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Comparison	  of	  read	  pair	  clusters	  to	  deletions	  discovered	  by	  tiling-resolution	  array	  CGH	  	  
(a)	  Before	  population-‐genetic	  criteria	  were	  applied,	  the	  number	  of	  putative	  deletions	  from	  
sequence	  data	  (genomic	  clusters	  of	  aberrantly	  spaced	  read	  pairs,	  indicated	  by	  height	  of	  blue	  
bars)	  greatly	  exceeded	  a	  reasonable	  expectation	  given	  the	  number	  of	  deletions	  discovered	  
by	  tiling-‐resolution	  array	  CGH	  (red	  bars)	  in	  the	  same	  40	  genomes	  in	  the	  study	  by	  Conrad	  et	  
al.	  [1].	  The	  Conrad	  et	  al.	  study,	  which	  employed	  tiling-‐resolution	  arrays	  (42M	  probes),	  had	  ample	  
technical	  power	  to	  discover	  almost	  all	  deletions	  larger	  than	  10	  kb	  and	  the	  great	  
majority	  of	  deletions	  larger	  than	  1	  kb	  in	  these	  40	  genomes.	  This	  indicated	  (as	  was	  
ultimately	  confirmed)	  that	  a	  very	  large	  fraction	  of	  these	  aberrant	  read	  pair	  clusters	  (blue	  
bars)	  arise	  not	  from	  real	  deletions	  but	  rather	  from	  molecular	  and	  alignment	  artifacts.	  
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Example	  of	  an	  artifactual	  read	  pair	  cluster	  that	  does	  not	  arise	  from	  a	  true	  deletion	  
polymorphism	  
(a)	  Many	  aberrantly	  spaced	  read	  pairs	  map	  to	  the	  same	  locus	  on	  chr5.	  Green	  and	  red	  dots	  
indicate	  the	  MAQ-‐aligned	  positions	  of	  the	  left	  ends	  (green)	  and	  right	  ends	  (red)	  of	  each	  
sequence	  library	  insert.	  A	  segmental	  duplication	  is	  present	  at	  this	  locus	  (blue	  rectangles,	  
with	  the	  two	  copies	  labeled	  A	  and	  B).	  An	  alternative	  potential	  location	  for	  the	  right	  ends,	  
not	  selected	  by	  the	  aligner	  (but	  consistent	  with	  the	  insert	  size	  distribution	  of	  each	  library)	  is	  
shown	  in	  gray.	  
(b)	  The	  apparent	  misalignments	  appear	  to	  be	  caused	  by	  a	  indel	  (CA/–)	  polymorphism	  
(rs35979103,	  red)	  which	  is	  polymorphic	  in	  Copy	  A.	  Reads	  arising	  from	  the	  “–“	  allele	  of	  Copy	  A	  
are	  mis-‐aligned	  to	  copy	  B,	  because	  most	  current	  alignment	  algorithms	  impose	  large	  penalties	  for	  
gaps.	  The	  correct	  alignment	  for	  the	  reads	  can	  be	  verified	  in	  this	  case	  by	  noting	  mismatches	  at	  two	  
other	  sites	  (blue)	  that	  differ	  between	  Copy	  A	  and	  Copy	  B.	  
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GCTGACAAAACGCTGTTTTGGAAAGACTCATCTGGCAG CA CACACCAAGGCTGGTGGGGCA
GCTGACAAAACGCTGTTTTGGAAAGACTCATCTGGCAG -- CACACCAAGGCTGGTGGGGCA
GCTGACAAAACACTGTTTTGGAAAGACTCATCTGGCAG -- CACACCAAGGATGGTGGGGCA

gctgacaaaacgctgttttggaaagactcatccggcag    cacaccaa
 ctgacaaaacgctgttttggaaagactcatctggcag    cacaccaa
  tgacaaaacgctgttttggaaagactcatctggcag    cacaccaaggctg
         acgctgttttggaacgcctcatctggcag    cacacca
          cgctgttttgcaaaaactcatctggcag    cacaccaa
           gctgttttggaaagactcatctggcag    cacaccaag
             tgttttggaaagactcatctggcag    cacaccaaggctggtg
              gttttggaaagactcatctggcag    cacaccaaggctg

Copy A (ref)
Copy A (del)
Copy B
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Sensitivity	  and	  specificity	  of	  Genome	  STRiP	  and	  nine	  other	  deletion	  discovery	  algorithms	  
(a)	  Among	  ten	  algorithms	  used	  for	  deletion	  discovery	  in	  the	  1000	  Genomes	  Project	  [2]	  on	  
population-‐scale,	  low-‐coverage	  sequence	  data,	  Genome	  STRiP	  (blue)	  had	  the	  lowest	  false	  
discovery	  rate	  and	  simultaneously	  predicted	  the	  largest	  number	  of	  deletions	  that	  were	  
subsequently	  validated	  using	  either	  PCR,	  array	  data	  or	  local	  assembly	  of	  short	  reads.	  
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Sensitivity	  of	  Genome	  STRiP	  on	  rare	  and	  short	  deletions	  
(a)	  Sensitivity	  of	  Genome	  STRiP	  is	  shown	  as	  a	  function	  of	  both	  deletion	  length	  (x-‐axis)	  and	  
frequency	  (y-‐axis)	  compared	  to	  deletions	  from	  Conrad	  et	  al.	  [1].	  Sensitivity	  is	  reported	  both	  as	  a	  
decimal	  (top	  number)	  and	  as	  a	  fraction	  (bottom	  numbers).	  Frequency	  is	  measured	  in	  144	  genomes	  
overlapping	  between	  the	  two	  data	  sets;	  one	  base-‐pair	  overlap	  was	  used	  to	  calculate	  sensitivity.	  
(b)	  Sensitivity	  of	  deletion	  discovery	  for	  short	  deletions	  measured	  against	  a	  “gold	  standard”	  set	  [3,	  
4]	  that	  includes	  150	  shorter	  deletions	  ascertained	  from	  Sanger	  sequencing	  in	  sample	  NA12156	  
(blue	  line).	  Gray	  bars	  indicate	  the	  number	  of	  deletions	  in	  each	  bin	  (right	  hand	  scale).	  One	  base-‐pair	  
overlap	  was	  used	  to	  calculate	  sensitivity.	  
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Relationship	  between	  coverage	  and	  sensitivity	  for	  discovery	  of	  rare,	  singleton	  deletion	  
variants	  in	  a	  population	  by	  Genome	  STRiP	  
(a)	  The	  low-‐coverage	  genomes	  sequenced	  in	  the	  1000	  Genomes	  Project	  vary	  in	  their	  levels	  of	  
sequencing	  coverage,	  making	  it	  possible	  to	  evaluate	  the	  relationship	  between	  sensitivity	  and	  
coverage	  of	  each	  individual	  genome.	  	  We	  evaluated	  this	  relationship	  for	  the	  most	  challenging	  
application	  –	  the	  discovery	  of	  rare,	  singleton	  variants	  that	  are	  private	  to	  individual	  members	  of	  a	  
large	  sequenced	  cohort.	  	  Singleton	  variants	  were	  identified	  using	  genotype	  data	  from	  Conrad	  et	  al.	  
[1].	  	  Coverage	  is	  here	  parameterized	  as	  “span”	  coverage,	  the	  extent	  to	  which	  the	  genome	  is	  covered	  
by	  molecular	  inserts	  flanked	  by	  aligned	  sequence	  reads;	  span	  coverage	  is	  the	  coverage	  statistic	  
most	  predictive	  of	  sensitivity	  for	  SV	  discovery	  algorithms	  that	  make	  use	  of	  paired-‐end	  analysis.	  	  
(For	  algorithms	  that	  rely	  exclusively	  on	  read	  depth,	  the	  number	  of	  reads	  is	  most	  predictive	  of	  
power;	  for	  SNP	  discovery,	  traditional	  sequence	  coverage	  measures	  are	  most	  predictive	  of	  power.)	  	  
Across	  the	  1000	  Genomes	  samples,	  span	  coverage	  is	  approximately	  equal	  to	  sequence	  coverage	  
though	  it	  can	  be	  greater	  or	  less	  in	  individual	  genomes	  due	  to	  variation	  in	  the	  insert	  sizes	  of	  the	  
libraries	  sequenced.	  	  Gray	  bars	  indicate	  the	  fraction	  of	  singleton	  deletions	  in	  each	  bin.	  On	  the	  right	  
are	  sensitivities	  of	  seven	  algorithms	  for	  deletion	  discovery	  in	  deeply	  sequenced	  individual	  
genomes;	  the	  sensitivity	  measurements	  were	  made	  by	  the	  1000	  Genomes	  Project	  in	  the	  NA12878	  
genome	  and	  are	  reported	  separately	  in	  that	  study	  [2].	  	  False	  discovery	  rates	  (FDRs)	  of	  each	  
algorithm,	  as	  estimated	  by	  the	  1000	  Genomes	  Project	  validation	  analyses,	  are	  shown	  in	  
parentheses.	  
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Linkage	  disequilibrium	  between	  genotyped	  deletions	  and	  nearby	  SNPs	  
(a)	  Linkage	  disequilibrium	  (r2)	  between	  each	  deletion	  and	  the	  best	  Hapmap3	  tag	  SNP	  is	  measured	  
in	  each	  population	  and	  the	  deletions	  are	  binned	  by	  alternate	  allele	  frequency.	  Higher	  frequency	  
deletions	  are	  better	  tagged	  by	  Hapmap	  SNPs	  (blue	  line).	  The	  number	  of	  deletions	  in	  each	  frequency	  
bin	  is	  also	  shown	  (gray	  bars,	  right	  hand	  scale).	  
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Supplementary	  Table	  1	  
	  
