## Paracrine regulation of matrix metalloproteinases contributes to cancer cell invasion by hepatocellular carcinoma-secreted 14-3-3 $\sigma$

## SUPPLEMENTARY FIGURES AND TABLES



Supplementary Figure S1: Effect of 14-3-3 $\sigma$  overexpression on cell migration and invasion of HCC cells. A. Overexpression of 14-3-3 $\sigma$  promotes cell migration. B. Overexpression of 14-3-3 $\sigma$  reduces cell invasion. Efficacy of cell migration or invasion was examined by a two-chamber analysis. These results are from three independent experiments. Scale bars: mean ± SD. \*, *P*<0.05, \*\*, *P*<0.01.



Supplementary Figure S2: Expression of 14-3-3 $\sigma$  in stable Huh-7 cells. