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Supplementary Figure 1. Robustness of the predictions with respect to the used reference network. The X-axis 
represents 1-specificity and the Y-axis represents sensitivity. Underconnected networks result in a lower 
performance while overconnected networks result in similar, although lower, performance to the true network. 
Complete ROC curve. 
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Supplementary Figure 2. Differences in mutual exclusivity scores of small subnetworks derived from respectively 
real and randomized datasets. Note that in order to have complete information about the mutual exclusivity scores 
of the small subnetworks to which a specific gene can be assigned we, for each randomized dataset and also for 
the real data, ran the algorithm 100 times and each time retained the mutual exclusivity score of the subnetwork 
with which that gene is associated upon convergence of the method. This leads to the score distributions depicted 



in these figures. A)  Distributions of mutual exclusivity scores of the small subnetworks in randomized datasets 
(orange) and the real dataset (blue) for some putative driver mutations prioritized by SSA-ME. B) Distribution of 
mutual exclusivity scores of the small subnetworks in randomized datasets (orange) and the real dataset (blue) for 
all genes. C) Graph showing per gene the average score of the small subnetworks it belonged to upon convergence 
of the algorithm as derived from the real data (X-axis) and from the randomized data (Y-axis). Mutual exclusivity 
scores are normalized by the size of the small subnetworks. Randomization were performed by shuffling gene 
names. See supplementary table 2 for the confidence intervals of the differences in mutual exclusivity scores 
between randomized datasets and the real dataset for the putative driver genes and all genes together. 

  



Pan-cancer datasets 

Apart from the BRCA dataset, we also analyzed data from the BLCA, COADREAD, GBM, 

HNSC, KIRC, LAML, LUAD, LUSC, OV, UCEC and STAD datasets. All datasets used for 

these analyses were downloaded from GDAC firehose. Resulting networks, prioritized genes 

and PPV value plots can be found in supplementary figures 3-13 and supplementary tables 3-

13. 

 

 
Supplementary Figure 3. Network of selected genes and PPV plot for  

kidney renal clear cell carcinoma (KIRC) 

 

 



 

 
Supplementary Figure 4. Network of selected genes and PPV plot for  

head and Neck squamous cell carcinoma (HNSC) 
 

 



 
Supplementary Figure 5. Network of selected genes and PPV plot for  

stomach adenocarcinoma (STAD) 
 

 



 
Supplementary Figure 6. Network of selected genes and PPV plot for  

glioblastoma multiforme (GBM) 
 
 

 



 
Supplementary Figure 7. Network of selected genes and PPV plot for  

colorectal adenocarcinoma (COADREAD) 
 
 

 



 
Supplementary Figure 8. Network of selected genes and PPV plot for  

uterine Corpus Endometrial Carcinoma (UCEC) 
 
 

 



 
Supplementary Figure 9. Network of selected genes and PPV plot for  

ovarian serous cystadenocarcinoma (OV) 
 
 

 



 
Supplementary Figure 10. Network of selected genes and PPV plot for  

lung squamous cell carcinoma (LUSC) 
 
 

 



 
Supplementary Figure 11. Network of selected genes and PPV plot for  

lung adenocarcinoma (LUAD) 
 
 

 



 
Supplementary Figure 12. Network of selected genes and PPV plot for  

bladder urothelial carcinoma (BLCA) 
 
 

 



 
Supplementary Figure 13. Network of selected genes and PPV plot for  

acute myeloid leukemia (LAML) 
 

Literature-based evidence for predicted cancer drivers 

in the breast cancer dataset 

 

Of the 34 ranked genes, 8 genes were not listed in cancer gene databases (MCL1, GAB2, 

RPS6KB1, CRK, NGFR, EPHA2, VAV2 and UFD1L) based on CGC version 77, NCG 5.0 or 

the Malacards Breast Cancer category version 1.11.724. These genes are discussed below. 

Some of these are well known cancer drivers not reported in CGC, because they contain CNVs 

rather than somatic mutations. For selected genes which are not listed in cancer gene 

databases, for which the mutations are mainly SNP’s and which have at least 20 SNP’s in all 

pan-cancer datasets combined (to ensure the pattern can be visually convincing), we show 

the uncovered mutual exclusivity profiles (EPHA2 and VAV2 showed). 

 



MCL1 was found frequently (64 times) amplified in the dataset. MCL1 is involved in apoptosis 

modulation and signaling1. Its alterations by CNVs have been reported in literature before2. It 

has been associated with a number of cancers because of its involvement in the regulation of 

apoptosis versus cell survival3.  

 

Both GAB2 and PAK1 were frequently amplified (respectively 58 and 61 times) in the TCGA 

breast cancer dataset. Both genes belong to the same amplicon as the well-known breast 

cancer driver CCND14, which was in concordance also frequently amplified. However, 

because it cannot be excluded that more genes in the same amplicon are causal to cancer 

and because CCND1, GAB2, and PAK1 each show a strong mutual exclusivity with a subset 

of selected genes closely related in the network, each of them might act independently from 

one another as a true driver. Whereas both CCND1, a regulatory protein involved in mitosis, 

and PAK1, a protein belonging to the family of serine/threonine p21-activating kinases that are 

involved in cytoskeleton reorganization and nuclear signaling, have been reported in at least 

one of the cancer related databases, GAB2 is not. GAB2 was prioritized because of its mutual 

exclusivity and close network connectivity with amongst others PIK3CA, PTEN and EPHA2 

(Fig. 4). GAB2 is a scaffolding adapter protein that transduces cellular signals between 

receptors (tyrosine kinase receptors) and intracellular downstream effectors (PI3K, SpH2) and 

is required for efficient ErbB2-driven mammary tumorigenesis and metastatic spread by acting 

downstream of ErbB25,6. Interestingly, it was also shown that a focal amplification of GAB2 

independently of CCND1 in breast tumors contributes to diverse oncogenic phenotypes in 

breast cancer by activating, amongst others, the PI3K pathway, further confirming the role of 

GAB2 as primary driver in breast cancer7. 

 

RPS6KB1 was found to be frequently (77 times) amplified in the TCGA breast cancer dataset. 

RPS6KB1, encoding a ribosomal S6 kinase 1 (S6K1) is a member of the frequently mutated 

PI3K pathway and has been reported to be involved in cell proliferation and protein translation. 

A link between the S6K1 function and cancer was suggested by the finding that RPS6KB1 

resided in the chromosomal region 17q22-17q23 and was often amplified in lung and breast 

cancers8,9.   

 

Other genes we prioritized were not listed in cancer gene databases but were previously 

associated with cancer because of their expression behavior expression.  

 

The signaling adaptor protein Crk has been shown to play an important role in various human 

cancers. In the used breast cancer dataset CRK only had one SNP. The CRK family proteins 

all act as molecular bridges between tyrosine kinases and their substrates and modulate the 

specificity and stoichiometry of signaling processes. Evidence suggests that cellular Crk 

proteins are overexpressed in human tumors and that expression levels correlate with 

aggressive and malignant behavior of cancer cells10. Using RNAi-mediated knockdown, 

Fathers et al.11 have shown in their study that CRK is required for cell migration and invasion 

of metastatic breast cancer cells in vitro and for metastatic growth in vivo. However, a 

mechanistic understanding of Crk proteins in cancer progression in vivo is still lacking, partly 

because of the highly pleiotropic nature of Crk signaling12. 

 

NGFR (nerve growth factor receptor). It had 1 SNP in the BRCA dataset. NGFR inactivates 

p53 by promoting its MDM2-mediated ubiquitin dependent proteolysis and by directly binding 

to its central DNA binding domain and preventing DNA-binding activity. Biologically, cancer 



cells hijack the negative feedback regulation of p53 by NGFR to their growth advantage, as 

down regulation of NGFR induces p53-dependent apoptosis and cell growth arrest as well as 

suppressed tumor growth13. Overexpression of NGFR has been observed in many metastatic 

cancers and promotes tumor migration and invasion14-16. 

