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Supplementary Table 1. Candidate baseline sociodemographic and clinical predictors  

Candidate Predictor Specification 

Sociodemographic  

Gender Binary (0 = male; 1 = female) 

Self-reported race Binary (0 = not African American; 1 = African American) 

Marital status Categorical (1 = married (ref); 2 = separated/divorced; 3 = widowed; 4 

= never married) 

Employment status Categorical (1 = working; 2 = unemployed/disabled; 3 = retired (ref)) 

Education status Binary (0 = more than high school; 1 = high school or less) 

Insurance status Categorical (1 = private (ref); 2 = any VA/Medicare only; 3 = 

Medicaid/no insurance) 

Number of alcoholic drinks per 

week 

Binary (0 = 0 drinks; 1 = 1 or more drinks) 

Current smoking status Binary (0 = not current smoker; 1 = current smoker) 

Self-reported general health status Categorical (1 = excellent/very good (ref); 2 = good; 3 = fair/poor) 

No. hospitalizations in past 12 

months 

Categorical (1 = 0  visits (ref); 2 = 1–2 visits; 3 = 3 or more visits) 

No. doctor’s visits in past 12 

months 

Categorical (1 = 0–3  visits; 2 = 4–12 visits (ref); 3  = 13 or more 

visits) 

Had difficulty receiving healthcare 

in the past 12 months 

Binary (0 = no; 1 = yes) 

  

Clinical  

Age (years) at baseline visit Continuous (linear) 

Body Mass Index Continuous (linear) 

Warfarin indication Categorical (1 = atrial fibrillation/atrial flutter (ref); 2 = deep vein 

thrombosis/pulmonary embolism; 3 = other)  

Previous use of warfarin Binary (0 =  no; 1 = yes) 

Number of interacting medications 

being used at baseline 

Binary (0 = 0–1 medications; 1 = 2 or more medications) 

Amiodarone use at baseline Binary (0 =  no; 1 = yes) 

Statin use at baseline Binary (0 =  no; 1 = yes) 

CHADS2 score Categorical (1 = 0 (ref); 2 = 1; 3 = 2 or higher) 

History of peptic ulcer disease or 

gastritis 

Binary (0 =  no; 1 = yes) 

History of stroke Binary (0 =  no; 1 = yes) 

History of cancer Binary (0 =  no; 1 = yes) 

History of hypertension Binary (0 =  no; 1 = yes) 

History of diabetes Binary (0 =  no; 1 = yes) 

History of arrhythmia Binary (0 =  no; 1 = yes) 

History of congestive heart failure Binary (0 =  no; 1 = yes) 

History of myocardial infarction Binary (0 =  no; 1 = yes) 
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Supplementary Table 2. Comparison of variables selected for best subsets with different 

numbers of variables.  

Number of variables 

in the model 
Variables included in the best subset 

1 Age 

2 Age, Insurance status 

3 Insurance status, Warfarin indication, # MD visits 

4 Insurance status, Warfarin indication, # MD visits, Heart failure 

5 Insurance status, Warfarin indication, # MD visits, Heart failure, Smoking 

status 

6 Insurance status, Warfarin indication, # MD visits, Heart failure, Smoking 

status, Gender 

7 Insurance status, Warfarin indication, # MD visits, Heart failure, Smoking 

status, General health status, Peptic ulcer disease 

8 Insurance status, Warfarin indication, # MD visits, Heart failure, Smoking 

status, General health status, Peptic ulcer disease, Cancer 

9 Insurance status, Warfarin indication, # MD visits, Heart failure, Smoking 

status, Gender, General health status, Peptic ulcer disease, Arrhythmia 

10 Insurance status, Warfarin indication, # MD visits, Heart failure, Smoking 

status, Gender, General health status, Peptic ulcer disease, Cancer, 

Arrhythmia 

Prediction models were compared by the time-dependent AUC at 12 weeks, as estimated by leave-

one-out cross-validation (LOOCV). 
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Supplementary Table 3. Characteristics of the derivation and validation cohorts by site 
 

