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Supplemental	Fig	S1.	Genome	clustering	performance	for	112	bacterial	marker	gene	families		
PhyEco	marker-gene	families	(Wu	et	al.	2013)	are	listed	on	the	horizontal-axis	(see	also	Table	S2).	The	
clustering	percent	identity	cutoff	is	listed	on	the	vertical-axis.	Asterisks	indicated	gene	families	with	the	
best	F1-scores	that	were	selected	for	genome	clustering	(Table	S2).	Cell	color	indicates	the	F1-score,	
which	is	a	measure	of	clustering	performance	that	balances	the	true	positive	rate	with	precision.	True	
positives	were	genome	pairs	with	ANI	≥	95%	that	were	clustered	together;	false	positives	were	genome	
pairs	with	average	nucleotide	identity	(ANI)	<	95%	that	were	clustered	together;	false	negatives	were	
genome	pairs	with	ANI	≥	95%	that	were	assigned	to	different	clusters;	and	true	negatives	were	genome	
pairs	with	ANI	<	95%	that	were	assigned	to	different	clusters.		

	
Supplemental	Fig	S2.	Gene	families	optimal	for	genome	clustering	are	conserved	and	universal.	
Left)	Comparison	of	the	conservation	and	universality	of	marker	genes	with	clustering	performance.	
Clustering	performance	measured	using	the	maximum	F1-score	across	percent	identity	cutoffs	
(Supplemental	table	S2).	Universality	is	defined	as	the	proportion	of	genomes	where	a	gene	family	is	
found.	Conservation	was	defined	as	the	average	ratio	between	the	marker-gene	percent	identity	(PIDi,j)	
and	genome	wide	percent	identity	(ANIi)	across	n	genome	pairs	for	each	marker-gene	j:	𝐶! =

!
!

!"#!,! 
!"#!

!
! .		

