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Comparison	
  of	
  read	
  pair	
  clusters	
  to	
  deletions	
  discovered	
  by	
  tiling-­resolution	
  array	
  CGH	
  	
  
(a)	
  Before	
  population-­‐genetic	
  criteria	
  were	
  applied,	
  the	
  number	
  of	
  putative	
  deletions	
  from	
  
sequence	
  data	
  (genomic	
  clusters	
  of	
  aberrantly	
  spaced	
  read	
  pairs,	
  indicated	
  by	
  height	
  of	
  blue	
  
bars)	
  greatly	
  exceeded	
  a	
  reasonable	
  expectation	
  given	
  the	
  number	
  of	
  deletions	
  discovered	
  
by	
  tiling-­‐resolution	
  array	
  CGH	
  (red	
  bars)	
  in	
  the	
  same	
  40	
  genomes	
  in	
  the	
  study	
  by	
  Conrad	
  et	
  
al.	
  [1].	
  The	
  Conrad	
  et	
  al.	
  study,	
  which	
  employed	
  tiling-­‐resolution	
  arrays	
  (42M	
  probes),	
  had	
  ample	
  
technical	
  power	
  to	
  discover	
  almost	
  all	
  deletions	
  larger	
  than	
  10	
  kb	
  and	
  the	
  great	
  
majority	
  of	
  deletions	
  larger	
  than	
  1	
  kb	
  in	
  these	
  40	
  genomes.	
  This	
  indicated	
  (as	
  was	
  
ultimately	
  confirmed)	
  that	
  a	
  very	
  large	
  fraction	
  of	
  these	
  aberrant	
  read	
  pair	
  clusters	
  (blue	
  
bars)	
  arise	
  not	
  from	
  real	
  deletions	
  but	
  rather	
  from	
  molecular	
  and	
  alignment	
  artifacts.	
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Example	
  of	
  an	
  artifactual	
  read	
  pair	
  cluster	
  that	
  does	
  not	
  arise	
  from	
  a	
  true	
  deletion	
  
polymorphism	
  
(a)	
  Many	
  aberrantly	
  spaced	
  read	
  pairs	
  map	
  to	
  the	
  same	
  locus	
  on	
  chr5.	
  Green	
  and	
  red	
  dots	
  
indicate	
  the	
  MAQ-­‐aligned	
  positions	
  of	
  the	
  left	
  ends	
  (green)	
  and	
  right	
  ends	
  (red)	
  of	
  each	
  
sequence	
  library	
  insert.	
  A	
  segmental	
  duplication	
  is	
  present	
  at	
  this	
  locus	
  (blue	
  rectangles,	
  
with	
  the	
  two	
  copies	
  labeled	
  A	
  and	
  B).	
  An	
  alternative	
  potential	
  location	
  for	
  the	
  right	
  ends,	
  
not	
  selected	
  by	
  the	
  aligner	
  (but	
  consistent	
  with	
  the	
  insert	
  size	
  distribution	
  of	
  each	
  library)	
  is	
  
shown	
  in	
  gray.	
  
(b)	
  The	
  apparent	
  misalignments	
  appear	
  to	
  be	
  caused	
  by	
  a	
  indel	
  (CA/–)	
  polymorphism	
  
(rs35979103,	
  red)	
  which	
  is	
  polymorphic	
  in	
  Copy	
  A.	
  Reads	
  arising	
  from	
  the	
  “–“	
  allele	
  of	
  Copy	
  A	
  
are	
  mis-­‐aligned	
  to	
  copy	
  B,	
  because	
  most	
  current	
  alignment	
  algorithms	
  impose	
  large	
  penalties	
  for	
  
gaps.	
  The	
  correct	
  alignment	
  for	
  the	
  reads	
  can	
  be	
  verified	
  in	
  this	
  case	
  by	
  noting	
  mismatches	
  at	
  two	
  
other	
  sites	
  (blue)	
  that	
  differ	
  between	
  Copy	
  A	
  and	
  Copy	
  B.	
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GCTGACAAAACGCTGTTTTGGAAAGACTCATCTGGCAG CA CACACCAAGGCTGGTGGGGCA
GCTGACAAAACGCTGTTTTGGAAAGACTCATCTGGCAG -- CACACCAAGGCTGGTGGGGCA
GCTGACAAAACACTGTTTTGGAAAGACTCATCTGGCAG -- CACACCAAGGATGGTGGGGCA

gctgacaaaacgctgttttggaaagactcatccggcag    cacaccaa
 ctgacaaaacgctgttttggaaagactcatctggcag    cacaccaa
  tgacaaaacgctgttttggaaagactcatctggcag    cacaccaaggctg
         acgctgttttggaacgcctcatctggcag    cacacca
          cgctgttttgcaaaaactcatctggcag    cacaccaa
           gctgttttggaaagactcatctggcag    cacaccaag
             tgttttggaaagactcatctggcag    cacaccaaggctggtg
              gttttggaaagactcatctggcag    cacaccaaggctg