 

The EphA2 receptor is involved in multiple cross-talks with other cellular networks including 

EGFR, FAK and VEGF pathways, with which it collaborates to stimulate cell migration, 

invasion and metastasis17. It had 7 mutations in the BRCA dataset (3 SNP’s, 1 amplification 

and 3 deletions). While its overexpression has been correlated to stem-like properties of cells 

and tumor malignancy as for instance in colon cancer, less information is available on the role 

of EPHA2 as a driver gene. We did prioritize EPHA2 as a driver in breast cancer, despite its 

relatively low number of mutations. This because it showed (near) perfect mutual exclusivity 

with, amongst others, the well-known drivers PIK3CA, PTEN, GAB2 and RP6KB1, and all 

members of the PI3K pathway known to act downstream of EPHA2. These results were 

confirmed by the pan-cancer datasets from which it appears that EPHA2 was mainly highly 

mutated in HNSC (Head and neck squamous cell carcinoma) (Fig. 4). A recent study shows 

that rare SNPs in receptor tyrosine kinases, amongst which EPHA2, can be associated with 

negative outcome. This further points towards the clinical relevance of these less frequently 

mutated drivers18. See Fig. 4 in the main text for the retrieved mutual exclusivity pattern of 

EPHA2 in BRCA and in all pan-cancer datasets. 

 

VAV2 was also prioritized in the breast cancer dataset but rarely mutated (only 2 mutations in 

BRCA). VAV2 is a gene involved in altering cell shape and migration and has previously been 

associated with metastasis in breast cancer19. It was prioritized because of its association with 

PIK3CA and ERBB2, a signaling subnetwork that was shown in literature to be involved in 

ovarian tumor cell migration and growth through activation of PI3K in HER2 ovarian tumors. 

This activation leads to the recruitment of actin and actinin to ERBB2, which then colocalizes 

with the VAV2 guanine nucleotide exchange factor to induce Rac1 and Ras signaling and the 

concomitant activation of ovarian tumor cell migration and growth20. See Supplementary Fig. 

15 for the retrieved mutual exclusivity pattern of VAV2. 

 

UFD1L was prioritized in BRCA but has only 1 SNP. As there is only limited evidence to 

support the involvement of UFD1L in tumorigenesis21 we cannot rule out UFD1L is a false 

positive. 

Literature-based evidence for frequently predicted 

cancer drivers in the pan-cancer dataset 

Here we only focus on a detailed description of genes that were prioritized recurrently in the 

different pan-cancer datasets and that were not yet mentioned as drivers in the used cancer 

gene reference databases. We use the same criterion for showing mutual exclusivity patterns 

as in the previous paragraph (VCAN showed). 

 

Versican (VCAN) was selected in three out of twelve different pan-cancer datasets (LUAD 

STAD, BLCA) and fell just below the PPV cutoff value in UCEC. VCAN is a major component 

of the extracellular matrix (EM) involved in cell adhesion, proliferation, migration and 

angiogenesis. Increased VCAN expression has been observed in a wide range of malignant 



tumors and has been associated with both cancer relapse and poor patient outcomes22-24.  

Despite its well documented role in triggering tumor proliferation25,26, VCAN itself is not 

frequently mutated (mutations in 215 samples on a total of 5986 samples in the used pan-

cancer datasets). In the LUAD dataset, VCAN was interacting and mutual exclusive with 

EGFR, BCL9 and CTNNB1 (b1 catenin). CTNNB1 is a well-known driver gene that plays a 

central molecule in the wnt pathway and that is involved in the transcriptional regulation of 

VCAN27. The uncovered mutual exclusivity pattern can be seen in Supplementary Fig. 15. 

