generated composite files from all single cell Strand-seq libraries generated 

for the individual donors, as illustrated for Chr 8 from the male donor.  A) To gener-

ate the composite file, the chromosomes inherited as either WW or CC were selected 

and merged into two files for the chromosome. Then, the reads from the WW-file were 
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reverse complemented by flipping all ‘+’ reads to ‘-’ reads, and vice versa. This reverse-

complemented file was then merged with the CC-file to generate a large composite 

file that has increased read depths while preserving the directionality of the data. The 

average read depth of the single Strand-seq libraries for Chr 8 was 71.5 reads/mega-

base (Mb), whereas the final read depth of the Chr 8 composite file was 2701 reads/Mb, 

a 38-fold increase. B) The fold increases in reads/Mb calculated for the composite files 

of each chromosome, generated for the male (blue triangles) and female (red squares) 

donors, as compared to the average reads/Mb seen in the single Strand-seq cells for 

the corresponding chromosomes. The number of libraries merged together to generate 

the composite file is indicated in the table below. Note that in generating the composite 

file, we assume that all the cells derived from a single donor have the same inversion 

profile, and the composite file represents all the structural variants found in these cells.

Supplemental Figure S11: Size ranges and overlapping inversions found for each 
invertome.  
 A) Cumulative frequency of the size range of inversions (in base pairs; bp) identi-

fied for the male (left, blue) and female (right, pink) invertome. New inversions that are 
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not listed in the Database of Genomic Variants (DGV) are represented by squares (dark 

blue for male, dark purple for female), whereas those overlapping with known inver-

sions listed in the DGV are represented by circles (light blue for male, and light pink for 

female). The inversions show an even distribution of sizes, with the median size (red 

dotted line) indicated. The vast majority of inversions are well below 1 megabases in 

size (grey box), which marks the limit of detection for cytogenetic techniques commonly 

used to identify inversions. B) The Venn diagram depicts the number of inversions that 

overlap between the different datasets. The male invertome is shown in blue, the female 

invertome is shown in pink, and the total number of inversions found in the pooled donor 

population is shown in green.

Supplemental Figure S12: Concordance between Invert.R-predicted inversions 
and validated inversions  
 Select examples illustrating the degree of overlap between inversions predicted 

using Invert.R (black bars) with those published in previous studies (purple bars). The 
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alternative studies listed utilized combinations of: paired-end mapping, sequencing BAC 

clones, PCR validation, and/or FISH visualization techniques to map these inversions. 

Accession numbers for each variant are shown. Invert.R-predicted inversions corre-

spond to those found for the mixed donor sample (ROIno.No; listed in Supplemental 

Table S4), male donor (mBM.No; Supplemental Table S5) and famale donor (fCB.No; 

Supplemental Table S6). Segmental duplications (SegDups).

Supplemental Figure S13: Correlation between palindromic segmental duplica-
tions and inversions
 A) The percent of bases of each chromosome that are segmental duplications 

was determined by pulling the repeats form the UCSC Genome browser, splitting them 

into palindromic (inverted orientation; orange) and non-palindromic (direct orientation; 

blue) and then calculating the repetitive bases compared to total chromosome bases. 

B) A linear regression of the percent of inverted bases per chromosome (of the non-re-

dundant events found in all three (i.e. from the pooled cord blood, male invertome, and 

female invertome) datasets) as compared to the percent palindromic segmental duplica-

tions. 
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Supplemental Figure S14: Levels of linkage disequilibrium at inversion break-
points
 Mean level of linkage disequilibrium (LD) calculated for neighboring single nucle-

otide variants (SNVs) summarized for all passing breakpoints, and plotted individually 

for each population from the 1000 Genomes Consortium. Each plot is centered on the 

breakpoint (vertical red line) with the histogram to the left representing the LD for the 

first 200 SNVs outside of the inversion, and the histogram to the right represents LD 

for the first 200 SNVs inside the inversion (see Methods for details). For comparison, 

LD was also calculated for 100 randomly-selected loci and plotted for each continental 

population (dark grey plot).  