Copy A (ref)
Copy A (del)
Copy B
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Sensitivity	
  and	
  specificity	
  of	
  Genome	
  STRiP	
  and	
  nine	
  other	
  deletion	
  discovery	
  algorithms	
  
(a)	
  Among	
  ten	
  algorithms	
  used	
  for	
  deletion	
  discovery	
  in	
  the	
  1000	
  Genomes	
  Project	
  [2]	
  on	
  
population-­‐scale,	
  low-­‐coverage	
  sequence	
  data,	
  Genome	
  STRiP	
  (blue)	
  had	
  the	
  lowest	
  false	
  
discovery	
  rate	
  and	
  simultaneously	
  predicted	
  the	
  largest	
  number	
  of	
  deletions	
  that	
  were	
  
subsequently	
  validated	
  using	
  either	
  PCR,	
  array	
  data	
  or	
  local	
  assembly	
  of	
  short	
  reads.	
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Sensitivity	
  of	
  Genome	
  STRiP	
  on	
  rare	
  and	
  short	
  deletions	
  
(a)	
  Sensitivity	
  of	
  Genome	
  STRiP	
  is	
  shown	
  as	
  a	
  function	
  of	
  both	
  deletion	
  length	
  (x-­‐axis)	
  and	
  
frequency	
  (y-­‐axis)	
  compared	
  to	
  deletions	
  from	
  Conrad	
  et	
  al.	
  [1].	
  Sensitivity	
  is	
  reported	
  both	
  as	
  a	
  
decimal	
  (top	
  number)	
  and	
  as	
  a	
  fraction	
  (bottom	
  numbers).	
  Frequency	
  is	
  measured	
  in	
  144	
  genomes	
  
overlapping	
  between	
  the	
  two	
  data	
  sets;	
  one	
  base-­‐pair	
  overlap	
  was	
  used	
  to	
  calculate	
  sensitivity.	
  
(b)	
  Sensitivity	
  of	
  deletion	
  discovery	
  for	
  short	
  deletions	
  measured	
  against	
  a	
  “gold	
  standard”	
  set	
  [3,	
  
4]	
  that	
  includes	
  150	
  shorter	
  deletions	
  ascertained	
  from	
  Sanger	
  sequencing	
  in	
  sample	
  NA12156	
  
(blue	
  line).	
  Gray	
  bars	
  indicate	
  the	
  number	
  of	
  deletions	
  in	
  each	
  bin	
  (right	
  hand	
  scale).	
  One	
  base-­‐pair	
  
overlap	
  was	
  used	
  to	
  calculate	
  sensitivity.	
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Relationship	
  between	
  coverage	
  and	
  sensitivity	
  for	
  discovery	
  of	
  rare,	
  singleton	
  deletion	
  
variants	
  in	
  a	
  population	
  by	
  Genome	
  STRiP	
  
(a)	
  The	
  low-­‐coverage	
  genomes	
  sequenced	
  in	
  the	
  1000	
  Genomes	
  Project	
  vary	
  in	
  their	
  levels	
  of	
  
sequencing	
  coverage,	
  making	
  it	
  possible	
  to	
  evaluate	
  the	
  relationship	
  between	
  sensitivity	
  and	
  
coverage	
  of	
  each	
  individual	
  genome.	
  	
  We	
  evaluated	
  this	
  relationship	
  for	
  the	
  most	
  challenging	
  
application	
  –	
  the	
  discovery	
  of	
  rare,	
  singleton	
  variants	
  that	
  are	
  private	
  to	
  individual	
  members	
  of	
  a	
  
large	
  sequenced	
  cohort.	
  	
  Singleton	
  variants	
  were	
  identified	
  using	
  genotype	
  data	
  from	
  Conrad	
  et	
  al.	
  
[1].	
  	
  Coverage	
  is	
  here	
  parameterized	
  as	
  “span”	
  coverage,	
  the	
  extent	
  to	
  which	
  the	
  genome	
  is	
  covered	
  
by	
  molecular	
  inserts	
  flanked	
  by	
  aligned	
  sequence	
  reads;	
  span	
  coverage	
  is	
  the	
  coverage	
  statistic	
  
most	
  predictive	
  of	
  sensitivity	
  for	
  SV	
  discovery	
  algorithms	
  that	
  make	
  use	
  of	
  paired-­‐end	
  analysis.	
  	
