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1 Supplementary Note

1.1 Theory

Here we presents in more details the ideas presented above. In practice, the classical water

mass diagnostics of the impact of physical terms on the diapycnal fluxes (initiated by1; see

also2, and3) has been extended to provide a mean for the quantitative analysis of physical and

biogeochemical processes that rule the tracer inventory in a particular oceanic region.

In other words, the aim is to compute the budget of the divergence/convergence of the tracer

due to transport across the isopycnals, i.e., the boundaries of the water masses, separate this into

the different processes sustaining the diapycnal transport, and compare with biogeochemical

sources/sinks and the tracer diffusive processes. This is given by a very long equation which

contains all the the tendency terms for temperature, salinity and the tracer whose derivation

is presented in the following. First, we will review the generalized approach for the evaluation

of diapycnal transports presented in4, which introduced the use of neutral density and a term

which considers the effect of the penetration of solar radiation into the upper layers of the

ocean, a term previously neglected and which is of importance in the tropical and subtropical

regions of the oceans.
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A schematic for the framework is shown in Fig.3. Given a volume Vγ of water bounded by

the ocean bottom, the ocean surface, one isopycnal surface Sγ and an open boundary OBγ, the

scope is first to estimate the volume transport across the isopycnal surface. (Here we assume the

volume transport at the surface is negligible even if it is fully considered by the diagnostics,4.)

The following formulations are valid for any density variable, including neutral density and

potential density, where the latter is the one applied here. In the results sections we will use

the generic term “density”.

The equation of evolution of the density ρ is Dρ/Dt = dρ + fρ where dρ are the mixing

processes (vertical and lateral or eddy diffusive processes and bottom layers turbulence) and fρ

are the boundary buoyancy forcing (air-sea and ice-sea interactions and geothermal flux).

We introduce two scalar quantities, ωρ and |∇ρ|, defined as the velocity across the moving

Sρ and the modulus of the gradient of ρ (by definition it has a direction normal to Sρ). In this

framework, the material derivative of ρ, Dρ
Dt
≡ ∂ρ

∂t
+ u · ∇ρ, becomes simply ωρ|∇ρ|. We can

thus define

ωρ = (dρ + fρ)|∇ρ|−1 (1)

as the diapycnal velocity across the moving Sρ. Thus, the total volume transport across the

isopycnal surface Sρ becomes

Ωρ =

∫
Sρ

ωρds =

∫
Sρ

(dρ + fρ)|∇ρ|−1ds =
∂

∂ρ

∫
Vρ

dρdv +
∂

∂ρ

∫
Vρ

fρdv (2)

where the latter step was made making use of a generalized form of Leibnitz’s theorem3.

One should note that the lateral (isoneutral) diffusive processes can give rise to net diapycnal

transports due to the non-linearity of the equation of state, via processes as cabbeling and

thermobaricity. It is also worth noting that only the use of neutral density allows for a correct

evaluation of the latter term. In practice, the diapycnal transports are evaluated in terms of

non-advective processes and external forcing acting on temperature and salinity.
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1.1.1 The tracer evolution

The formulation above will be used here for the evaluation of the tracer transports. Consider

the ocean volume delimited by an open boundary, the ocean surface and an isopycnal ρ (Fig.

S10) as being filled with a tracer whose inventory (or stock) is C =
∫
Vρ
cdv where c = c(x, y, z, t)

is a local concentration per unit volume. (The results that follows are also valid for a concen-

tration expressed per unit mass.). Assume that the tracer c is transported by the flow, that it

experiences diffusive processes dc and that it is reactive, i.e., it has sources and sinks πc such

has that its time evolution is:

Dc

Dt
≡ ∂c

∂t
+ u · ∇c = dc + πc. (3)

First, we express the rate of change of the integrated tracer content as the sum of the integral

of the local derivative and the contribution to the inventory from the inflation/deflation of the

volume:

dC

dt
≡ d

dt

∫
Vρ

cdv =

∫
Vρ

∂c

∂t
dv +

∫
∂Vρ

cuS · nds (4)

where uS is the velocity of the isopycnal surface and ∂Vρ is the surface delimiting V (here

∂Vρ = Sρ + OBρ). Importantly d
dt

is used instead of ∂
∂t

as there are no dependence on spatial

variables. In other words, it is the time derivative of a volume integral over a time-varying

reference volume and thus there are no assumption of steadiness for the water mass volume.

Assuming incompressibility, invoking Gauss’s theorem and using Eq. (4), the left hand terms

of the integral over the volume Vρ of Eq. (3) becomes

dC

dt
+

∫
Sρ

cur · nds+

∫
OBρ

cu · nds (5)

where ur is the velocity relative to the same surface (i.e., ur = u−uS) and ur = u across OBρ.