 Population abbreviations: African Ancestry in Southwest US (ASW); African 

Caribbean in Barbados (ACB); Bengali in Bangladesh (BEB); British in England and 

Scotland (GBR); Chinese Dai in Xishuangbanna, China (CDX); Colombian in Medellin, 

Colombia (CLM); Esan in Nigeria (ESN); Finnish in Finland (FIN); Gambian in Western 

Division, The Gambia (GWD); Gujarati Indian in Houston,TX (GIH); Han Chinese in 

Bejing, China (CHB); Iberian populations in Spain (IBS); Indian Telugu in the UK (ITU); 

Japanese in Tokyo, Japan (JPT); Kinh in Ho Chi Minh City, Vietnam (KHV); Luhya in 

Webuye, Kenya (LWK); Mende in Sierra Leone (MSL); Mexican Ancestry in Los Ange-

les, California (MXL); Peruvian in Lima, Peru (PEL); Puerto Rican in Puerto Rico (PUR); 

Punjabi in Lahore, Pakistan (PJL); Southern Han Chinese, China (CHS); Sri Lankan 
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Tamil in the UK (STU); Toscani in Italy (TSI); Utah residents with Northern and Western 

European ancestry (CEU); Yoruba in Ibadan, Nigeria (YRI).  Continental groups: African 

(AFR) - ACB, ASW, ESN, GWD, LWK, MSL, YRI; American (AMR) - CLM, MXL, PEL, 

PUR; Asian (ASN) - CHS, CDX, CHB, JPT, KHV; European (EUR) - CEU, FIN, GBR, 

IBS, TSI; South Asian (SAN) - PJL, GIH, ITU, BEB, STU

Supplemental Discussion

 From a single cell, confidence in a predicted inversion depends on the total num-

ber of reads that represent the inversion, and the proportion of reads that are W or C. 

Compared to heterozygous alleles, homozygous inversions are easier to detect as they 

show a higher magnitude of change in template strand state, and are thus supported 

by more reads overall. Similarly, larger inversions contain a greater number of support-

ing reads compared to smaller events, making them easier to confidently call within a 

Strand-seq library (Supplemental Fig. 2). The likelihood of detecting an inversion in a 

single cell is dependent on: i) the coverage of the Strand-seq library (which impacts the 

number of reads representing the inversion), ii) the level of spurious background reads 

in the library (which makes it difficult to locate meaningful changes in template strand 

state), and iii) whether the chromosome was inherited as WC (as it is impossible to 

distinguish between homozygous reference and homozygous inversions in WC chromo-

somes).

 In order to distinguish an inversion from sporadic rearrangements (such as sister 

chromatid exchanges) the template strand state change must recur at the same genom-

ic location in a minimum of two individual cells. Consequently, the minimum number of 

unrelated cells required to identify an inversions is inversely correlated to the frequency 

of the variant in the population being studied. For instance, to uncover a very common 

polymorphism with a 0.1 minor allele frequency a minimum of 20 cells must be ana-

lyzed, whereas to uncover a rare inversion in a population, with a frequency < 0.01, at 

least 200 cells are required. Therefore, the minimal cells required can be estimated by 

the equation: n/MAF (where n is the minimum number of cells harboring the inversion 

for inclusion (i.e. 2 in this study), and MAF is the minor allele frequency of the inversion 

in the population being studied). Ultimately, the level of confidence for any inversion 
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prediction comes from the frequency of the inversion in the population being studied; 

each time the inversion is found independently in a single cell the overall support for the 

predicted variant strengthens for the whole population of cells.

 When Strand-seq libraries are derived from the same individual, we expect the 

inversion will be evident in every cell that inherits the inverted chromosome as WW or 

CC (recall, homozygous inversions are masked in WC chromosomes). Given that sister 

chromatid segregation is random and independent, any given chromosome will exhibit 

a 1:2:1 segregation pattern for WW: WC: CC, making 50% of the chromosomes in a cell 

informative for inversion analysis. Consequently, we estimate a minimum of 7 cells (p 

= 0.992) are required to have every chromosome represented as either WW or CC at 

least once, and thus a minimum of 14 Strand-seq libraries will allow every inversion call 

to be supported by at least two cells. This represents the limit required to build an inver-

sion profile for an individual, with the proviso that additional libraries will improve resolu-

tion and confidence, especially for small alleles.

Supplemental Methods

Data alignment:
Sequence data was aligned to GRCh37/hg19, as opposed to GRCh38/hg38, because 

previous inversion studies were performed on this build of the reference genome or 

earlier (Antonacci et al. 2009; Donnelly et al. 2010; Martinez-Fundichely et al. 2014) 

(Bansal et al. 2007) , making it of greatest interest to others in the community. This does 

not affect the conclusions of this study, as our overall approach to mapping genomic 

rearrangements in Strand-seq data, and the bioinformatic pipelines developed for this 

analysis, can be applied to data aligned to other reference assemblies. 

Invert.R: a bioinformatic tool to characterize inversions in single cells
Invert.R is a custom, R-based (R Core Team 2013) software package that systemati-

cally assesses strand orientation of Strand-seq libraries (Falconer et al. 2012) to char-

acterize any changes in strand state in single cells, and compiles this information to 

find patterns across multiple cells. The source code of this package is available online 

at (https://sourceforge.net/projects/strandseq-invertr/), and the execution file is available 

below, in the ‘Invert.R source code, execution file ‘InvertRwrap.R’ section of the Supple-

https://sourceforge.net/projects/strandseq-invertr/
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mental Information.

Localizing putative inversions in single cells
To first filter chromosomes for analysis, Invert.R determines the read depth and tem-

plate strand state of a single Strand-seq library at the given genomic location (either an 

entire chromosome or specified chromosomal locus). To do this, the program accepts a 

BAM or BED sequence file, and calculates the total reads/Mb to ensure a user-defined 

minimum read depth (minReads; e.g. 20 reads/Mb) is met at that location. It then de-

termines the chromosome strand state by comparing the total number of Crick (C, 

forward, ‘+’) reads to the total number of Watson (W, reverse, ‘-’) and assess whether 

the library is predominately WW, WC or CC at this location. Note: if an ROI location is 

already known and has been specified then Invert.R will only assess reads outside the 

ROI to call the chromosome strand state. Selecting only high read depth libraries that 

are at least 85 % WW or CC, Invert.R starts at the first aligned read within the region 

and surveys a user-defined number of reads forward (bin) to count the number of W and 

C reads within the bin. It then calculates the ratio of W and C reads in this bin (between 

0.0 – 1.0) and assigns a ‘W/C ratio’ to that first read. After assigning a W/C ratio, the 

program steps forward to the next aligned read and repeats the calculation to assign a 

W/C ratio sequentially to every read until the end of the genomic location is reached. 

A W/C ratio of 1.0 signifies all reads within the bin are in the same orientation as the 

chromosome strand state (either 100% W or 100% C), a W/C ratio of 0.0 signifies all the 

reads are in the opposite orientation to the chromosome strand state, and a W/C ratio 

of 0.5 means the bin contains equal numbers of W and C reads. Therefore, a change in 

the W/C ratio values along the genomic location represents a change in template strand 

orientation.

After the W/C ratio of every read is calculated, Invert.R flags putative inversions as 

genomic regions where W/C ratio values dip below and then return above a dynamic 

threshold limit that is automatically calculated based on the number of spurious back-

ground reads from that specific Strand-seq library. Library background is defined as the 

average W/C ratio of all reads above a defined baseline (e.g. 0.8). The threshold is then 

calculated as that average background minus 20%. This ensures only regions where the 

W/C ratio falls below 20% of the background level are flagged as putative inversions. 
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Additionally, a user-defined minimum number of sequential reads (e.g. 20) must remain 

below the threshold in order for a putative inversion to be called at the location (see 

below for more detail). 

To predict the upstream and downstream breakpoints of the putative inversion, the 

program locates the nearest 5’ and 3’ flanking reads that are above the threshold and 

marks the outermost limits of the inversion using a modification of the SCE locator in 

BAIT (Hills et al. 2013). It does this by walking step-wise away from the putative inver-

sion until it locates the nearest read that fulfill two criteria: 10 neighboring reads outside 

of the inversion are in the direction of the un-inverted chromosome (i.e. the chromo-

some strand state), and at least 25% of the 20 neighboring reads within the inversion 

are in the other direction. For instance, to call the 5’ breakpoint in a CC chromosome, 

Invert.R identifies the first 5’ read that has a W/C ratio below the threshold, and then 

calculates a W/C ratio for the preceding 10 reads, moving away from the inversion until 

the ratio is 100% C. It then checks that the ratio of the succeeding 20 reads in the 3’ 

direction is at least 25% W. If the test fails, it moves to the next 5’ read, and repeats the 

test until both conditions are met. The start location of the first read meeting both criteria 

is assigned as the 5’ breakpoint for the putative inversion, which defines the outermost 

5’ site that the strand orientation changes. The 3’ breakpoint is identified using the same 

principles.

To predict the genotype of the putative inversion, the extent of change in strand orienta-

tion is determined. Here, Invert.R calculates the average W/C ratio of all reads falling 

between the predicted breakpoints and subtracts this from the average W/C ratio of 

all reads falling outside the predicted breakpoints to calculate the change in W/C ratio 

(Δ W/C ratio) for the putative inversion. If both homologues contain an inversion (i.e. a 

homozygous inversion) then strand orientation will completely switch and a Δ W/C ratio 

of ~ 1.0 is expected. Alternatively, if only one homologue contains an inversion (i.e. a 

heterozygous inversion) then a partial switch will be seen and a Δ W/C ratio of ~ 0.5 is 

expected. Invert.R only calls a putative inversion if ΔW/C ratio ≥ 0.3, which ensures a 

sufficient number of reads pass the threshold and reduces false-positive calls. The plot-

ting function of Invert.R allows the user to visually assess the concordance of inversion 

calls with Strand-seq reads to manually confirm the putative inversion. For every library 
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interrogated, Invert.R produces a histogram of the calculated W/C ratio values, with 

Strand-seq reads (color-coded as C in blue, and W in orange) and reference sequence 

gaps (grey) plotted above, along with predicted inversions depicted below (red). The 

program also collapses the W/C ratios to generate a BedGraph file that can be upload-

ed onto UCSC Genome Browser, and writes a table of all putative inversion calls for that 

library for further analysis.  

Finding concordant inversion predictions in multiple cells
Once Invert.R has identified the putative inversions in single Strand-seq libraries, the 

concordance across multiple libraries can be ascertained, to consider the frequency 

that a putative inversion is found at the same location in different cells. For this, Invert.R 

considers the amount of overlap between inversions calls made for each library in a 

dataset, and generates an ROI (regions of interest) list that summarizes all the cells. 

First, the number of overlapping inversion predictions in the dataset are found using 

the genomeCoverageBed function of BEDtools (v2.17.0) (Quinlan and Hall 2010), with 

the outer-most limits of the overlaps defined using reduce function of GenomicRanges 

(v2.14)(Lawrence et al. 2013). Invert.R calculates the maximum number of cells with a 

putative inversion called at each location, allowing users to filter the list of ROIs based 

on the minimum number of libraries (minLibs) having a putative inversion called in the 

region. Invert.R then calculates the cumulative base pair coverage of predicted inver-

sions across all the libraries to determine the frequency that the putative inversion was 

called at the location. This is visualized by overlaying histograms from multiple Strand-

seq libraries into a single plot, with the proportion of overlap graphically depicted as a 

heat map below. Invert.R also refines the inversion breakpoints by looking for consen-

sus between inversion calls, and defines the minimum inverted region as the overlap 

present in at least 80% of the cells, and the maximum inverted region (which defines the 

outer limits of the inversion) as the overlap present in at least 20% of the cells. Invert.R 

outputs this as a list of ROIs, which defines the genomic coordinates of putative inver-

sion present in the dataset.

Genotyping and allelic frequency calculations
To precisely genotype a Strand-seq library at a given ROI, the number of W and C reads 

in the library is counted at the ROI. If there is a user-defined minimum number of reads 
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(minReads, e.g. ten) present in the region, three Fisher’s exact tests (one for a wildtype, 

heterozygous, and homozygous state) are performed independently to determine the 

best fit genotype. For tests of wildtype and homozygous states, a level of background 

(bg) is introduced when calculating the expected ratio of W and C reads for these geno-

types. For example, at an ROI of a WW chromosome with 100 reads, if bg is set to 

0.02 (i.e. 2% background) the expected proportion of W and C reads are: 98 W and 2 

C for a wildtype state, 50 W and 50 C for a heterozygous state, and 2 W and 98 C for a 

homozygous state. The Fisher’s exact test asks whether the observed ratio of W and C 

reads at the ROI are significantly different from these expected ratios, and therefore the 

highest p-value derived from each test is designated the best fit genotype. Significance 

is assigned to the genotype if the p-values of the other two tests are both below 0.05, 

indicating the ROI is significantly different from the other two states. 

To calculate allelic frequencies in a population of cells, the proportion of genotyped cells 

with a wildtype, heterozygous or homozygous state are tabulated for each ROI. At dip-

loid alleles (i.e. those on autosomes and female Chr X), frequencies are calculates as p2 

+ 2pq + q2 = 1. Therefore the wildtype allele frequency is found as [wtFreq = 2(wt cells) 

+ het cells / 2(total cells)], and the inverted allele frequency is [invFreq = 2(hom cells) 

+ het cells / 2(total cells)]. At monoploid alleles (i.e. those on the sex chromosomes of 

males) the frequency is calculated as p + q = 1. Therefore the wildtype allele frequency 

is (wtFreq = wt cells / total cells), and the inverted allele frequency is (invFreq = hom 

cells / total cells).  For ROIs present on Chr X, the frequencies of the males and females 

are combined as p = 2/3pfemale + 1/3pmale. 
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Invert.R source code

#’ Wrapper function for InvertR

#’

#’ This script will move through .bam or .bed files in a folder and perform several steps (see 
Details).

#’

#’ 1. calculate the WCratio chromosome-by-chromosome

#’ 2. Locate the ROIs in chromosomes passing the WCcutoff

#’ 3. write a bedgraph file of wcRatios -> can upload on to UCSC Genome browser
#’ 4. write an ROI file for each index with all chromosomes included
#’ 

#’ @import collapseStrands.R
#’ @import countFreqs.R

#’ @import findROILocation.R
#’ @import plotgaps.R

#’ @import plotROIFrequencies.R

#’ @import processBam.R

#’ @import processBed.R

#’ @param regionTable Genomic coordinates to be analyzed (ROI list or Chr Table)
#’ @param dataDirectory Output directory. If non-existent it will be created
#’ @param binSize The number of reads in each bin used to calculate wcRatio
#’ @param WCcutoff The number of watson or crick reads used to define chrStates
#’ @param gapfile Input txt file of gaps in the genome
#’ @param type File input type, either ‘bed’ or ‘bam’

#’ @param dup If \code{TRUE}, removes duplicate reads
#’ @param qual Filter reads based on specified qulaity score
#’ @param padding Number of bases to extend beyond genomic coordinates listed in regionTable
#’ @param verbose If \code{TRUE} Verbose messages
#’ @param strand If \code{TRUE} Plot the crick and watson reads above the histrogram
#’ @param png If\code{TRUE} Generates a png figure of each file
#’ @param findROIs If\code{TRUE} Runs findROIlocations to locate putative inversions
#’ @param ROI If\code{TRUE} Expects ROI list, if\code{FALSE} Expects chromosome table
#’ @param minDepth The minimum number of reads/Mb required to analyze the chromosome
#’ @param minReads The minimum number of reads within the ROI required for inclusion

#’ @author Ashley D. Sanders, Mark Hills
#’ @export

runInvertR <- function(regionTable, binSize=50, WCcutoff=0.75, dataDirectory=’./InvertR_
analysis/’, gapfile=0, type=’bed’, dup=TRUE, qual=10, padding=0, minDepth=20, minReads=20, 
verbose=TRUE, png=TRUE, strand=TRUE, ROI=FALSE, genotype=TRUE, findROIs=T)
{#

  options(warn=-1)
  if(type == ‘bam’) {library(Rsamtools)}
  

  dir.create(dataDirectory)
  fileDestination <- dataDirectory
  

  #for every chromosome...

  for(i in seq(1,nrow(regionTable)))
  {##

    ch <- regionTable[i,1]
    chr <- paste(‘chr’, regionTable[i,1], sep=””)
    startLoc <- regionTable[i,2]
    endLoc <- regionTable[i,3]
    if (chr == ‘chrY’) { WCcutoff = 0}
    ## NOTE change WCcutoff=0 if chrY (b.c. cannot have a WC chr, and may have large inversions 
(e.g. cad11) which would be missed if wcCutoff high)
    

    if (ROI == TRUE)
    {
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      ROIname <- paste(‘ROINo.’, i, sep=””)
      dir.create(paste(fileDestination, ROIname, sep=””))
      chrfileDestination <- (paste(fileDestination, ROIname, ‘/’, sep=””))
      dir.create(paste(fileDestination, ‘WCLibs’, sep=””))
      padding<- round((endLoc-startLoc)*0.33, digits=0)
    }else{
      ROIname <- ‘wholeChr’

      dir.create(paste(fileDestination, chr, sep=””))
      chrfileDestination <- (paste(fileDestination, chr, ‘/’, sep=””))
      dir.create(paste(fileDestination, ‘WCLibs’, sep=””))
      padding<- 0
    }
    

    

    pattern <- paste(‘.’, type,’$’, sep=””)
    fileList <- list.files(path=’.’, pattern=pattern, full.names=TRUE)
    fileLength <- length(fileList)
    indexCounter <- 0
    options(scipen=20)
    #for reading in multiple files at a particular location
    allFrequencies <- data.frame(index=vector(), rname=vector(), pos=vector(), strand=vector(), 
mapq=vector(), WCratio=vector(), chrState=vector())
    #allROIlocationTable <- data.frame(index=vector(), chr=vector(), ROIstart=vector(), 
ROIend=vector(), deltaWC=vector(), roiReadDepth=vector()) 
    allROIlocationTable <- data.frame(index=vector(), chr=vector(), callingTh=vector(), 
ROIstart=vector(), ROIend=vector(), ROIsize= vector(), deltaWC=vector(), roiReads=vector())
    wcLibraries <- data.frame(index=vector(), chr=vector(), wcCall=vector())
    

    #for every filename....
    for(fileName in fileList)
    { ###

      indexCounter <- indexCounter + 1
      if(verbose==T){message(paste(‘** RUNNING ‘, fileName, ‘ [lib.No ‘, indexCounter,’/’, 
fileLength, ‘], ‘, ‘ chromosome [‘, ch, ‘/’, nrow(regionTable), ‘] **’, sep=””))} 
      index <- basename(fileName)
      

      #read in files; either using processBed or processBam
      if(type == ‘bed’)
      {

        tempFile <- processBed(startLoc, endLoc, chr, fileName, qual=qual, rmdup=dup, 
padding=padding, verbose=verbose)   

        chrState <- tempFile[[2]]
        if(chrState >= WCcutoff) {chrState<-’ww’}else if(chrState <= -WCcutoff){chrState<-’cc’}
else{chrState<-’wc’}
        # if chrState is Negative chr is CRICK/CRICK
        processFile <- tempFile[[1]]

      }else if(type == ‘bam’) {
        tempFile <- processBam(startLoc, endLoc, chr, fileName, qual=qual, rmdup=dup, 
padding=padding, verbose=verbose)

        chrState <- tempFile[[2]]
        if(chrState >= WCcutoff) {chrState<-’ww’}else if(chrState <= -WCcutoff){chrState<-’cc’}
else{chrState<-’wc’}
        # if chrState is Negative chr is CRICK/CRICK
        processFile <- tempFile[[1]]

        processFile<- cbind(chr, processFile[2:length(processFile)]) # pastes chr instead of ch 
to file
        processFile<- processFile[!duplicated(processFile[2]),]
      }
      if(verbose==T){message(paste(‘-> bedFile generated for ‘, index, ‘, chromosome ‘, ch, 
sep=””))}
    

      if(length(processFile[[1]]) > 1)
      {####        

        #Filters out low (< minDepth) read depth libraries. If enough reads are in this library, 
proceed...