Algorithms	  evaluated	  by	  the	  1000	  Genomes	  Project	  for	  discovery	  of	  deletion	  polymorphism	  in	  
population-‐scale,	  low-‐coverage	  sequence	  data.	  
	  
	  

Callset origin Algorithm name Method type 

Broad Genome STRiP Integrative 

Boston College Spanner Paired End 

WTSI N/A Paired End 

Leiden/WTSI Pindel Split Read 

UCSD Event-wise testing Read Depth 

WashU BreakDancer Paired End 

EMBL/Yale PEMer Paired End 

AECOM N/A Read Depth 

Yale N/A Split Read 

Yale CNVnator Read Depth 
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Supplementary	  Note	  

	  

In this supplementary note we provide additional details on the methods underlying Genome STRiP, 

including notes on data requirements and algorithm performance. 
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Calculation of most likely deletion length.	  To evaluate a cluster of read pairs with excessive spacing, we 

calculated the most likely deletion length (dopt) that would explain the spacing and location of the read 

pair alignments, based on their insert size distributions. 

 

where 

 

 

Here, C is the cluster of read pairs, ξp is the empirical insert size distribution of the library of molecules 

from which read pair p is drawn, and isize(p) is the nominal insert size of read pair p computed from the 

alignments to the reference genome. dopt maximizes the likelihood that all of the read pairs were drawn 

from their respective insert size distributions under the model of a deletion of length d. Note that dopt is 

the most likely value for the difference in length between the reference allele and the deletion allele and 

€ 

dopt = argmax
d

LC (d)

€ 

LC (d) = log(ξp (isize(p) − d))
p∈pairs(C )
∑
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so will over-estimate the length of missing reference sequence when non-template sequence is present on 

the deletion allele. This is illustrated in Fig. 2b, where dopt corresponds to the 316 base pair shift in the 

read pair spacing that is induced by the deletion and is the most likely value for the difference in length 

between the reference and alternate alleles. 

 

Calculation of incoherence metric. In Genome STRiP, read pair clustering entails an implicit degree of 

coherence between the read pairs in each cluster, but because we use a connected components algorithm 

for clustering, the resulting clusters will be pair-wise coherent but not necessarily coherent as a whole. 

We evaluate coherence for the cluster as a whole using an “incoherence” metric FC(dopt) where 

 

 

This metric evaluates the weight of the right tails of the insert size distributions under the model that the 

cluster arises from a deletion of length dopt. Coherent clusters should have few pairs where the predicted 

insert size under the model of a true deletion is in the extreme right tail, whereas for clusters that are a 

collection of read pairs randomly spaced across the genomic locus, this statistic should approximately 

follow the null distribution 

 

 

where u is uniformly distributed. 