 

BCL2L1 (BCL2 like 1, BCLX, BCLXL), belongs together with Mcl-1 to the Bcl2 family. 

BCL2L1 is an anti-apoptotic gene that has just like MCL1 has been observed to be amplified 

in a variety of cancers. This is in accordance with our findings where BCL2L1 was selected as 

a potential driver gene in 66% of the pan-cancer datasets (OV, BLCA, COADREAD, LUAD, 

UCEC and LUSC) in which it mostly had gains of copy number. Overexpression of anti-

apoptotic Bcl-2 proteins in cancers tilts the apoptosis signaling pathway towards cell survival. 

BCL2L1 is, next to its role in promoting cancer cell survival by suppressing apoptosis, also 

involved in promoting metastasis in a way that is independent of the anti-apoptotic activity2. 
 

UBE2I Was prioritized in the ovarium (OV) and in the stomach adenocarcinoma (STAD) pan-

cancer datasets (as a linker gene). The ubiquitin-conjugating enzyme 9 (Ubc9), the sole 

conjugating enzyme for sumoylation, regulates protein function and plays an important role in 

sumoylation-mediated cellular pathways. Sumoylation plays a key role in DNA repair and 

tumorigenesis. Indeed, overexpressing Ubc9 has been shown to contribute to EOC 

progression and cell proliferation through the PI3K/Akt pathway28.  In addition, the SUMO 

pathway mediated by Ubc9 was shown to critically contribute to the transformed phenotype of 

KRAS mutant cells29. UBE2I was prioritized in OV because of its association with TP53 and 

RNF144B. The latter protein is an E3 ubiquitin-protein ligase that accepts ubiquitin from the 

E2 ubiquitin-conjugating enzymes UBE2L3 and UBE2L6 and then directly transfers the 

ubiquitin to targeted substrates, thereby promoting their degradation. It induces apoptosis via 

a p53/TP53-dependent mechanism and affects cell death by affecting the ubiquitin-dependent 

stability of BAX, a pro-apoptotic protein30. 

Comparison with MEMo  

In order to compare the results of SSA-ME with those of MEMo, a method that searches for 

mutual exclusivity patterns using an interaction network, we obtained the results from MEMo 

on the TCGA 2012 breast cancer dataset19 and ran SSA-ME on the same TCGA 2012 dataset, 

which was obtained directly from the TCGA breast cancer analysis portal. To maximize 

comparability between our results and those of MEMo, we reproduced to the best possible 

extent the filtering approach and network of the original MEMo study to run SSA-ME. 

 

The used network is a non-curated network consisting of Reactome31, Panther32, KEGG33, 

INOH34 and interactions from non-curated sources (like high-throughput derived protein–

protein interactions, gene co-expression, protein domain interaction, GO annotations, and 

text-mined protein interactions)35. The genetic alteration data was prepared according to the 

description in the original paper, i.e. only retaining genes that were altered in at least ten 

samples. 

 



Just like Mutex, MEMo is primarily designed to detect patterns of mutual exclusivity but does 

not explicitly extract drivers. To compare the results of MEMo with these of SSA-ME and 

because of the high similarity of the mutual exclusivity patterns detected by MEMo in the 

original paper (patterns consisting of maximally 8 genes that varied in most cases in no more 

than one gene), we collapsed the 23 genes of all patterns found by MEMo and depicted them 

as a network (Supplementary Fig. 14A). The subnetwork obtained by SSA-ME consisted of 

33 genes (applying a FDR cutoff, as described in the main text) of which 18 were also found 

in the MEMo network (Supplementary Fig. 14B). 5 genes retrieved by MEMo were not 

detected by SSA-ME: 3 genes (NBN, CHECK2 and MDM4) because they were no longer 

present in the filtered list we used as input, whereas they must have been present in the 

original input of MEMo: in contrast to what has been described in the original TGCA paper we 

found these genes to be mutated in less than 2 samples and therefore removed them from 

our analysis, the score of ATM just fell below the chosen threshold of the ranked list of SSA-

ME (ATM ranked 36 whereas with the chosen cut-off we only retained the 33 top ranked 

genes) and ATK3 was truly missed in our analysis as the small subnetworks to which it 

belonged never received consistently high scores during subsequent iteration steps. 