  
(For	
  algorithms	
  that	
  rely	
  exclusively	
  on	
  read	
  depth,	
  the	
  number	
  of	
  reads	
  is	
  most	
  predictive	
  of	
  
power;	
  for	
  SNP	
  discovery,	
  traditional	
  sequence	
  coverage	
  measures	
  are	
  most	
  predictive	
  of	
  power.)	
  	
  
Across	
  the	
  1000	
  Genomes	
  samples,	
  span	
  coverage	
  is	
  approximately	
  equal	
  to	
  sequence	
  coverage	
  
though	
  it	
  can	
  be	
  greater	
  or	
  less	
  in	
  individual	
  genomes	
  due	
  to	
  variation	
  in	
  the	
  insert	
  sizes	
  of	
  the	
  
libraries	
  sequenced.	
  	
  Gray	
  bars	
  indicate	
  the	
  fraction	
  of	
  singleton	
  deletions	
  in	
  each	
  bin.	
  On	
  the	
  right	
  
are	
  sensitivities	
  of	
  seven	
  algorithms	
  for	
  deletion	
  discovery	
  in	
  deeply	
  sequenced	
  individual	
  
genomes;	
  the	
  sensitivity	
  measurements	
  were	
  made	
  by	
  the	
  1000	
  Genomes	
  Project	
  in	
  the	
  NA12878	
  
genome	
  and	
  are	
  reported	
  separately	
  in	
  that	
  study	
  [2].	
  	
  False	
  discovery	
  rates	
  (FDRs)	
  of	
  each	
  
algorithm,	
  as	
  estimated	
  by	
  the	
  1000	
  Genomes	
  Project	
  validation	
  analyses,	
  are	
  shown	
  in	
  
parentheses.	
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Linkage	
  disequilibrium	
  between	
  genotyped	
  deletions	
  and	
  nearby	
  SNPs	
  
(a)	
  Linkage	
  disequilibrium	
  (r2)	
  between	
  each	
  deletion	
  and	
  the	
  best	
  Hapmap3	
  tag	
  SNP	
  is	
  measured	
  
in	
  each	
  population	
  and	
  the	
  deletions	
  are	
  binned	
  by	
  alternate	
  allele	
  frequency.	
  Higher	
  frequency	
  
deletions	
  are	
  better	
  tagged	
  by	
  Hapmap	
  SNPs	
  (blue	
  line).	
  The	
  number	
  of	
  deletions	
  in	
  each	
  frequency	
  
bin	
  is	
  also	
  shown	
  (gray	
  bars,	
  right	
  hand	
  scale).	
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  Table	
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Algorithms	
  evaluated	
  by	
  the	
  1000	
  Genomes	
  Project	
  for	
  discovery	
  of	
  deletion	
  polymorphism	
  in	
  
population-­‐scale,	
  low-­‐coverage	
  sequence	
  data.	
  
	
  
	
  

Callset origin Algorithm name Method type 

Broad Genome STRiP Integrative 

Boston College Spanner Paired End 

WTSI N/A Paired End 

Leiden/WTSI Pindel Split Read 

UCSD Event-wise testing Read Depth 

WashU BreakDancer Paired End 

EMBL/Yale PEMer Paired End 

AECOM N/A Read Depth 

Yale N/A Split Read 

Yale CNVnator Read Depth 
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Supplementary	
  Note	
  

	
  

In this supplementary note we provide additional details on the methods underlying Genome STRiP, 

including notes on data requirements and algorithm performance. 
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Calculation of most likely deletion length.	
  To evaluate a cluster of read pairs with excessive spacing, we 

calculated the most likely deletion length (dopt) that would explain the spacing and location of the read 

pair alignments, based on their insert size distributions. 

 

where 

 

 

Here, C is the cluster of read pairs, ξp is the empirical insert size distribution of the library of molecules 

from which read pair p is drawn, and isize(p) is the nominal insert size of read pair p computed from the 

alignments to the reference genome. dopt maximizes the likelihood that all of the read pairs were drawn 

from their respective insert size distributions under the model of a deletion of length d. Note that dopt is 

the most likely value for the difference in length between the reference allele and the deletion allele and 

€ 

dopt = argmax
d

LC (d)

€ 

LC (d) = log(ξp (isize(p) − d))
p∈pairs(C )
∑
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so will over-estimate the length of missing reference sequence when non-template sequence is present on 

the deletion allele. This is illustrated in Fig. 2b, where dopt corresponds to the 316 base pair shift in the 

read pair spacing that is induced by the deletion and is the most likely value for the difference in length 

between the reference and alternate alleles. 