 

Evaluation of candidate variants. Genome STRiP considers many potential structurally variant loci across 

the genome and generates as primary output a list of numerous candidate SVs along with annotations that 

must be used for filtering to select a final call set.  

 

€ 

FNULL =
1
N

log(u)
N
∑

€ 

FC (d) =
1
N

log( ξp (x)x=d

∞

∫ )
p∈pairs(C )
∑
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The filtering criteria we chose for the 1000 Genomes Project were based on an empirical evaluation of the 

candidate deletions using known positive control SVs and evidence from SNP genotyping at the 

candidate deletion loci and the properties of the 1000 Genomes data set. Our specific choices may not be 

optimal for other data sets, particularly as longer sequence reads increase the contribution of “split”, 

breakpoint-spanning reads to the heterogeneity and coherence tests. The optimal choice of thresholds will 

also depend upon the number of genomes sequenced and average depth of coverage in a study.  

 

In general, we recommend that the thresholds (for coherence, heterogeneity, substitution) be selected 

based on calibration to a gold-standard reference data set, aiming for efficient ascertainment of known 

variants and a realistic number of novel variants.  In future data sets, a far-larger number of gold-standard, 

positive-control SVs will be available and we expect it will be possible to choose selection criteria 

computationally by fitting to the profiles of known SVs, taking into account the sensitivity/specificity 

tradeoff most appropriate to the study being performed.  In the immediate future, an optimal set of SVs to 

use for this calibration is the set released in the 1000 Genomes Project pilot [2]. 

 

Evaluation of accuracy (specificity). As described in [2], experimental validation of SV discovery data 

sets was performed by a group of investigators for the 1000 Genomes Project using two approaches: (i) 

analysis of array-based copy-number data and (ii) PCR of a randomly selected subset of 100 putative 

deletions from each callset. 

 

The array-based analysis integrated data from three array platforms: Illumina 1M, Affymetrix 6.0, and 

Nimblegen (genome-wide custom CGH array with 5M probes), which were combined into a single data 

set (the “super-array”).  The array-based data have only partial power to definitively identify true 

deletions (especially small deletions that cross only one or two probes) but an FDR for a deletion “call 

set” can be estimated from an overall distribution of p-values.  Because array platforms differ in their 

quantitative response to underlying copy number, the following non-parametric test was used.  For each 
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probe, the 168 genomes were ranked in intensity. Each putative deletion consisted of a genomic segment 

(chr, start, end) and a list of genomes predicted to carry the putative deletion.  For each putatively deleted 

segment, intensity ranks were compared between two sets of genomes: (i) the genomes predicted to carry 

a deletion of that segment, and (ii) the genomes analyzed but not predicted to carry the deletion.  A 

Wilcoxon rank sum p-value (for the directional, one-sided comparison of these two sets of genomes) was 

calculated.  Since the null distribution of p-values (from randomly selected genomic loci) under this test 

was symmetrical and approximately uniform from 0 to 1 (as predicted by theory), an estimate of the false 

discovery rate is twice the area of the right half of the distribution (two times the fraction of p-values that 

are greater than 0.5). 

 

For PCR validation, a random set of 100 putative deletions was selected from each callset, flanking 

primers were designed, and a relevant genome tested for whether or not the size of the resulting PCR 

product matched expectation given the predicted deletion.  For almost all call sets that could be evaluated 

by both approaches (array-based and PCR), FDRs estimated using the two approaches agreed to within 

the statistical sampling noise expected from the PCR sampling strategy [2].  In the 1000 Genomes 

analysis, the array- and PCR-based FDRs were collapsed into a single, overall FDR estimate by applying 

the PCR-based FDR to all of the deletion calls for which the array data were uninformative.  The resulting 

FDRs are reported in detail in Supplementary Table 8 of [2]. 

 

Gaussian mixture model for read depth genotyping. To incorporate read depth information into the 

genotypes produced by Genome STRiP, we fit the counts of observed DNA fragments to a constrained 

Gaussian mixture model to estimate the copy number at each locus. 

 

The mixture model can be restricted to exactly three copy-number classes (copy number 0, 1 and 2, based 

on the model of a pure deletion), as was done for this study, or it can accommodate additional copy 

number classes. The model allows for differential sequencing depth of each sample by incorporating an 
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estimate, ei, of the number of reads expected at the locus for sample i corresponding to copy number one. 

We estimated the ei from the total genome-wide read depth and the effective length of the deletion locus 

(the number of confidently alignable bases). The expected means µij	   and variances νij for sample i in 

copy-number class j are modeled as 

 

 

where m1 and m2 are parameters to be fitted and the constant vectors a = <0,1,2,…> and b = <k,1,2,…> 

represent an assumed linear relationship between read depth and copy number. The value k is a constant 

that allows for non-zero variance in the copy number zero class, which makes the model more tolerant of 

reads mapped to homozygous deleted regions that can arise from mis-alignment, sequencing error or 

incorrectly estimated breakpoint boundaries. Using concordance with array-based genotypes11, we 

empirically estimated k=0.2 to provide optimal results. 

 

The model follows the typical form of a Gaussian mixture, with the addition of sample-specific means 

and variances, where the expectation that sample i is in copy number class j is 

 

 

Here xi is the number of observed reads for sample i, N (xi,	  µij,	  νij) is the normal distribution evaluated at 

xi with mean µij and variance νij, and wi represents the weight assigned to cluster j, corresponding to the 

copy-number frequencies. 

 

We estimated the model parameters m1, m2 and the wj using an expectation-maximization (EM) algorithm. 

We used three different sets of initial conditions, initializing both scaling factors m1 and m2 to 0.9, 1.0 and 

1.1, and initializing the values of wj to equal frequencies 1/C where C is the total number of copy-number 

classes in the model. Using the derivation of a standard EM for a Gaussian mixture model, but 

€ 

µi, j = m1⋅ a j ⋅ ei
ν i, j = m2 ⋅ b j ⋅ ei

  

€ 

zij =
w j ⋅ N (xi,µij ,ν ij )
w j ⋅ N (xi,µij ,ν ij )

j
∑
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substituting our definitions of µij and νij, we can derive expressions for computing updated values of the 

model parameters in the maximization step (here N is the total number of samples): 

 

 

 

 

 

 

 

The expectation and maximization steps are iterated alternately until convergence. 

 

The estimated model parameters are combined with the observed read depths to calculate the relative 

likelihood of each copy number class for genome i. The estimated model parameters also provide 

information about the quality of the genotyping. The wi provide estimates of the allele frequency of the 

locus (for unrelated samples, these can be tested for Hardy-Weinberg equilibrium) and the m1 parameter 

provides an indication of whether the normalization was effective (m1 should be close to 1). 

 

Data requirements.  For variant discovery, Genome STRiP uses as input aligned, paired-end sequence 

data (or a mixture of paired-end and single-end sequencing data) in BAM format 

(http://samtools.sourceforge.net/SAM1.pdf). For genotyping, Genome STRiP requires as input aligned, 

paired-end and/or single-end sequencing data in BAM format. The structural variants to be genotyped are 

supplied in VCF format (http://vcftools.sourceforge.net/specs.html). Because the VCF format can include 

a molecular description of the alternative alleles at each locus, a separate library of breakpoint sequences, 

as was used in the pilot phase of the 1000 Genomes Project, is no longer necessary. 

€ 

w j =
1
N

zij
i
∑

€ 

m1 =

zij ⋅ ei ⋅ a j

b ji, j
∑

zij ⋅ ei ⋅ a j
2

bji, j
∑

€ 

m2 =

zij (xi − µij )
2

ei ⋅ bji, j
∑

zij
i, j
∑
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Algorithm performance. Genome STRiP is designed to allow parallel computation on large compute 

clusters with modest memory requirements (4GB/node) and we have successfully run the algorithm using 

LSF (Load Sharing Facility by Platform Computing, www.platform.com). Although we have not done 

formal benchmarking on the runtime performance of Genome STRiP, we estimate that a full analysis of 

the 1000 Genomes pilot data (168 individuals at roughly 4x sequencing coverage), including data 

preprocessing, BWA realignment, deletion discovery and genotyping of approximately 22,000 deletions, 

required roughly 600 CPU-hours in total, spread across the available CPUs on our compute cluster. 
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