High	conservation	for	a	marker-gene	indicates	low	sequence	divergence	relative	to	the	genomic	
background.	Right)	Comparison	of	the	conservation	and	universality	of	marker	genes	with	clustering	
performance	defined	as	the	Spearman	correlation	between	marker-gene	percent	identity	and	ANI.	
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Supplemental	Fig	S3.	Phylogenetic	tree	of	5,952	bacterial	species.	Maximum	likelihood	phylogenetic	
tree	of	representative	genomes	from	bacterial	species	using	a	concatenated	protein	alignment	of	the	30	
universal	gene	families	used	for	genome	clustering	(Supplemental	Table	S2).	Protein	sequences	of	each	
gene	family	were	first	aligned	between	genomes	using	MUSCLE	(Edgar	2004)	(options:	-maxiters	2	-
diags)	and	alignment	columns	with	>10%	gaps	were	discarded.	Non-discarded	alignment	columns	were	
concatenated	across	the	30	genes.	FastTree2	(Price	et	al.	2010)	was	run	with	the	Jones-Taylor-Thornton	
(JTT)	model	of	amino	acid	evolution	to	construct	the	phylogenetic	tree	from	the	multiple	sequence	
alignment.	Tree	scale	indicates	the	average	number	of	amino	acid	substitutions	per	site.	iTOL3	(Letunic	
and	Bork	2016)	was	used	to	visualize	the	tree.	Leaves	of	the	tree	are	annotated	by	phylum.	The	tree	is	
available	online	at:	http://lighthouse.ucsf.edu/MIDAS. 
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Supplemental	Fig	S4.	Identification	of	taxonomic	groups	correlated	with	novel	species	abundance	
in	the	human	gut.		
The	percent	of	unknown	species	abundance	was	estimated	for	human	gut	communities	from	the	Human	
Microbiome	Project	(The	Human	Microbiome	Project	Consortium	2012).	This	was	achieved	by	computing	
the	coverage	of	the	5,952	reference	species	with	MIDAS	and	dividing	by	the	total	coverage	across	all	
microbes	obtained	with	MicrobeCensus.		This	value	was	subtracted	from	1.0	and	represents	the	fraction	
of	genomes	in	a	community	that	are	novel	at	the	species	level.	These	values	were	correlated	with	the	
relative	abundance	of	taxonomic	groups	obtained	using	mOTU	(Sunagawa	et	al.	2013).	A	positive	
correlation	(green)	indicates	a	taxonomic	group	that	tends	to	be	more	abundant	in	communities	with	a	
greater	proportion	of	unknown	species.	A	negative	correlation	(red)	indicates	a	taxonomic	group	that	
tends	to	be	more	abundant	in	communities	with	a	lower	proportion	of	unknown	species.	
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Supplemental	Fig	S5.	Evaluation	of	speed	and	memory	usage	
MIDAS	was	evaluated	for	speed	and	memory	usage	with	default	parameters	on	12	metagenomes	from	the	
human	gut	(The	Human	Microbiome	Project	Consortium	2012),	baboon	gut	(Tung	et	al.	2015),	ocean	
(Sunagawa	et	al.	2015),	and	soil	(Fierer	et	al.	2012).	A)	Species	profiling	speed	(reads/second)	of	MIDAS	
compared	to	two	other	widely	used	methods,	MetaPhlAn	(Segata	et	al.	2012)	and	mOTU	(Sunagawa	et	al.	
2013),	using	default	parameters,	for	ten	metagenomes.	B)	MIDAS	was	used	to	estimate	species	
abundances	using	between	10K	and	100M	reads.	For	each	number	of	reads,	the	taxonomic	profile	was	
compared	to	the	profile	estimated	using	the	full	dataset.	(C-D)	Database	build	time	using	between	1	and	
50	species,	or	between	1	and	256	genomes/species.	(E-F)	Pangenome	profiling	rate	(reads/second),	
which	includes	mapping	reads	to	the	pan-genome	database(s)	and	computing	gene	coverages.	(G-H)	
Peak	memory	usage	for	pan-genome	profiling.		
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Supplemental	Fig	S6.	Parameters	affecting	identification	of	core-genome	sites.			
MIDAS	combines	SNP	output	files	across	multiple	samples	for	a	given	species	in	order	to	identify	core	
genomic	sites	that	are	at	high	coverage	in	all	samples.	We	explored	how	different	options	can	affect	the	
number	of	resulting	core-genome	sites	identified	for	three	species:	B.	vulgatus,	E.	rectale,	and	P.	copri	
across	stool	metagenomes	from	the	Human	Microbiome	Project.	Sample	depth	determines	the	minimum	
coverage	for	a	sample	to	be	included.	Minimum	site	depth	determines	the	minimum	read	depth	for	a	site	
to	be	included.	Site	prevalence	determines	the	proportion	of	samples	where	a	site	is	found	at	the	
minimum	site	depth.	We	determined	cutoffs	for	these	three	parameters	that	produce	a	sufficient	number	
of	high-quality	core-genome	sites	for	downstream	analyses:	site	prevalence	=	0.95,	minimum	site	depth	=	
15,	and	minimum	sample	depth	=	20.	
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Supplemental	Fig	S7.	Increase	in	alpha	diversity	&	decrease	in	beta	diversity	over	time	in	the	
infant	gut.		A)	Species-level	alpha	diversity	is	lowest	in	the	infant	gut	and	increases	over	time.	Alpha	
diversity	was	computed	using	the	Shannon	diversity	index.	B)	Species-level	beta	diversity	is	highest	in	
the	infant	gut	at	4	days	and	decreases	over	time.	Beta	diversity	was	computed	using	Bray-Curtis	
dissimilarity	between	species	relative	abundance	distributions	for	all	pairs	of	samples	from	the	indicated	
time	point.	(C	and	D)	The	number	of	shared	species	between	mothers	and	their	infants.	
	

	
Supplemental	Fig	S8.	Marker	alleles	can	be	used	track	strains	with	high	sensitivity	and	specificity.		
As	a	positive	control,	marker	alleles	of	species	were	compared	between	HMP	metagenomes	from	the	
same	individual	at	the	same	time	point	(technical	replicates).	As	a	negative	control,	marker	alleles	of	
species	were	compared	between	metagenomes	from	different	individuals	(non-replicates).		A	marker	
allele	sharing	threshold	of	5%	clearly	separated	the	positive	and	negative	controls	(sensitivity=99.8%,	
specificity=96.6%).	
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Supplemental	Fig	S9.	Early	and	late	colonizing	species	are	transmitted	from	different	sources.	
Plotted	is	the	relative	abundance	of	early	and	late	colonizing	bacterial	species	in	mothers	and	their	
infants	over	the	first	year	of	life.	Point	colors	indicate	whether	the	strain	of	a	species	was	transmitted	
from	an	infant’s	mother	(red),	not	transmitted	(green)	or	whether	there	was	insufficient	coverage	to	call	
SNPs	in	an	infant	and	determine	transmission	(gray).	Eight	representative	examples	are	shown.	
	

	
Supplemental	Fig	S10.	Strains	are	stable	over	time	in	the	gut	microbiomes	of	healthy	adults.		To	
evaluate	the	temporal	stability	of	gut	microbiome	strains	in	adults,	marker	alleles	of	species	were	
compared	between	HMP	stool	metagenomes	from	the	same	individual	at	the	different	time	points.	
Compared	to	the	infant	gut	(Figure	3d),	marker	allele	sharing	of	species	found	in	healthy	adults	is	
remarkably	stable,	indicating	that	most	strains	are	maintained	over	time.		
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Supplemental	Fig	S11.	Gene-content	based	population	structure	of	6	representative	marine	
species.	Principle	component	analysis	(PCA)	was	performed	for	bacterial	species	based	on	the	presence-
absence	of	gene	families.	Point	colors	indicate	ocean	region	and	point	shape	indicates	water	layer.	DCM:	
deep	chlorophyll	maximum	layer;	Mixed:	Epipelagic	mixed	layer.	
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Supplemental	Fig	S12.	Population	structure	of	marine	bacteria	based	on	gene	content	is	robust	to	
the	percent	identity	threshold	for	defining	gene	families.	Principle	component	analysis	(PCA)	was	
performed	for	each	of	30	bacterial	species	based	on	the	presence-absence	of	gene	families.	Gene	families	
were	defined	at	6	different	DNA	percent	identity	(%ID)	thresholds,	listed	on	the	horizontal	and	vertical	
axes.	For	each	species,	we	compared	the	first	principle	component	(PC1)	from	PCA	performed	on	gene	
families	at	different	%ID	thresholds.	The	horizontal	axis	of	each	panel	indicates	the	R2	value	from	this	
correlation.	The	vertical	axis	of	each	panel	indicates	the	number	of	species.		
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Supplemental	Fig	S13.	Populations	of	Prochlorococcus	have	consistent	clustering,	regardless	of	the	
percent	identity	threshold	for	defining	gene	families.	Principle	component	analysis	(PCA)	was	
performed	for	a	large	cluster	of	Prochlorococcus	genomes	(N=26	genomes),	based	on	the	presence-
absence	of	gene	families.	Gene	families	were	defined	at	different	DNA	percent	identity	(%ID)	thresholds,	
listed	above	each	panel.	The	number	of	gene	families	increases	with	increasing	%ID	thresholds,	but	the	
relationships	between	the	populations,	based	on	gene	content	PCA,	remains	constant.	
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Supplemental	Fig	S14.	Correlations	between	gene	content,	species	relative	abundance,	and	
environmental	parameters	in	Tara	Oceans	metagenomes.	Gene	content	principal	component	1	(PC1;	
left)	and	species	abundance	(right)	were	correlated	with	environmental	parameters	(horizontal	axis)	for	
different	species	(vertical	axis).	For	each	correlation	analysis,	the	same	set	of	samples	was	used	per	
species.	Heatmap	colors	reflect	the	absolute	Pearson	correlation	between	variables.	Gene	content	is	most	
strongly	correlated	with	longitude.	Species	abundance	is	most	strongly	correlated	with	temperature.	
Neither	gene	content	nor	species	abundance	is	strongly	correlated	with	day	length,	which	is	a	proxy	for	
season.	Environmental	parameters:	abundance	=	log10(species	relative	abundance),	day_length	=	
average	length	of	day	in	hours,	latitude	=	latitude	of	sampling	station,	longitude	=	longitude	of	sampling	
station,	depth	=	average	sampling	depth,	temperature	=	average	temperature,	salinity	=	average	salinity,	
oxygen	=	average	oxygen	concentration,	nitrates	=	mean	nitrates	concentration,	no2	=	nitrite	
concentration,	po4	=	phosphate	concentration,	no2no3	=	N=nitrite+nitrate	concentration,	si	=	silica	
concentration.	
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Supplemental	Fig	S15.	Gene	content	PCA	of	alpha	proteobacterium	(id:44631)	with	and	without	
samples	from	the	epipelagic	zone.	When	epipelagic	samples	are	included	(left),	samples	cluster	
together	by	water	layer	based	on	gene	content.	When	epipelagic	samples	are	excluded	(right),	there	is	a	
clear	association	with	depth	below	200m.	In	both	cases,	depth	and	relative	abundance	are	strongly	
correlated	with	gene	content.	
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Ocean Region
North Pacific
South Pacific
North Atlantic
South Atlantic

Mediterranean
Red Sea
Indian Ocean

●

Depth
Surface water layer (5−12 m)
DCM & mixed layer (17−183 m)
Mesopelagic zone (246−990 m)


