Inhibitor (Target)	Concentration (µM)	Open lumen (%)	Multi lumens (%)	No lumen (%)	Small (%)	Inverted (%)
No treatment		81.92±3.71	NS	18.08±3.71	NS	NS
ΡΙ-103 (p110α/β/γ/δ)	0.1	76.01±2.7	6.73±2.82	15.8±4.3	1.45±1.29	NS
	0.5	74.72±2.68	4.76±2.03	18.47±4.04	2.05±0.96	NS
	1	53.8±4.93	5.04±2.88	24.12±8.94	17.04±3.85	NS
	5	25.75±4.16	4.93±3.39	22.66±5.31	46.66±4.22	NS
	10	6.97±3.43	3.45±2.01	27.26±5.08	62.33±5.75	NS
AS-605240 (p110γ)	0.1	77.28±7.75	22.72±7.75	NS	NS	NS
	0.5	67.86±6.3	22.21±7.76	NS	9.93±4.69	NS
	1	59.58±6.54	19.98±4.92	NS	20.44±6.71	NS
	5	20.23 ± 3.52	18.94±3.75	12.82±4.28	48.01±8.06	NS
	10	8.56±5.43	15.05±5.45	39.72±5.57	36.68±5.6	NS
TGX115 (p110β/δ)	0.1	70.94±6.24	6.03±2.05	21.55±5.1	NS	1.49±0.14
	0.5	59.77±5.58	10.03±2.10	27.13±5.14	NS	3.07±1.95
	1	45.61±3.62	19.54±4.77	31.19±5.59	NS	3.66±1.49
	5	37.34±6.95	18.33±4.89	39.46±9.73	NS	4.87±2.03
	10	32.87±8.74	12.62±3.53	48±9.75	NS	6.52±2.43
IC87114 (p110δ)	0.1	71.5±5.58	NS	25.36±4.42	NS	3.14±2.07
	0.5	63.6±2.76	NS	32.73±3.84	NS	3.67±2.26
	1	69.07±9.05	NS	11.86±3.27	NS	19.07±6.92
	5	56.17±4.95	NS	23.33±5.97	NS	20.5±3.8
	10	11.67±5.69	NS	54.02±8.3	NS	34.31±6.34
CAL-101 (p110δ)	0.1	81.58±3.57	NS	14.8±4.38	NS	3.63±2.37
	0.5	79.2±5.81	NS	16.91±6.09	NS	3.9±2.55
	1	63.86±6.48	NS	22.56±7.35	NS	13.58±3.07
	5	60.33±7.16	NS	19.33±5.91	NS	20.33±4.03
	10	35.38±5.42	NS	27.49±6.56	NS	37.13±5.11

Supplementary Figure 1 | Effect of isoform-selective inhibitors of PI3K on apico-basal polarity of MDCK cells.

MDCK cells were plated on Matrigel to form cysts, 24 h after plating cells were treated for 72 h with different concentrations (from 0.1 to 10 μ M) of isoform-selective inhibitors of PI3K: PI-103, AS- 605240, TGX115, IC87114 and CAL-101. The images of cysts presented different phenotypes (Normal lumen, multi lumen, no lumen, small cysts with no lumen, and inverted polarity) were presented in Fig.1. The percentage ± s.e.m of each of phenotype as a function of the concentration of inhibitor is presented in the figure. The data were calculated from 3 independent experiments. NS = not seen.

Supplementary Figure 2 | p110δ expression in MDCK cells.

(a) Immunoblot analysis of p110 δ in MDCK and HeLa cells lysates using p110 δ specific antibody (sc7176). 50 and 100 µg or 50 and 25 µg of lysate from MDCK and HeLa cells respectively were loaded on the gel and actin was used as a loading control. (b) qRT-PCR analysis of p110 δ mRNA expression in MDCK and HeLa cells. (c) Products of RT-PCR in (b) were collected and migrated in agarose gel electrophoresis. The gels were visualized on a U.V. trans-illuminator by staining the DNA with a fluorescent dye (ethidium bromide). The DNA molecular weight markers were indicated at both side of the photograph. (d) The product of qRT-PCR from MDCK cells (in b) was purified and sequenced. The alignment of the obtained sequence with the canine p110 δ sequence in database (XM_546764.4) was shown. (e) Total RNA from MDCK cells was analyzed by qRT-PCR for p110 δ , p110 α , p110 β and p110 γ expression and normalized to GAPDH (see Methods).

Supplementary Figure 3 | Different staining of p1106 in MDCK cysts.

MDCK cells were transfected or not (Ctrl) with UT-p110 δ or Myc 2-p110 δ cDNAs (see methods) and plated on Matrigel to form cysts and stained for p110 δ (green), actin (red) and Hoechst (blue). Two different p110 δ specific antibodies (sc7176 and ab32401) were used for p110 δ staining.

Supplementary Figure 4 | p1108 regulates PtdIns(3,4,5)P₃ membrane localization

MDCK cells were transfected or not (Ctrl) with 1 µg of Myc 1-p110 δ cDNA and p110 δ was analyzed (**a**) either by immunoblot, using anti p110 δ (sc7176) and anti Myc. Actin is used as loading control, (**b**) or by immunofluorescence on cysts using anti p110 δ (ab32401) or Myc (green), actin (red) and Hoechst (blue). (**c**) Cysts from MDCK cells transfected or not (Ctrl) with 1 µg of Myc 2-p110 δ cDNA were stained for p110 δ (green) using anti p110 δ (ab32401), β -catenin (red) and Hoechst (blue). (**b**, **c**) Single confocal section through the middle of cyst is shown and the scale bar represents 10 µm. (**d**) Analysis of PtdIns(3,4,5)P₃ (green), actin (red) and Hoechst (blue) in MDCK cysts treated or not for 72 h with IC87114 at 10 µM. A higher magnification is presented in the right column. (**e**) Signal of PtdIns(3,4,5)P₃ in an individual cell and the plot of distribution were analyzed as described in Fig; 4b. Values from analyzed of 20 cells were represented in histogram as mean ± s.e.m. Triple asterisks indicate student t test *P*<0.0001.