Variable 

HUP CMCVAMC 

Derivation 

(N = 184) 

Validation 

(N = 263) 

Derivation 

(N = 137) 

Validation 

(N = 198) 

Age     

< 45 51 (28) 75 (29) 12 (9) 7 (4) 

45 – 55 39 (21) 61 (23) 23 (17) 28 (14) 

55 – 65 35 (19) 62 (24) 57 (42) 96 (48) 

65 – 75 35 (19) 41 (16) 28 (20) 45 (23) 

75+ 24 (13) 23 (9) 17 (12) 22 (11) 

Female gender 89 (48) 136 (52) 5 (4) 9 (5) 

African American race 103 (56) 188 (71) 70 (51) 147 (74) 

Employment status:     

Working 79 (43) 78 (30) 32 (24) 18 (9) 

Unemployed 17 (9) 22 (8) 17 (13) 12 (6) 

Retired 49 (27) 62 (24) 49 (36) 91 (46) 

Disabled 39 (21) 99 (38) 37 (27) 77 (39) 

Annual income:     

< $15,000 48 (29) 90 (37) 41 (38) 95 (49) 

$15,000 - $20,000 45 (27) 18 (7) 48 (45) 18 (9) 

> $20,000 72 (44) 137 (56) 18 (17) 79 (41) 

Insurance status     

Private 151 (84) 162 (63) 6 (4) 10 (5) 

VA/Medicare/Other 7 (4) 43 (17) 107 (79) 154 (78) 

Medicaid/None 21 (12) 54 (21) 23 (17) 34 (17) 

Number MD visits in previous year     

< 4 48 (27) 76 (29) 35 (26) 35 (18) 

4 – 12 87 (48) 116 (44) 56 (41) 90 (46) 

> 12 46 (25) 71 (27) 46 (34) 72 (37) 

Smoking status     

Never 90 (49) 130 (50) 19 (14) 37 (19) 

Past 73 (40) 88 (34) 79 (58) 92 (46) 

Current 21 (11) 42 (16) 39 (28) 69 (35) 

Body Mass Index     

< 25 63 (34) 65 (25) 41 (30) 62 (31) 

25 – 30 62 (34) 77 (30) 36 (26) 57 (29) 

> 30 59 (32) 117 (45) 59 (43) 79 (40) 

Warfarin indication     

AFib/AFlutter 68 (37) 81 (31) 70 (51) 87 (44) 

DVT/PE 73 (40) 131 (50) 40 (29) 86 (44) 

Other 43 (23) 51 (19) 27 (20) 24 (12) 

Previously used warfarin 47 (26) 75 (29) 40 (29) 72 (36) 

History of hypertension 87 (47) 170 (65) 66 (48) 151 (76) 

History of diabetes 40 (22) 68 (26) 50 (36) 71 (36) 

History of peptic ulcer disease 16 (9) 26 (10) 17 (12) 9 (5) 

History of heart failure 31 (17) 58 (22) 34 (25) 40 (20) 

All values are reported as N (%), and sites were limited to those that were present in both 

derivation and validation cohorts. 
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Supplementary Table 4. Prediction model coefficients when developed in validation cohort 

in post-hoc analysis 

Predictor variable Shrunk coefficient* 

Age 0.01 

Body Mass Index 0.02 

Warfarin indication  

AFib/Aflutter Ref 

DVT/PE -0.34 

Other -0.33 

Insurance status  

Private insurance Ref 

VA/Medicare -0.14 

Medicaid/None -0.36 

Previous warfarin use -0.22 

History of heart failure -0.12 

History of arrhythmia -0.16 

*To improve expected model calibration, coefficients were 

shrunk using a linear shrinkage factor, equal to 0.84, which was 

estimated from 1,000 bootstrap replications. Negative 

coefficients indicate a higher probability of prolonged dose 

titration. 
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Supplementary Figure 1. Comparison of best prediction models by number of predictor 