        if(length(processFile[[1]]) > 1 && nrow(processFile)/((endLoc-startLoc)/1000000) > 
minDepth)
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        {

          #calculate the ratio of _ to + reads (i.e. the wcCall)
          if (ROIname == ‘wholeChr’){
            wcCall <- round((table(processFile$strand)[2]-table(processFile$strand)[1])/
nrow(processFile), digits=3)
            #wcCall <- chrState
          }else{
            tempFile <- processFile[which(processFile$pos < startLoc),]
            tempFile <- rbind(tempFile, processFile[which(processFile$pos > endLoc),])
            #filters reads that flank the ROI to calculate the wcCall of these surrounding reads 
(since an inversion at the ROI will impact the wcCall)
            wcCall <- round(( table(tempFile$strand)[2]-table(tempFile$strand)[1] ) /
nrow(tempFile), digits=3)
          }   
          

          if( is.na(wcCall)) {wcCall <- 1}
          

          ######

          # wcCall can become NA if 100% of reads are + or -
          if(wcCall != ‘NaN’)
          {

            if(wcCall <= -WCcutoff | wcCall >= WCcutoff)
            { ##This is a pure (WW or CC) library...
              

              # calculates A WCratio value FOR EACH READ based on the proportion of W and C in 
(binSize #) succeeding reads 
              fileFrequencies <- countFreqs(processFile, checkNum=binSize, verbose=FALSE)
              if(verbose==T){message(paste(‘-> fileFrequencies counted for ‘, index, ‘ file, 
chromosome ‘, chr, sep=””))}
              if(length(fileFrequencies) > 1 && nrow(fileFrequencies) > 2)
              {        

                # reduces the table size by identifying only the locations where the WCratio 
values change

                outputFile <- collapseStrands(fileFrequencies, index, asBedgraph=TRUE)   

 

                if(verbose==T){message(paste(‘-> strands collapsed for ‘, index, ‘ file, 
chromosome ‘, chr, sep=””))}
                

                #find the location of ROIs that dip below threshold level
                fileFrequencies <- cbind(fileName, fileFrequencies) 
                fileFrequencies<- cbind(fileFrequencies, chrState)
                allFrequencies <- rbind(allFrequencies, fileFrequencies)
                

                if(findROIs==T){ # if true then run findROILocation script, else ROIlocationTable 
=1

                  #minReads specifies the minimum number of reads within the roi that are required 
to include it in the ROIlocationTable list

                  locationFile <- findROILocation(outputFile, fileFrequencies, chrState=chrState, 
verbose=verbose, baselineThreshold=0.8, minReads=minReads)

                  ROIlocationTable <- locationFile[[1]]

                  # ROIlocationTable <- data.frame(index=vector(), chr=vector(), 
callingThreshold=vector(), ROIstart=vector(), ROIend=vector(), ROIsize= vector(), 
deltaWC=vector(), roiReads=vector())
                  Th <- locationFile[[2]]

                }else{ROIlocationTable = 1
                      Th<- 1}
                

                if(length(ROIlocationTable) != 1)
                {

                  if(verbose==T){message(paste(‘-> Total of: ‘, nrow(ROIlocationTable), ‘ ROIs 
found for ‘, index, ‘ file, chromosome ‘, chr, sep=””))}
                  allROIlocationTable <- rbind(allROIlocationTable, ROIlocationTable)
                  deltaWC<-  ROIlocationTable[1,7] 
                  