 

On the other hand, we found 10 additional genes that were not retrieved by MEMo. Some of 

these additional genes had previously been associated to breast cancer (AR and ESR1) or to 

cancer in general (MUC4 and CCDN1). The reason why we detect more genes than MEMo is 

partially due to the choice of the cut-off, but also because of the inherent differences in 

selection criteria between the methods: MEMo searches for patterns of mutual exclusivity in 

which all genes need to be mutually exclusive which each other (have to pass a permutation 

test) whereas the mutual exclusivity criteria of SSA-ME are less stringent. Also, our method 

does not require stringent filtering which leaves the possibility of selecting rarely mutated 

genes. 

 

These results thus show that SSA-ME is able to reproduce largely the same results as MEMo, 

provided the same input data is used. Genes that are highly ranked by MEMo are also highly 

ranked by SSA-ME. 

 



 
Supplementary Figure 14. Comparison between SSA-ME and MEMo. Prioritized driver networks obtained by 
MEMO as retrieved from the original mutually exclusive modules outlined in the breast cancer TCGA paper 
(Panel A) and obtained by SSA-ME using the filtered data (Panel B). Genes are represented as nodes. Colors 
refer to the databases in which associations of the indicated genes with breast cancer or cancer have been 
described. Gray genes were not found to be associated with breast cancer/cancer according to the used 
reference databases. The right figure in panel B represents the PPV analysis of results obtained by SSA-ME. 
The Y-axis represents the PPV according to the reference databases. The X-axis represents the number of 
genes in lists of prioritized genes of increasing order. The size of the gene list was determined by ranking the 
genes according to their gene scores and counting the number of genes with a rank lower than a given threshold. 
The Arrow indicates the thresholds that was chosen to select the genes in the network. We choose the threshold 
on the ranked list so that an adequate trade-off between sensitivity and precision was obtained. 

 
 



 
Supplementary Figure 15. Mutual exclusivity patterns of selected genes. Green tiles depict copy number gains, 
blue tiles depict somatic mutations and red tiles depict losses of copy number for all these patterns. A) Mutual 
exclusivity pattern of VAV2. The top figure visualizes the pattern in the BRCA dataset in which the pattern was 
originally detected. The bottom figure provides the pan-cancer view of the same pattern. TP53 and PIK3CA, 
which were also part of the pattern, were omitted from the visualization to allow zooming in on the less frequently 
mutated genes. B) Mutual exclusivity patterns of VCAN. Top panel shows the pattern in each of the three pan-
cancer datasets in which the pattern was prioritized (LUAD, STAD and BLCA). The bottom figure provides the 
pan-cancer view of the same pattern. The genes shown correspond to the intersection of the genes present in 
the 5-best small subnetworks which showed highest mutual exclusivity values for each dataset in which VAV2 
was prioritized (LUAD, STAD and BLCA). TP53 which was also part of the pattern but was omitted from the 
visualization to allow zooming in on the less frequently mutated genes. 
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Table S1 Ranked genes for BRCA 

    

    

GeneSymbol CGC NCG Malacards 

PIK3CA TRUE TRUE TRUE 

TP53 TRUE TRUE TRUE 

CCND1 TRUE TRUE TRUE 

MYC TRUE TRUE TRUE 

PTEN TRUE TRUE TRUE 

PAK1 FALSE TRUE FALSE 

PIK3R1 TRUE TRUE FALSE 

CDH1 TRUE TRUE TRUE 

DDX5 TRUE TRUE FALSE 

ERBB2 TRUE TRUE TRUE 

RPS6KB1 FALSE TRUE FALSE 

UFD1L FALSE FALSE FALSE 

RB1 TRUE TRUE FALSE 

APC TRUE TRUE FALSE 

STAT3 TRUE TRUE TRUE 

GAB2 FALSE FALSE FALSE 

EPHA2 FALSE FALSE FALSE 

FOXA1 TRUE TRUE FALSE 

EGFR TRUE TRUE TRUE 

VAV2 FALSE FALSE FALSE 

MAP3K1 FALSE TRUE TRUE 

CRK FALSE FALSE FALSE 

BRCA1 TRUE TRUE TRUE 

AKT1 TRUE TRUE TRUE 

NGFR FALSE FALSE FALSE 

MDM2 TRUE TRUE TRUE 

RHOA FALSE TRUE FALSE 

MCL1 FALSE FALSE FALSE 

MYB TRUE TRUE TRUE 

ATM TRUE TRUE TRUE 

CDC42 FALSE TRUE FALSE 

BCL2L1 FALSE FALSE FALSE 

MTOR FALSE FALSE TRUE 

AR FALSE TRUE TRUE 
 

  



Table S2 Ranked genes for KIRC 

   

   

GeneSymbol CGC NCG 

VHL TRUE TRUE 

ZNF512B FALSE FALSE 

PBRM1 TRUE TRUE 

EPAS1 FALSE FALSE 

HIF1A FALSE FALSE 

MDFI FALSE FALSE 

APC TRUE TRUE 

TCEB1 FALSE FALSE 

TCEB2 FALSE FALSE 

SQSTM1 FALSE FALSE 

FBXW11 FALSE FALSE 

SH3BP5 FALSE FALSE 

CUL2 FALSE FALSE 

VEGFA FALSE FALSE 

ARNT TRUE TRUE 

TP53 TRUE TRUE 

DST FALSE TRUE 

DDX41 FALSE FALSE 

PIK3CA TRUE TRUE 

ESR2 FALSE FALSE 

KDR TRUE TRUE 

SYNE1 FALSE TRUE 

MTOR FALSE FALSE 
 

  



Table S3 Ranked genes for HNSC 

   

   

GeneSymbol CGC NCG 

TP53 TRUE TRUE 

PIK3CA TRUE TRUE 

EGFR TRUE TRUE 

RB1 TRUE TRUE 

E2F1 FALSE FALSE 

PTEN TRUE TRUE 

EPHA2 FALSE FALSE 

APC TRUE TRUE 

MDM2 TRUE TRUE 

PIK3R1 TRUE TRUE 

ATM TRUE TRUE 

CTNNB1 TRUE TRUE 

MYC TRUE TRUE 

PPP1CA FALSE FALSE 

DDX5 TRUE TRUE 

CHD3 FALSE TRUE 

USP7 FALSE FALSE 

CDC42 FALSE TRUE 

CDKN2A TRUE TRUE 
 

  



Table S4 Ranked genes for STAD 

   

   

GeneSymbol CGC NCG 

TP53 TRUE TRUE 

APC TRUE TRUE 

SMAD4 TRUE TRUE 

PIK3CA TRUE TRUE 

EGFR TRUE TRUE 

CTNNB1 TRUE TRUE 

ERBB2 TRUE TRUE 

SKIL FALSE FALSE 

HDAC2 FALSE TRUE 

ATM TRUE TRUE 

CDH1 TRUE TRUE 

PTEN TRUE TRUE 

RNF4 FALSE FALSE 

VCAN FALSE TRUE 

SESN1 FALSE FALSE 

HGF FALSE FALSE 

IKBKG FALSE FALSE 

RAC1 TRUE FALSE 

TRRAP TRUE TRUE 

RHOA FALSE TRUE 
 

  



Table S5 Ranked genes for GBM 

   

   

GeneSymbol CGC NCG 

CDK4 TRUE TRUE 

CDKN2B FALSE FALSE 

CDKN2A TRUE TRUE 

CDK6 TRUE TRUE 

MYC TRUE TRUE 

TP53 TRUE TRUE 

MAX TRUE FALSE 

MCM2 FALSE FALSE 

PTEN TRUE TRUE 

MAGEA11 FALSE FALSE 

CDC5L FALSE FALSE 

RB1 TRUE TRUE 

SMAD4 TRUE TRUE 

MDM2 TRUE TRUE 

SP1 FALSE TRUE 

PIK3R1 TRUE TRUE 

CEBPB FALSE FALSE 

KIAA1377 FALSE FALSE 

SMAD3 FALSE TRUE 

PIK3CA TRUE TRUE 

EGFR TRUE TRUE 

IKBKAP FALSE FALSE 

CDKN2C TRUE TRUE 
 

  



Table S5 Ranked genes for GBM 

   

   

GeneSymbol CGC NCG 

CDK4 TRUE TRUE 

CDKN2B FALSE FALSE 

CDKN2A TRUE TRUE 

CDK6 TRUE TRUE 

MYC TRUE TRUE 

TP53 TRUE TRUE 

MAX TRUE FALSE 

MCM2 FALSE FALSE 

PTEN TRUE TRUE 

MAGEA11 FALSE FALSE 

CDC5L FALSE FALSE 

RB1 TRUE TRUE 

SMAD4 TRUE TRUE 

MDM2 TRUE TRUE 

SP1 FALSE TRUE 

PIK3R1 TRUE TRUE 

CEBPB FALSE FALSE 

KIAA1377 FALSE FALSE 

SMAD3 FALSE TRUE 

PIK3CA TRUE TRUE 

EGFR TRUE TRUE 

IKBKAP FALSE FALSE 

CDKN2C TRUE TRUE 
 

  



Table S7 Ranked genes for UCEC 

   

   

GeneSymbol CGC NCG 

PIK3CA TRUE TRUE 

PIK3R1 TRUE TRUE 

TP53 TRUE TRUE 

PTEN TRUE TRUE 

MYC TRUE TRUE 

BCL2L1 FALSE FALSE 

CTNNB1 TRUE TRUE 

ERBB2 TRUE TRUE 

CDH1 TRUE TRUE 

DNM2 TRUE TRUE 

PDGFRB TRUE TRUE 

ERBB3 FALSE TRUE 

VAV2 FALSE FALSE 

APC TRUE TRUE 

CTNND1 FALSE FALSE 

MAX TRUE FALSE 

UBQLN4 FALSE FALSE 

ESR1 FALSE FALSE 

TRRAP TRUE TRUE 

SYK TRUE TRUE 
 

  



Table S8 Ranked genes for OV 

   

   

GeneSymbol CGC NCG 

TP53 TRUE TRUE 

MYC TRUE TRUE 

RB1 TRUE TRUE 

MAX TRUE FALSE 

AKT1 TRUE TRUE 

CCNE1 TRUE TRUE 

RNF144B FALSE FALSE 

BCL2L1 FALSE FALSE 

MCL1 FALSE FALSE 

TERT TRUE TRUE 

CCNB1 FALSE FALSE 

UBE2I FALSE FALSE 

CTBP1 FALSE FALSE 

TAF9 FALSE FALSE 

TK1 FALSE FALSE 

SMARCA2 FALSE FALSE 

TFDP1 FALSE FALSE 

BRCA1 TRUE TRUE 

HIF1A FALSE FALSE 

STK11 TRUE TRUE 

NFYC FALSE FALSE 

TRIP13 FALSE FALSE 

PPP1CA FALSE FALSE 

SFN FALSE FALSE 

BCAT1 FALSE FALSE 

PTEN TRUE TRUE 

APC TRUE TRUE 

SCAMP1 FALSE FALSE 

XRCC6 FALSE FALSE 

PIK3R1 TRUE TRUE 

GSK3B FALSE TRUE 

SKP2 FALSE TRUE 

PMS2 TRUE TRUE 

JUN TRUE TRUE 

TRIM28 FALSE FALSE 
 

  



Table S9 Ranked genes for LUSC 

   

   

GeneSymbol CGC NCG 

TP53 TRUE TRUE 

SKP2 FALSE TRUE 

RB1 TRUE TRUE 

TRIP13 FALSE FALSE 

PTEN TRUE TRUE 

EGFR TRUE TRUE 

FOXM1 FALSE FALSE 

BCL2L1 FALSE FALSE 

CCNE1 TRUE TRUE 

PLK3 FALSE FALSE 

FADD FALSE TRUE 

BID FALSE FALSE 

TK1 FALSE FALSE 

CREB3 FALSE FALSE 

CDKN2A TRUE TRUE 

GRB2 FALSE TRUE 

PIK3CA TRUE TRUE 

PIK3R1 TRUE TRUE 

TFDP1 FALSE FALSE 

UFD1L FALSE FALSE 

MDM2 TRUE TRUE 

REL TRUE TRUE 

SETDB1 FALSE FALSE 

AKT1 TRUE TRUE 

APC TRUE TRUE 
 

  



Table S10 Ranked genes for LUAD 

   

   

GeneSymbol CGC NCG 

TP53 TRUE TRUE 

APC TRUE TRUE 

ATM TRUE TRUE 

EGFR TRUE TRUE 

CTNNB1 TRUE TRUE 

VCAN FALSE TRUE 

STK11 TRUE TRUE 

NFYC FALSE FALSE 

SMAD4 TRUE TRUE 

MET TRUE TRUE 

ERBB2 TRUE TRUE 

SIK1 FALSE FALSE 

SMARCA4 TRUE TRUE 

TFDP1 FALSE FALSE 

USP7 FALSE FALSE 

MAX TRUE FALSE 

HGF FALSE FALSE 

DST FALSE TRUE 

CASP3 FALSE FALSE 

RAC1 TRUE FALSE 

LAMA4 FALSE TRUE 

BCL2L1 FALSE FALSE 

MACF1 FALSE TRUE 

BRCA1 TRUE TRUE 

BCL6 TRUE TRUE 

CDC42 FALSE TRUE 
 

  



Table S11 Ranked genes for BLCA 

   

   

GeneSymbol CGC NCG 

TP53 TRUE TRUE 

MDM2 TRUE TRUE 

RB1 TRUE TRUE 

MYC TRUE TRUE 

PIK3CA TRUE TRUE 

ATM TRUE TRUE 

CDKN1A FALSE FALSE 

CCND1 TRUE TRUE 

APC TRUE TRUE 

BCL2L1 FALSE FALSE 

CREBBP TRUE TRUE 

DDX5 TRUE TRUE 

USP7 FALSE FALSE 

CTNNB1 TRUE TRUE 

ERBB2 TRUE TRUE 

PPARG TRUE TRUE 

BNIP3L FALSE FALSE 

HDAC2 FALSE TRUE 

EWSR1 TRUE TRUE 

TK1 FALSE FALSE 

TRRAP TRUE TRUE 

BRCA1 TRUE TRUE 

YWHAZ FALSE TRUE 

CDKN2A TRUE TRUE 

EGFR TRUE TRUE 
 

 

Table S12 Ranked genes for LAML 

   

   

GeneSymbol CGC NCG 

TP53 TRUE TRUE 

DNMT3A TRUE TRUE 

MYC TRUE TRUE 

MAX TRUE FALSE 

ZHX1 FALSE FALSE 

PTPN11 TRUE TRUE 

NRAS TRUE TRUE 

IDH1 TRUE TRUE 

KIT TRUE TRUE 

HNRNPK FALSE FALSE 
 