variables in the model, as estimated with and without cross-validation. Prediction models were 

compared by the time-dependent AUC at 12 weeks, as estimated using leave-one-out cross-

validation (LOOCV) or no cross-validation (CV). Asterisks indicate the model that would have 

been selected as the overall best model for each estimation method. 
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Supplementary Figure 2. Predicted probability vs. observed frequency of prolonged dose 

titration by risk decile. 
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Supplementary Figure 3. Comparison of ROC curves for the prediction models with and 

without the addition of genetic factors. 
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Supplementary Figure 4. Comparison of relative utility curves in prediction models with and 

without genetic factors. 
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Supplementary Methods 

 

Univariable screen 

To reduce overall computing time for our analyses to manageable levels, we chose to perform a 

univariable screen to reduce the number of candidate predictors from the initial 28 to 20, which 

was determined a priori to be an appropriate number of candidate variables, given computational 

constraints. For each candidate predictor, we constructed a univariable Cox regression model of 

the time from initiation of warfarin to the achievement of maintenance dose or censoring. We 

then estimated the time-dependent area under the ROC curve (AUC) at 12 weeks of follow-up 

using 10-fold cross-validation for each model. The 20 variables with the best time-dependent 

AUCs were selected for inclusion in the modified best subsets algorithm, as described below. 

 

Time-dependent AUC 

The time-dependent AUC—developed by Heagerty, et al.
1
—differs from the standard AUC 

because it accommodates censoring, and it differs from the commonly used C-index because it 

assesses model discrimination at a single point in time, rather than over the total duration of 

follow-up. The time-dependent AUC can thus be interpreted as the probability that a randomly 

selected individual who has experienced the failure event by time t will have a higher predicted 

probability of failure at time t than a randomly selected individual who has not experienced the 

failure event by time t. This statistic is estimated by integrating the time-dependent sensitivity 

and specificity across all possible cut-off values for the linear predictor derived from the model.
2
 

Because cross-validation was being used during the model development process, the linear 

predictor was calculated in the data subset that was withheld during estimation of the Cox model, 

repeated for all data subsets (e.g. 10 times for 10-fold cross-validation). When the model was 

assessed in the external validation cohort, the linear predictors in that cohort were used without 

cross-validation. 

Because individuals may be censored prior to time t, the values for time-dependent 

sensitivity and specificity need to be estimated from the data. As recommended by Heagerty, et 

al., we used a nearest neighbor estimator—which is essentially a weighted Kaplan-Meier 

estimator based on a nearest neighbor kernel function, developed by Akritas
3
—which allows for 

monotonicity of sensitivity and specificity and for the censoring process to depend on the 

predictive marker of interest. This estimator is dependent on a smoothing parameter,  , where 2  

represents the percentage of observations that are included in an individual observation’s 

neighborhood; in our case, we chose the default value of   = 0.025. The “survivalROC” package 

in R was used to facilitate these calculations.
4
 

 

Modified best subsets selection algorithm 

Variable selection was conducted using a modified best subsets algorithm.
5
 This algorithm was 

designed to optimize model discrimination, or how well a model distinguishes between those 

who did and did not experience the outcome (in this case, those who had a prolonged vs non-
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prolonged dose-titration phase, respectively). We calculated the time-dependent AUC at 12 

weeks using 10-fold cross-validation for all possible combinations of the 20 remaining candidate 

predictors up to 10 predictor variables in length (616,665 combinations) to reduce our chances of 

selecting a combination based on overfitting. Because leave-one-out cross-validation 

(LOOCV)—in which one person at a time is removed from the dataset to build the model and 

then used for model testing, for all individuals in the dataset—can be a better estimate of external 

validation than 10-fold cross-validation,
6
 we opted to estimate the time-dependent AUC using 

LOOCV in the 1,000 best models based on 10-fold cross-validation for each subset size (8,210 

combinations). The combination of predictors that led to the highest time-dependent AUC using 

LOOCV was then selected as our final prediction model. This strategy had the advantage of 

choosing the best subset based on LOOCV, without the nearly 40-fold increase in computing 

time that would be required by calculating the time-dependent AUC using LOOCV in all 

possible combinations of predictors. A sensitivity analysis showed that this algorithm selected 

the exact same best combination of predictor variables as using LOOCV on all possible 

combinations up to 6 predictor variables in length. 

