

Expanded View Figures

Figure EV1. Loss of Eed affects H3K27 methylation.

- A Wider fields of the same immunohistochemistry staining presented in Fig 1A, performed on small intestinal sections from *AhCre Eed*^{+/+} and *AhCre Eed*^{+/+} mice injected with β-naphthoflavone and sacrificed after 15 days, using the indicated antibodies.
- B Immunohistochemistry of small intestinal sections from AhCre Eed^{+/+} and AhCre Eed^{β / β} mice using an H3K27me3-specific antibody, analysed 30 days after β -naphthoflavone injection (n = 5).
- C Whole intestine isolated from AhCre Eed^{+/+} and AhCre Eed^{+/+} crossed with knock-in mice expressing Rosa26-driven Cre-inducible LacZ transgene stained (left panels) for β -galactosidase activity, 30 days after the first β -naphthoflavone administration. Sections of the β -galactosidase-stained small intestines are presented in the right panels (n = 4).

Figure EV2. Eed loss perturbs intestinal architecture and increases goblet cell numbers.

- AhCre Eed^{+/+} and AhCre Eed^{fl/fl} mice were sacrificed 7 or 30 days after β -naphthoflavone administration.
- A Haematoxylin and eosin staining of sections prepared from the different intestinal tracts.
- B PAS staining performed on sections prepared from the different intestinal tracts.

Eed+/+ Eed-/-2.0-ChgA+ cells/Crypt 1.5 1.0 ChgA 0.5 0.0 Eed+/+ Eed-/-0.8 0.6 Dclk1+ cells/Crypt Dclk1 0.4 0.2 0.0 Eed+/+ Eed-/-

Figure EV3. Eed loss increases the number of goblet and enteroendocrine cells.

- A Alcian blue staining on sections prepared from the different intestinal tracts. AhCre Eed^{+/+} and AhCre Eed^{fl/fl} mice were sacrificed 7 or 30 days after β-naphthoflavone administration.
- B Immunohistochemistry analyses of small intestinal sections from AhCre $Eed^{+/+}$ and AhCre $Eed^{n/\eta}$ mice isolated 15 days after β -naphthoflavone administration using ChgA (an enteroendocrine marker)- and Dclk1 (a tuft cell marker)-specific antibodies. Quantifications of positive cells per crypt for each staining are presented on the right (mean \pm SD). More than 100 crypts were scored for each condition.

Figure EV4. Loss of *Eed* does not alter general organoids homeostasis.

- A In vitro organoids formation using crypts isolated from Rosa26 CreER^{T2} Eed^{+/+} and Eed^{fi/fi} mice treated after 4 days with 4-OHT or EtOH (as control). Organoid homeostasis was monitored for additional 5 days (day 9).
- B Quantifications of the analysis presented in (A) after 5 days of OHT or EtOH treatment (mean \pm SD; n = 3).
- C Western blot analysis of the organoids presented in (A) at day 9 using EED-specific antibodies. Vinculin is presented as a loading control.
- D In vitro organoids formation using crypts isolated from wild-type mice. RSPO1 was removed after 4 days (t0) and the effects on organoids homeostasis were monitored 24 and 48 h after RSPO1 removal (t1 and t2, right panels).

Data information: All scale bars represent 200 $\mu m.$ Source data are available online for this figure.

Figure EV5. PRC2 directly maintains transcriptional repression, and Eed loss increases goblet cell differentiation, independently from Cdkn2a activation.

- A Venn diagrams showing the extent of overlap between SUZ12 occupancy and H3K27me3 deposition in wild-type crypts with respect to the upregulated and downregulated genes in *Eed^{-/-}* crypts.
- B ChIP analyses for the indicated gene promoters using an H3K27me3-specific antibody in crypts isolated from *AhCre Eed*^{+/+} and *AhCre Eed*^{fl/fl} mice 15 days after β-naphthoflavone administration. Primers amplifying the *Nrk* gene body are presented as negative PRC2 target.
- C Alcian blue staining of sections prepared from different intestinal tracts isolated from AhCre Cdkn2a^{-/-} Eed^{+/+} and AhCre Cdkn2a^{-/-} Eed^{fl/fl} mice 15 days after the first β -naphthoflavone administration.
- D Immunohistochemical analysis of small intestinal sections, using antibodies specific for H3K27me3 and lysozyme (LYZ, a Paneth cell marker) in AhCre Cdkn2a^{-/-} Eed^{+/+} and AhCre Cdkn2a^{-/-} Eed^{fl/fl} mice 15 days after the first β -naphthoflavone administration.
- E In vitro organoid formation using crypts isolated from Rosa26 CreER^{T2} Cdkn2a^{+/+} Eed^{+/+} or Eed^{fl/fl} and Rosa26 CreER^{T2} Cdkn2a^{-/-} Eed^{+/+} or Eed^{fl/fl} mice 9 days after the first tamoxifen injection (mean \pm SD).

Figure EV6. PRC2 is active in intestinal stem cells.

- A, B Genomic snapshots of the indicated genomic loci for SUZ12 occupancy and H3K27me3 deposition in intestinal crypts (A) or ISCs (B).
- C SUZ12 and H3K27me3 immunofluorescence staining (red) and Lgr5-eGFP expression (green) in near-native agarose-embedded small intestinal sections. Scale bar represents 25 μ m.