Supplementary Figure 5 | p110δ regulates Rac1 activation.

MDCK cells were plated on Matrigel to form cyst and treated or not 24 h after plating with IC87114 (10 μ M) and grown for another 48 and 72 h with a daily change of the medium and the lysates of cells were used to quantify Rac1 activation using G-LISA Biochem Kit (luminescence based). Intensity was measured using luminometer and normalized to data from 48 h of culture with no treatment. Values from three independent experiments are expressed as mean \pm s.e.m. Asterisk indicates student t test *P*<0.05.

Supplementary Figure 6 | p110δ expression doesn't affect the phosphorylation status of Akt.

(a) MDCK cells grown on plastic dishes were transfected or not (Ctrl) with 100 pmol of three different si p110 δ (si1, si2, si3), and with Myc 1-p110 δ cDNA. 48h after transfection, cells were treated or not for 15 min with EGF (100 ng/ml) and analyzed by immunoblot for pAkt and Akt. Actin is used as loading control. The densitometry analysis was normalized to actin (b) and to total Akt (c), and data from 2 independent experiments were represented as arbitrary unit (A.U.) in the histograms. Values from three independent experiments are expressed as mean \pm s.e.m.

а

Supplementary Figure 7 | ZO-1 staining in p110δ depleted and invert polarized cysts.

MDCK cells transfected or not with 100 pmol of p110 δ si3 RNA were grown in Matrigel for 4 days to form cysts and then stained for β -catenin (green), ZO-1 (red) and Hoechst (blue) as indicated on the pictures. A confocal section through the middle of cyst is shown. A higher magnification of the data in the orange square is presented in the right panels. The scale bar represents 10 μ m.

Supplementary Figure 8 | Effect of p110 δ on β 1, α 2 and α 5 integrins.

MDCK cells transfected or not with 100 pmol of p110 δ si3 RNA or treated with CAL-101 were grown in Matrigel for 4 days to form cysts, then fixed and stained for β 1, α 2 and α 5 integrins (red) and Hoechst (blue) as indicated on the pictures. A confocal section through the middle of cyst is shown. The scale bar represents 10 μ m.

Supplementary Figure 9 | Paxillin and vinculin are partly colocalized with $p110\delta$

(a) MDCK cells transfected with 1 μ g of myc 2-p110 δ cDNA were grown on Matrigel for 4 days to form cysts, then fixed and stained for Paxillin (green), p110 δ (red) using a p110 δ -specific antibody (ab32401) and Hoechst (blue) as indicated on the pictures. A confocal section through the middle of cyst is shown. A higher magnification of the data in the orange square is presented in the right column. The scale bar represents 10 μ m. (b) same as (a) for vinculin staining (green).

Supplementary Fig. 4a Myc 1-p110ō Ctrl Myc 1-p110ō Ctrl Myc 1-p110ō Ctrl 250-50 150-250 p110δ 50 100-150 00 Myc 75 100 75 50 50 Actin 37 37 25 25 25 20 . 20 20 Supplementary Fig. 6 EGF EGF -+ + Ctrl si3 Ctrl si3 Ctrl^{Myc1-} p110ō CtrMyc1-p110ō 150 50 Ctrl si1 Ctrl si1 Ctrl si2 Ctrl si2 100 75 50 00 pAkt 50pAkt ---50 37-37 25 EGF EGF + + Ctrl si3 Ctrl si3 Ctrl^{Myc1-} p110ō CtrMyc1-p110ō Ctrl si1 Ctrl si1 Ctrl si2 Ctrl si2 50 50 250 00 50 00 Akt 50 Akt -50 25 EGF + + -1994 -EGF + -+ Ctrl si3 Ctrl si3 Ctrl^{Myc1-}p110δ Ctrl^{Myc1-} p110δ Ctrl si1 Ctrl si1 Ctrl si2 Ctrl si2 250 250 150 150 100 75 100 75 50 50 Actin Actin 37-37 25 25

Supplementary Figure 10 continued

Supplementary Figure 10 continued

Supplementary Figure 10: Uncropped images of immunoblot

Red box indicated the cropped part included in the corresponding figure.

Supplementary Table 1

For RT-PCR the following primers are used:

Sequence (5' to 3')

Human p1108 forward:	TGCCAAACCACCTCCCATTCCT
Human p1108 reverse:	CATCTCGTTGCCGTGGAAAAGC
Canine p110δ forward:	CACCAAACCACCCCCATTCC
Canine p110δ reverse:	CGTCTCATTGCCGTGGAAAAGC
Canine p110 α forward:	GAAGCACCTAAATAGGCAAGTTG
Canine p110 α reverse:	GAGCATCCATGAAATCTGGTCGC
Canine p110 β forward:	GGCATGGGTAAATACGATGG
Canine p110 β reverse:	GCAAAGCTGTTGCATTTTCA
Canine p110 γ forward:	TTCCTGTGCTGGCTACTGTG
Canine p110 γ reverse:	GGGTTAGCACAAATGGCACT
Canine GAPDH forward:	GCCAAGAGGGTCATCATCTC
Canine GAPDH reverse:	GCTAGAGGAGCCAAGCAGTT
Human GAPDH forward:	AGCCACATCGCTCAGACAC
Human GAPDH reverse:	GCCCAATACGACCAAATCC