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Effector regulation by push-pull reaction  
To present physical implementation by which the effector X’s activity is determined by the ratio of activator 
A and inhibitor I, we considered enzymatic push-pull reaction, which ubiquitously exists in intracellular 
signaling.  The dynamics of the concentration of active X, X, are simply described by 

  

dX
dt

= kA( Xtot − X )A− kI XI ,               (S1) 

where Xtot is the total concentration of the effector X, and kA and kI represent the catalytic reaction rates of 
activator and inhibitor, respectively.  The steady state of X is determined by the ratio A/I as  

  
Xeq =

Xtot ( A / I )
(kI / kA)+ ( A / I )

.               (S2) 

When kI/kA >>A/I, the steady state of X can be approximately proportional to A/I as X=βA/I, where 
β=Xtot(kA/kI).  If the enzymatic activities of A and I are modeled by Michaelis-Menten equation, the dose-

response of X also increases as the ratio A/I increases typically in a sigmoidal manner1,2.   
 
Another derivation of equation (4) 
Equation (4) in the main text can be derived by different way. Given A(x) and I(x), distribution of X is 
determined by X(x)=FX(A(x)/I(x)). Here, we evaluated slope of the distribution of X at x=0 as 
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.         (S3) 

If A(x), I(x) and X(x) are assumed to be linear function of x, their spatial differences across the cell can be 
represented ΔA=dA/dxx=0L, ΔI=dI/dxx=0L and ΔX=dX/dxx=0L, where L denotes the length of the cell. 
Multiplication of equation (S3) by L leads to  
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,     (S4) 

where A* and I* indicate A(x=0) and I(x=0), respectively. This equation is the same as equation (4) in the 
main text.  
 In this derivation, linearity of A(x), I(x) and X(x) were imposed, which are stronger assumptions than 
that in the main text. Actually, equation (4) was derived with the assumption that A(x) and I(x) were given as 
being slightly perturbed from A(x=0) and I(x=0), respectively, no matter if A(x) and I(x) were linear or non-
linear function of x. Therefore, the derivation of equation (4) is more general than that of equation (S4).  
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2D model  
To confirm the validity of our theoretical consideration based on the 1D model, we extended our 1D model 
to a 2D model, which enabled simulation of 2D migrations of the growth cone. The model growth cone was 
represented by an ellipse-shaped body as in Roccasalvo et al.3 and received an extracellular gradient of the 
guidance signal.   
 
Extracellular gradient 
We used a realistic gradient typically used in the growth cone turning assay, in which chemical solution was 
repeatedly ejected with 2 Hz ejected from a micropipette located at 100 µm distant from the center and 45° 
from the migrating direction of the growth cone4,5 (Supplementary figure 1A and B).  The gradient in the 
2D space was described by summation of Gaussian kernels4 as  

   

G(r) = A

4 πD(t − jto )⎡⎣ ⎤⎦
3/2 exp − | r − ro |2 4D(t − jto )⎡⎣ ⎤⎦

j=1

t /to

∑ ,         (S5) 

where A, r, ro D, j, t and to indicate concentration of the chemical solution at the source, positional vector in 
the 2D space as r=(rx, ry)T, 2D position of the chemical source (location of the micropipette), diffusion 
constant of the chemical, order (index) of the repetitive ejections, elapsed time from the initial application, 
time interval of the repetitive ejections, respectively.  Parameter values used in equation (S5) were t=3600 (s), 
to=1/2 (s), D=520 (µm2/s) 4 and ro=(100/(21/2), 100/(21/2))T (µm). Because the chemical gradient is known to 
become almost stationary after 10 min 4, we used t=3600 (s).  
 
Intracellular signals in response to extracellular gradient 
The guidance signal up-regulated activator and inhibitor according to their dose-response functions, A(G(r)) 
and I(G(r)), respectively (Supplementary figure 1C).  The activity of the effector X was also locally 
determined by a ratio of the activator to inhibitor as X(r)=A(G(r))/I(G(r)) (Supplementary figure 1D).  
 
Migration of the growth cone regulated by X 
In the 2D model, biased distribution of X generates the turning force such that X along periphery of the 
growth cone locally generates protrusive force in normal direction (perpendicular to tangential line of the 
growth cone), and the summation of these protrusive forces drives the growth cone turning behavior 
(Supplementary figure 1D). We assumed that the downstream system that converts the spatial distribution 
of X into the growth cone turning force is endowed with adaptation property; this property is known as the 
Weber-Fechner law6, in which the detectable biased distribution of X varies because of the scale of the 
spatial average of X.  Thus, the turning force vector was described by 

    

Fturn(t) = γ
n(t,s)X (t,s)ds

C!∫
X (t,s)ds

C!∫ S
,               (S6) 

where γ, s, S, X(s), and n(t, s) indicate a positive constant, the 1D coordinate along the periphery of the 
growth cone, perimeter of the growth cone, the activity of X at coordinate s along the periphery and a unit 
normal vector at coordinate s along the periphery at time t, respectively. The integrals in equation (S6) are 
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line integrals, in which the functions, e.g., n(t, s)X(t, s) and X(t, s) to be integrated, were evaluated along the 
periphery of the growth cone. The numerator represents the sum of the local protrusive forces driven by X, 
whereas the denominator represents the average level of X.   
 In addition to the turning force, the model growth cone was driven by the persistent force, which was 
constitutively generated, being independent of X (Supplementary figure 1D). In fact, the growth cone 
persistently migrates even without the extracellular gradient. The motion of the growth cone was then 
described by  

  

drc

dt
= Fmig

,                   (S7) 

where rc indicates the 2D positional vector of the center of the growth cone (rc=(rcx, rcy)T) and Fmig represents 
total migration force vector consisting of the two kinds of forces as  

   
Fmig (t) = vp(t)+Fturn(t) ,                 (S8) 

where vp represents the persistent force vector whose amplitude (norm) and direction (unit vector) are 
denoted by v and p, respectively. Note v is a parameter representing the migration speed of the growth cone 
even without the extracellular gradient. The direction of the persistent force vector, p, was also modulated by 
direction of the migration, i.e., Fmig, as  

  
τ dP

dt
= −P +Fmig

,                  (S9) 

   p(t) = P(t) | P(t) | ,                  (S10) 

where P represents a vector that temporarily memorizes Fmig in a history-dependent manner and τ indicates 
time constant. The direction of the persistent force, p, was simply determined by unit vector of P.  Parameter 
values used in equations (S6, S8 and S9) for the 2D simulation of the growth cone migration were γ=0.005, 
v=15 (µm/hr) and τ=10 (min).   
 
Evaluation of the turning angle 
The turning angle of the 2D growth cone was evaluated at 1.5 hours after application of the gradient as  

   
ω = 360

2π
sgn q(0)TΔrc(teva )( )arccos p(0)TΔrc(teva )⎡⎣ ⎤⎦ ,           (S11) 

where Δrc(teva) and q(0) represent a unit vector of the growth cone displacement from initial position as 
Δrc(teva)={rc(teva)−rc(0)}/|rc(teva)−rc(0)| and a vector rotated by -90° with respect to p(0), respectively, teva 
indicates the time point for evaluating the turning angle (1.5 hours), and sgn(s) is a sign function; 1 if s ≥ 0 
and –1 s < 0.  
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Implementation of 2D model simulation  
Simulations were implemented by ourselves using MATLAB (MathWorks).  In our implementation, we 
quantized the 2D space into square lattice, in which the size of each square was set to 0.1 µm, so that rij=(iΔx, 
jΔx)T denotes the center position of a compartment indexed by (i, j) (i, j=1, 2, 3, …) and Δx=0.1 µm. The 
lattice was fixed and not re-meshed. The morphology of the growth cone was represented by a fixed ellipse. 
At each time step in simulation, the ellipse-shaped growth cone was relocated by updating its centroid 
position vector and moving vector, according to equation (S7). After this migration, square compartments 
inside the relocated ellipse were re-considered as the growth cone region, leading to another calculation of its 
centroid and moving vectors. 
 A square compartment indexed by (i, j) received the level of guidance signal (G) as Gij=G(rij), where 
G(r) was given by equation (S5) representing the external gradient (Supplementary figure 1A). The levels 
of activator (A) and inhibitor (I) were determined by Aij=A(Gij) and Iij=I(Gij), where A(G) and I(G) are dose-
response functions of A and I to G, respectively. The level of effector X (X) for each component was 
determined by a ratio of A to I as Xij= Aij/Iij.  The set of Aij. Iij, and Xij over the intracellular compartments in 
total represent the intracellular gradients (as two-dimensional distributions) of A, I, and X, respectively 
(Supplementary figure 1C and D).  
 
Comparison of our theory based on 1D model with 2D model simulation  
Because our theory was based on linear approximation (first-order Taylor expansion) in the 1D model, we 
evaluated performance of our theory compared with simulation of the 2D model.  Under a 10% gradient 
typically used in the growth cone turning assays4,5 (Supplementary figure 1A and B), we showed that our 
theory well reproduced the simulated turning angle in the 2D model (Supplementary figure 2).  In addition, 
we compared our theory with the 2D model simulation by changing the steepness of the extracellular 
gradient (5, 10, 20 and 30%) (Supplementary figure 3). Although approximation of our theory got worse as 
the gradient steepness increased, we found our 1D model-based theory well reproduced the 2D model 
simulation reasonably with a gradient range of 5-10%. Therefore, our theory based on the 1D model well 
characterized the 2D migration of the growth cone in a biologically realistic range of gradients, consistently 
with the values used in the growth cone turning assay4,5, but was not very effective for further steeper 
gradients.  
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Calculation of ΔA and ΔI  
We evaluated ΔA and ΔI, which were used in equation (7) in the main text, as results of intracellular reaction-
diffusion dynamics of activator and inhibitor.  The reaction-diffusion dynamics of A and I under exposure to 

a gradient of guidance signal, G(x), are generally described by   

  

∂Z
∂t

= D
∂2 Z
∂x2 + h(Z )+ wG(x) ,               (S12) 

where Z is the concentration of either A or I, D and w indicate diffusion constant and influx rate of Z 
regulated by the guidance signal, and h(Z) represents a reaction term.  When the extracellular gradient is 
shallow relative to the size of the cell, it can be represented as a linear gradient as G(x)=G*+gx, where G* and 
g indicate the basal level and slope of the guidance signal.  Then, equation (S12) can be rewritten by  

  

∂(Z * + z)
∂t

= D
∂2(Z * + z)

∂x2 + h(Z * + z)+ w G* + gx( ) ,          (S13) 

where Z=Z*+z, Z* indicates a steady state response of Z in equation (S12) given G*, i.e., h(Z*)+wG*=0. 
Notice that Z* is just a constant, so ∂Z*/∂t=0, and that z represents perturbation from Z*, which took a small 
value due to the shallow gradient assumption, leading to the linearization of h(Z*+z) as 

   
h(Zo + z) ! h(Zo )+ dh / dZ

Z=Z* z . Then, equation (S13) becomes 

   

∂(Z * + z)
∂t

! D
∂2(Z * + z)

∂x2 + h(Z *)+ dh
dZ Z=Z*

z + w G* + gx( ) .         (S14) 

Applying h(Z*)+wG*=0, we obtain 

    

∂z
∂t

= D
∂2 z
∂x2 − kz + wgx ,                (S15) 

where  

    
k = − dh

dZ Z=Z*

.                  (S16) 

 To easily obtain the solution of equation (S15), we approximately used a model of two compartments, 
described by   

  

dzr

dt
= −D

zr − zl

L2 − kzr +
wg
2

dzl

dt
= D

zr − zl

L2 − kzl −
wg
2

,               (S17) 

where zr and zl indicate the z values at right and left compartments, respectively. Difference between zr and zl 
follows  

  

d(ΔZ )
dt

= − 2D
L2 + k⎛

⎝⎜
⎞
⎠⎟
ΔZ + wg ,              (S18) 

where ΔZ=zr−zl. Then, spatial difference of Z at steady state becomes 

  
ΔZ = wg

k + 2D / L2
.                 (S19) 

If 2D/L2<<k, this equation is approximately expressed as 
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ΔZ ! g 1− 2D

kL2

⎛
⎝⎜

⎞
⎠⎟

w
k

.                (S20) 

Because w/k in equation (S20) is shown to correspond to the derivative of the dose-response (see below), ΔZ 
is also expressed by  

   
ΔZ ! cZ

dFZ (G)
dG

,                 (S21) 

where FZ(G) indicates the dose-response of Z depending on G, cz indicates a positive constant that 
corresponds to the Z’s sensitivity to the extracellular gradient, depending on its diffusion constant. This 
result was used in equation (7) in the main text. 
 Here, we show w/k=dFZ/dG. In general, the dose-response describes a steady state response of output 
variable given input, which is also regardless of spatial factor. Thus, we consider the steady state condition 
of equation (S12) excluding the diffusion term, or, after the diffusion has vanished, leading to h(Z)+wG=0. 
The dose response function is simply given as a solution of this equilibrium equation, as, Z=FZ(G).  
Differentiation of h(FZ(G))+wG=0 with respect to G, using the chain rule, (dh/dZZ=Fz(G))(dFZ/dG)+w=0, leads 
to the derivative of the dose-response, dFZ/dG=−w/(dh/dZZ=Fz(G)). Because of equation (S16), dFZ/dG=w/k. 
Notice that Z* in equation (S16) satisfies Z*=FZ(G*).  
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Supplementary Figure 1 Two-dimensional model of the growth cone 

(A) The 2D growth cone is depicted by a yellow ellipse-shaped object with 10 µm short and 15 µm long axes.  

The heat map represents a gradient typically used in the turning assay, in which chemical solution was 

applied as the black arrow, at 100 µm from the center and 45° from the initial migrating direction of the 

growth cone.  

(B) Concentration of the guidance signal along the diagonal line from the top-right corner in (A). The thick 

black line corresponds to the situation in (A) and thin black lines represent the situations when variety of 

concentration of the chemical source was applied. The yellow ellipse is depicted to see the width of the 

growth cone in (A) with respect to the gradient slope; 10.45% concentration difference between the near and 

far sides of the growth cone. 

(C) Scheme of spatial distributions of activator and inhibitor within the 2D model growth cone in response to 

the gradient in (A). The scale of the ellipse-shaped growth cone was the same as in (A). 

(D) Scheme of turning driven by spatial distribution of X in the 2D model growth cone. The motion of the 

growth cone was driven by two kinds of forces: persistent and turning forces. The persistent force (black 

arrow) was constitutively generated even without the extracellular gradient, whereas the turning force (blue 

arrow) was regulated by polarized distribution of X. Protrusive forces (red arrows) were locally generated 

along the corresponding normal vector and in proportion to the local activity of X, so that the integration of all 

protrusive forces became the turning force (blue arrow). The scale of the ellipse-shaped growth cone was the 

same as in (A). 
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Supplementary Figure 2. 

Comparison between theory 

based on 1D model and 

simulation of 2D model.   

(A, C, E and G) The same as 

Figure 2. 

(B, D, F and H) Black lines 

indicate the simulated turning 

angles in the 2D model in 

response to the extracellular 

gradient shown in supplementary 

figure 1A. Red dotted lines indicate 

the turning angles calculated by 

equation (7), where the amplitude 

(β) was tuned to fit the black lines. 

 (I-K) Simulated distributions of X 

within the growth cone, when the 

growth cone initially encountered 

the gradient of guidance cue. Each 

indexed panel corresponds to a 

single blue arrow with the same 

index in (H). 

(L-N) Simulated paths of the 2D 

growth cone model. Each indexed 

panel corresponds to a single blue 

arrow with the same index in (H). 

 

 

 



10 

 
Supplementary Figure 3 Comparison between our theory based on 1D model and 2D model 

simulation with changing steepness of the extracellular gradients  

Various gradients were applied; 5% (A-C), 10% (D-F), 20% (G-I), 30% (J-L) concentration difference 

between the near and far sides of the growth cone.  

(A, D, G, J) The same as supplementary figure 1A. 

(B, E, H, K) The same as supplementary figure 1B.  

(C, F, I, L) Black lines indicate the turning angles simulated by the 2D model with the dose-responses of A 

and I shown in Figure 2G. Red dotted lines indicate the turning angles calculated by equation (7), in which 

the amplitude (β) was tuned to fit the black lines.  
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