                } else { deltaWC <- 0 }
                #if(verbose==T){message(paste(‘-> NO ROIs found for ‘, index, ‘ file, chromosome 
‘, chr, sep=””))} 
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                ### generates a png  of the single Ss library with gaps and ROI locations 
highlighted, also calculates the number of reads in the region -> table
                plotROIFrequencies(chrfileDestination, index, fileFrequencies, chr, binSize, 
startLoc, endLoc, ROIname=ROIname, gapfile=gapfile, callingThreshold=Th, ROI=ROIlocationTable, 
padding=padding, strand=strand, png=png)

              

                ###### write a bedfile of the reads, and then append the bedgraph
                bedfile<- cbind(chr,  processFile$pos, processFile$pos+100, index, 
processFile$mapq, as.character(processFile$strand))
                head<- paste(‘track name=’, index, ‘_reads_’, chr, ‘ visibility=1 
colorByStrand=”103,139,139 243,165,97”’, sep=””)
                write.table(head, file=paste(chrfileDestination, index, ‘_’, chr, ‘_(b=’, binSize, 
‘, t=’, Th, ‘).bedgraph’, sep=””), row.names=FALSE, col.names=F, quote=F, append=F)   
                write.table(bedfile, file=paste(chrfileDestination, index, ‘_’, chr, ‘_(b=’, 
binSize, ‘, t=’, Th, ‘).bedgraph’, sep=””), row.names=FALSE, col.names=F, quote=F, append=T)
                

                ####  bedgraph of the collapsed WCratios for the single Ss library -> can be 
uploaded onto the ucsc genome browser

                write.table(outputFile, file=paste(chrfileDestination, index, ‘_’, chr, ‘_(b=’, 
binSize, ‘, t=’, Th, ‘).bedgraph’, sep=””), row.names=FALSE, quote=FALSE, col.names=FALSE, 
append=T)

              }
            } else {
              message(paste(‘~>  ‘, index, ‘ is WC for ‘, chr, ‘ - moving on to next lib’, 
sep=””))

              wcLibrary <- cbind(index, chr, round(wcCall, digits=3))
              wcLibraries <- rbind(wcLibraries, wcLibrary)
            }
          } else { if(verbose==T){message(paste(‘~>  ‘, index, ‘ wcCall = NaN for ‘, chr, ‘ - 
moving on to next lib’, sep=””)) } }
          ######

        } else { if(verbose==T){message(paste(‘~~>  ‘, index,  ‘read count below minReads, moving 
on to next lib’, sep=””)) } }
        #### 

      } else { if(verbose==T){message(paste(‘~~>  ‘, index, ‘ has no reads in the region - moving 
on to next lib’, sep=””)) } }
    }###
    

    if(findROIs==T){
    write.table(allROIlocationTable, file=paste(fileDestination, ‘ROI_locations_Table_b’, binSize, 
‘_’, chr, ‘.txt’, sep=””), row.names=FALSE, quote=FALSE, append=FALSE)  }
    

    write.table(allFrequencies, file=paste(fileDestination, ‘allFrequencies_b’, binSize, ‘_’, chr, 
‘.txt’, sep=””), row.names=FALSE, quote=FALSE, append=FALSE) 
    write.table(wcLibraries, file=paste(fileDestination, ‘/WCLibs/wcLibraries_’, chr, ‘.txt’, 
sep=””), row.names=FALSE, quote=FALSE, append=FALSE)  
    

    # calculate Stats for the plots:
    if (nrow(allROIlocationTable) != 0){
      AvTh <- round(mean(allROIlocationTable[,3]), digits=2)
    }else{
      AvTh <-0
      allROIlocationTable<-0}
    

    if(nrow(allFrequencies) < 1){ allFrequencies <- data.frame(“fileName”, chr, startLoc, endLoc, 
‘+’, 0, 1, ‘cc’ )}
    plotROIFrequencies(fileDestination, ‘overlay’, allFrequencies, chr, binSize, startLoc, endLoc, 
ROIname=ROIname, gapfile=gapfile, callingThreshold=AvTh, ROI=allROIlocationTable, padding=padding, 
strand=FALSE, png=png)
    

    if(verbose==T){message(paste(‘ ~~ Overlaid plot generated for ‘, chr, ‘ *YIPEE!* moving on to 
next chromosome...’, sep=””))}
  }##
  

}#
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