 

Calculation of incoherence metric. In Genome STRiP, read pair clustering entails an implicit degree of 

coherence between the read pairs in each cluster, but because we use a connected components algorithm 

for clustering, the resulting clusters will be pair-wise coherent but not necessarily coherent as a whole. 

We evaluate coherence for the cluster as a whole using an “incoherence” metric FC(dopt) where 

 

 

This metric evaluates the weight of the right tails of the insert size distributions under the model that the 

cluster arises from a deletion of length dopt. Coherent clusters should have few pairs where the predicted 

insert size under the model of a true deletion is in the extreme right tail, whereas for clusters that are a 

collection of read pairs randomly spaced across the genomic locus, this statistic should approximately 

follow the null distribution 

 

 

where u is uniformly distributed. 

 

Evaluation of candidate variants. Genome STRiP considers many potential structurally variant loci across 

the genome and generates as primary output a list of numerous candidate SVs along with annotations that 

must be used for filtering to select a final call set.  

 

€ 

FNULL =
1
N

log(u)
N
∑

€ 

FC (d) =
1
N

log( ξp (x)x=d

∞

∫ )
p∈pairs(C )
∑
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The filtering criteria we chose for the 1000 Genomes Project were based on an empirical evaluation of the 

candidate deletions using known positive control SVs and evidence from SNP genotyping at the 

candidate deletion loci and the properties of the 1000 Genomes data set. Our specific choices may not be 

optimal for other data sets, particularly as longer sequence reads increase the contribution of “split”, 

breakpoint-spanning reads to the heterogeneity and coherence tests. The optimal choice of thresholds will 

also depend upon the number of genomes sequenced and average depth of coverage in a study.  

 

In general, we recommend that the thresholds (for coherence, heterogeneity, substitution) be selected 

based on calibration to a gold-standard reference data set, aiming for efficient ascertainment of known 

variants and a realistic number of novel variants.  In future data sets, a far-larger number of gold-standard, 

positive-control SVs will be available and we expect it will be possible to choose selection criteria 

computationally by fitting to the profiles of known SVs, taking into account the sensitivity/specificity 

tradeoff most appropriate to the study being performed.  In the immediate future, an optimal set of SVs to 

use for this calibration is the set released in the 1000 Genomes Project pilot [2]. 

 

Evaluation of accuracy (specificity). As described in [2], experimental validation of SV discovery data 

sets was performed by a group of investigators for the 1000 Genomes Project using two approaches: (i) 

analysis of array-based copy-number data and (ii) PCR of a randomly selected subset of 100 putative 

deletions from each callset. 

 

The array-based analysis integrated data from three array platforms: Illumina 1M, Affymetrix 6.0, and 

Nimblegen (genome-wide custom CGH array with 5M probes), which were combined into a single data 

set (the “super-array”).  The array-based data have only partial power to definitively identify true 

deletions (especially small deletions that cross only one or two probes) but an FDR for a deletion “call 

set” can be estimated from an overall distribution of p-values.  Because array platforms differ in their 

quantitative response to underlying copy number, the following non-parametric test was used.  For each 
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probe, the 168 genomes were ranked in intensity. Each putative deletion consisted of a genomic segment 

(chr, start, end) and a list of genomes predicted to carry the putative deletion.  For each putatively deleted 

segment, intensity ranks were compared between two sets of genomes: (i) the genomes predicted to carry 

a deletion of that segment, and (ii) the genomes analyzed but not predicted to carry the deletion.  A 

Wilcoxon rank sum p-value (for the directional, one-sided comparison of these two sets of genomes) was 

calculated.  Since the null distribution of p-values (from randomly selected genomic loci) under this test 

was symmetrical and approximately uniform from 0 to 1 (as predicted by theory), an estimate of the false 

discovery rate is twice the area of the right half of the distribution (two times the fraction of p-values that 

are greater than 0.5). 

 

For PCR validation, a random set of 100 putative deletions was selected from each callset, flanking 

primers were designed, and a relevant genome tested for whether or not the size of the resulting PCR 

product matched expectation given the predicted deletion.  For almost all call sets that could be evaluated 

by both approaches (array-based and PCR), FDRs estimated using the two approaches agreed to within 

the statistical sampling noise expected from the PCR sampling strategy [2].  In the 1000 Genomes 

analysis, the array- and PCR-based FDRs were collapsed into a single, overall FDR estimate by applying 

the PCR-based FDR to all of the deletion calls for which the array data were uninformative.  The resulting 

FDRs are reported in detail in Supplementary Table 8 of [2]. 

 

Gaussian mixture model for read depth genotyping. To incorporate read depth information into the 

genotypes produced by Genome STRiP, we fit the counts of observed DNA fragments to a constrained 

Gaussian mixture model to estimate the copy number at each locus. 

 

The mixture model can be restricted to exactly three copy-number classes (copy number 0, 1 and 2, based 

on the model of a pure deletion), as was done for this study, or it can accommodate additional copy 

number classes. The model allows for differential sequencing depth of each sample by incorporating an 
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estimate, ei, of the number of reads expected at the locus for sample i corresponding to copy number one. 

We estimated the ei from the total genome-wide read depth and the effective length of the deletion locus 

(the number of confidently alignable bases). The expected means µij	
   and variances νij for sample i in 

copy-number class j are modeled as 

 

 

where m1 and m2 are parameters to be fitted and the constant vectors a = <0,1,2,…> and b = <k,1,2,…> 

represent an assumed linear relationship between read depth and copy number. The value k is a constant 

that allows for non-zero variance in the copy number zero class, which makes the model more tolerant of 

reads mapped to homozygous deleted regions that can arise from mis-alignment, sequencing error or 

incorrectly estimated breakpoint boundaries. Using concordance with array-based genotypes11, we 

empirically estimated k=0.2 to provide optimal results. 

 

The model follows the typical form of a Gaussian mixture, with the addition of sample-specific means 

and variances, where the expectation that sample i is in copy number class j is 

 

 

Here xi is the number of observed reads for sample i, N (xi,	
  µij,	
  νij) is the normal distribution evaluated at 

xi with mean µij and variance νij, and wi represents the weight assigned to cluster j, corresponding to the 

copy-number frequencies. 

 

We estimated the model parameters m1, m2 and the wj using an expectation-maximization (EM) algorithm. 

We used three different sets of initial conditions, initializing both scaling factors m1 and m2 to 0.9, 1.0 and 

1.1, and initializing the values of wj to equal frequencies 1/C where C is the total number of copy-number 

classes in the model. Using the derivation of a standard EM for a Gaussian mixture model, but 

€ 

µi, j = m1⋅ a j ⋅ ei
ν i, j = m2 ⋅ b j ⋅ ei

  

€ 

zij =
w j ⋅ N (xi,µij ,ν ij )
w j ⋅ N (xi,µij ,ν ij )

j
∑
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substituting our definitions of µij and νij, we can derive expressions for computing updated values of the 

model parameters in the maximization step (here N is the total number of samples): 

 

 

 

 

 

 

 

The expectation and maximization steps are iterated alternately until convergence. 

 

The estimated model parameters are combined with the observed read depths to calculate the relative 

likelihood of each copy number class for genome i. The estimated model parameters also provide 

information about the quality of the genotyping. The wi provide estimates of the allele frequency of the 

locus (for unrelated samples, these can be tested for Hardy-Weinberg equilibrium) and the m1 parameter 

provides an indication of whether the normalization was effective (m1 should be close to 1). 

 

Data requirements.  For variant discovery, Genome STRiP uses as input aligned, paired-end sequence 

data (or a mixture of paired-end and single-end sequencing data) in BAM format 

(http://samtools.sourceforge.net/SAM1.pdf). For genotyping, Genome STRiP requires as input aligned, 

paired-end and/or single-end sequencing data in BAM format. The structural variants to be genotyped are 

supplied in VCF format (http://vcftools.sourceforge.net/specs.html). Because the VCF format can include 

a molecular description of the alternative alleles at each locus, a separate library of breakpoint sequences, 

as was used in the pilot phase of the 1000 Genomes Project, is no longer necessary. 

€ 

w j =
1
N

zij
i
∑

€ 

m1 =

zij ⋅ ei ⋅ a j

b ji, j
∑

zij ⋅ ei ⋅ a j
2

bji, j
∑

€ 

m2 =

zij (xi − µij )
2

ei ⋅ bji, j
∑

zij
i, j
∑
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Algorithm performance. Genome STRiP is designed to allow parallel computation on large compute 

clusters with modest memory requirements (4GB/node) and we have successfully run the algorithm using 

LSF (Load Sharing Facility by Platform Computing, www.platform.com). Although we have not done 

formal benchmarking on the runtime performance of Genome STRiP, we estimate that a full analysis of 

the 1000 Genomes pilot data (168 individuals at roughly 4x sequencing coverage), including data 

preprocessing, BWA realignment, deletion discovery and genotyping of approximately 22,000 deletions, 

required roughly 600 CPU-hours in total, spread across the available CPUs on our compute cluster. 
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