 

Linear shrinkage factor 

Because regression coefficients are often overestimated in small samples, prediction models will 

often show better calibration for out-of-sample predictions when coefficients are shrunk toward 

zero.
7
 Thus, we sought to apply a linear shrinkage factor—which has been shown to perform 

well in small samples for improving model calibration, without sacrificing model 

discrimination
8
—to our final prediction model. To estimate the shrinkage factor, we fit the 

model in a bootstrap sample of the derivation cohort. We then calculated the linear predictors of 

the individuals in the actual derivation cohort using the model coefficients from the model fit in 

the bootstrap sample. The slope of the actual observed outcomes regressed on these bootstrapped 

linear predictors could then be used as an estimate of the shrinkage factor. To form a stable 

estimate of the shrinkage factor, we calculated the mean slope over 1,000 bootstrap replications. 

All of the original model coefficients were then multiplied by this shrinkage factor to produce 

the final shrunk coefficients, which were used for generating predictions in the external 

validation cohort. Because all of the coefficients are being multiplied by the same factor, the 

rank order of individual predictions is preserved and model discrimination is not affected by 

shrinkage. 

In order to ensure that shrinkage was toward the overall mean and not toward the overall 

reference category, continuous variables needed to be centered at the mean and categorical 

variables had to be coded using simple contrasts. In this contrast method, reference groups were 

coded as      , while non-reference categories were coded as (   )  , where   is the number 

of categories. In this contrast method, the reference category of 0 is equivalent to the overall 

mean of the sample in which the model is being fit. Note that the difference between the 

reference and non-reference categories is still 1; thus, the interpretation of coefficients in this 
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contrast method is identical to the more common dummy coding for categorical variables (i.e. 0 

for reference and 1 for non-reference categories). 

 

Measures of clinical utility 

The methods for determining clinical utility rely on the concept of the risk threshold, which is 

the probability of the outcome at which the clinician is indifferent about which treatment strategy 

to use; in other words, it is the probability at which the costs of false positive and false negative 

mistakes are equal.
9
 Furthermore, the consequences of basing a clinical decision on the predicted 

probability from a risk prediction model can be estimated as a function of the risk threshold. 

While the exact threshold used in practice will vary depending on the value that physicians and 

patients place on certain outcomes, the metric can be used to determine the clinical usefulness of 

a given model under a range of possible thresholds. For our prediction model, given broadly 

similar safety and efficacy profiles for warfarin and the alternative anticoagulants (with the 

possible exception of apixaban),
10,11

 the risk threshold for a given patient would likely depend 

primarily on his or her relative costs of INR monitoring on warfarin versus the out-of-pocket 

financial costs of the alternative anticoagulant agents. In this scheme, patients that are more 

burdened by financial costs would have a risk threshold above 0.5, while those that are more 

burdened by INR monitoring would have a risk threshold below 0.5. 

The net benefit of a prediction model is equal to the true positive rate minus the false 

positive rate, weighted as a function of the risk threshold.
12

 In this case, the net benefit is 

calculated relative to the strategy of using standard warfarin therapy in all patients. Relative 

utility is a related measure of the usefulness of a prediction model that is essentially a rescaling 

of net benefit, and it can be interpreted as the net benefit of the prediction model, compared to 

using the same treatment strategy in all patients, as a fraction of the net benefit of perfect 

prediction.
13

 A relative utility of 1 indicates that the model performs as well as perfect 

prediction, while negative values indicate that the model leads to worse outcomes than using the 

same strategy in everyone. 
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