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Merced S/N, 37008, Salamanca, Spain

[3] Division of Space Technology, Department of Computer Science, Electrical and Space
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1 Supplementary information

Figure 3: Wien’s displacement law of the entropy of radiation Using the statistical definition

of entropy proposed by Boltzmann, Planck determined the analytical expression of the entropy of

radiation (entropy of bosons):
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and afterwards derived the law that characterizes the behavior of the radiation intensity

(Planck’s law):

Lλ =
2hc2

λ5
1

e
hc
kλT − 1

(2)

Once the distribution of the radiation energy is known, is possible to derive the law that

determines the maximum of energy for a given blackbody temperature, which is called Wien’s

displacement law. This law states that the spectral radiance of black body radiation per unit wave-

length, peaks at the wavelength λmax that is inversely proportional to temperature:

λmax =
b

T
(3)

where T is the absolute temperature of the body in Kelvin and b is a constant of proportion-

ality (called Wien’s constant) equal to 2.8977721(26)×10−3 m K. The constant b was determined

experimentally, firstly by Lummer and Pringsheim and later by Paschen, and was theoretically ob-

tained by Planck once its distribution law was formulated. It is worth noticing that Wien proposed

the law that carries his name before Planck obtained the spectral distribution.
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Wien’s law determines the wavelength of the maximum emission of radiation by a blackbody,

but it should not be confused with the maximum information. Following the reasoning proposed

by Planck in the Part II of this book [Planck, 1914], the Wien’s displacement law should not be

restricted to the spectral intensity of radiation. Moreover, the spectral entropy of radiation will

follow a similar law, but the value of the constant does not have to be the same.

Equation 20 can be rewritten as:

Sλ =
2kc

λ4
{(1 + x) log (1 + x)− x log x} (4)

where x =
Lλ · λ5

2hc2
=

1

ehc/λkT − 1
. It can be converted by simple arithmetic into:
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+

1

T
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1
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)
(5)

In the maximum of the function we have the condition is dSλ
dλ

= 0, which leads to:
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(6)

Looking for common denominator, λ7T 2
(
e
hc
λkT − 1

)2
:
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The numerator must be zero in the previous equation in order for the entropy to be a maxi-

mum:
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(8)

Using the transformation x = hc
λkT
⇒ λT = hc

kx
:
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(9)

Removing common factor 2h2c3

k
:
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− 5 (ex − 1)
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1
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)
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(10)

and multiplying by x2:

dSλ
dλ

=− 5x (ex − 1)2 − 5x (ex − 1) + x2 · ex

− 4 log

(
1

ex − 1

)
(ex − 1)2 + x · ex (ex − 1) = 0

(11)

we obtain a transcendental equation which cannot be solved analytically but that can be

solved numerically (Figure 3). The solution gives x = 4.7912673578 and reversing the x variable:

x =
hc

λkT
⇒ λT =

hc

k · 4.7912673578
= 3.00292× 10−3m K (12)

which is the Wien’s displacement law of the entropy of radiation.

Figure 2: Function of normalized ratio of entropy to energy equal to unity The entropy con-

tent in radiation is not uniformly distributed along the spectra. The different location of the maxima

and the shape of the spectra divides the space in two entropic regions. The curve that limits these

regions is characterized for having a value of the ratio of normalized entropy to energy equal to the

unity. The curve is verifies the equation:
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Sλ
Sλ,max
Lλ

Lλ,max

= 1 (13)

Where Sλ is given by Equation 20, Lλ by Equation 21, and Sλ,max and Lλ,max are the maxi-

mum of the entropy and the energy respectively. The relation is rewritten as:

Sλ · Lλ,max = Sλ,max · Sλ (14)

As the wavelength of the maximum of the entropy and the energy are determined by the

Wien’s displacement laws described in this paper, we can use the relations λmax,energy ·T = bmax,energy

and λmax,entropy · T = bmax,entropy in Equations 20 and 21 to determine Sλ,max and Lλ,max. Using the

expression of the entropy of Equation 5, we have:

Sλ,max =
2hc2 · T 5

T · b5entropy
+

1

T

2hc2

b5entropy

T 5

e
hc
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+

2kc
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· T 4 · log
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1
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)
(15)

Lλ,max =
2hc2

b5energy

T 5

e
hc

kbenergy − 1
(16)

For simplicity, we call c1 = 2hc2, c2 = hc/k and c3 = 2kc. The relation described in Equation

14 leads to the equation:
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It is easy to prove that removing T 4

λ5
, calling x = c2

λT
and multiplying both sides by (ex − 1),

the equation is reduced to:

ex+
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x
·log
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1
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·
(
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1
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e
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(18)

that is a transcendental equation with numerical solution x = 4.878482. Undoing the change

of variable, we have:

λT =
hc

k · 4.8784820
= 2.94923 · 10−3m K (19)

Figure 1: Optimal wavelength: maximum product As explained in the main text, the product

of energy and entropy is maximized in a point between the maxima of both distributions. The

equation that determines the optimal wavelength is derived as the maxima of the product of the

two distributions. As seen before, the distributions of entropy and energy are respectively:
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and their derivates:
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=
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The maximum product is accomplished when d
dλ
(Sλ · Lλ) = 0, i.e., dSλ

dλ
· Lλ + dLλ

dλ
· Sλ = 0.

Using the previous equations, removing the common factors λ12T 2k(e
hc
λT −1)3, and hc3, and

doing the change of variable x = hc
λkT

, the equation is transformed to:

− 10

x
(ex − 1)2 − 10

x
(ex − 1) + 2ex − 9

x2
(ex − 1)2 log

(
1

ex − 1

)
+

ex

x
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x
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(
1
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)
= 0

(24)
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which numerically solved, gives the value x = 4.8794390856. Undoing the change of vari-

able, we obtain λT = 2.94865 · 10−3 m K.

In those situations where the equal weighting rule cannot be applied, the optimal function

would have a different value. For example, in computer vision where the energy is constant, the

optimal wavelength is determined by d
dλ
(Sλ ·Lλ) = Lλ

d
dλ
(Sλ) = 0, i.e. it is reduced to the classical

maximum entropy rule dSλ
dλ

= 0.
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