The quantity that we were looking for is the first term, i.e., the rate of change of the

extensive quantity C within the volume of water denser than ρ. The second term represents

the transport across the isopycnal surface in the framework moving with the isopycnal and the

last one consists in the transport at the open boundary.
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Importantly, the dianeutral transport of the tracer Φρ can be expressed in terms of the

ocean physics, i.e., the processes that act on transforming water masses, here divided into

mixing processes (dρ) and boundary forcing (fρ). Using ωρ = (dρ + fρ)|∇ρ|−1 (Eq. 1) as

dianeutral velocity relative the moving ∂Vρ, the transport of c per unit surface across a neutral

density surface is

φρ = cωρ = c(dρ + fρ)|∇ρ|−1. (6)

In fact, the tracer flux Φρ across the Sρ is

Φρ ≡
∫
∂Vρ

cωρds =

∫
∂Vρ

c(dρ + fρ)|∇ρ|−1ds

=
∂

∂ρ

∫
Vρ

cdρdv︸ ︷︷ ︸
Diffusive buoyancy processes

+
∂

∂ρ

∫
Vρ

cfρdv︸ ︷︷ ︸
Surface buoyancy processes

(7)

where the latter passage was made making use of a generalized form of Leibnitz’s theorem.

Importantly, the product in (6) is done locally on the isopycnal surface, i.e., before evaluating

the integrals.

Considering the equivalence ωρ ≡ ur · n and the expression above, the expression for the

rate of change of the extensive tracer value becomes

dC

dt︸︷︷︸
Tracer rate of change

= −

[
∂

∂ρ

∫
Vρ

cdρdv +
∂

∂ρ

∫
Vρ

cfρdv

]
︸ ︷︷ ︸

watermass transformation

−
∫
BVρ

cu · nds︸ ︷︷ ︸
Transport at boundary

+

∫
OSρ

φads︸ ︷︷ ︸
Air−sea exchange

+

∫
Vρ

dcdv︸ ︷︷ ︸
Diffusion

+

∫
Vρ

πcdv︸ ︷︷ ︸
Internal sources/sinks

. (8)

By considering the tendency terms for temperature and salinity4 and for the tracer field c

all the terms in Eq. (8) can be easily evaluated. In fact, the diapycnal transport is computed

4



by evaluating the derivative of the volume integral of the tendency terms of density using a

binning procedure4.

In the following we presents to extreme cases for easing the understanding of the general

value of the above expression:

1. In the case of steady state buoyancy processes and transient tracer dynamics we obtain

uS = 0. Therefore the rate of change of the tracer inventory (left hand term in Eq. 8) is

simply

dC

dt
≡

∫
Vρ

∂c

∂t
dv (9)

For the very idealised case of a purely advected tracer (a passive tracer with zero sources

and sinks and zero diffusion) from Eq. (8) we have that the rate of change of the tracer

inventory is equal to the convergence of the tracer produced by the diapycnal transport

at the (fixed) boundaries (i.e., by advection), as expected intuitively.

2. In the case in which the tracer is constant in space but the water mass volume changes

we have

dC

dt
≡

∫
∂Vρ

cuS · nds (10)

which can be expressed as the sum of the thermodynamical processes acting on the water

mass and the convergence of the lateral transport at the basin boundary. In the case of

still water (null velocity field), with no processes acting on the tracer evolution, while

thermodynamic processes are present the isopycnal surface changes in response to the

change in density and thus the tracer inventory naturally changes due to the volume

variation. This is typically the case of a sunny weather over a calm sea, where the surface

layers warm up while retaining their tracer content, de facto causing a net diapycnal

transport of the tracer. In this case Eq. (8) simply becomes

dC

dt
= − ∂

∂ρ

∫
Vρ

c(dρ + fρ)dv︸ ︷︷ ︸
Buoyancy processes

(11)
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i.e., the effect of the inflating/deflating of the isopycnal volume by thermodynamic pro-

cesses (e.g., heating or cabbeling) is fully retained (remind that beacuse of u = 0,

ur = −uS).
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2 Supplementary Figures
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Figure S1: WOCE-era distribution of Cant in the upper layers of the ocean from the
GLODAP product5, where WOA09-calculated densities have been used to coarse-grain the density
layers. a) Global water masses volumes; b) Global water masses inventories; c) MWML volumes; d)
MWML inventories; e) Volumes for the interior; f) Inventories for the interior. Here for MWML it is
intended the upper layer above the mixed layer maximum depth (derived from6).
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Figure S2: Cant inventories (binned in 0.1 kg/m3). a) values per water mass; b) cumulative
values per water mass. Colors code: GLODAP in red, TTD in orange, data from7 in green and the
numerical model in black.
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Figure S3: Cant transformation fluxes Φρ as predicted by the conceptual model (similarily
to Fig. 4b). Values in the plot (units are cm3/s, intended as transport of a generic tracer c) have to
be multiplied by 109 .
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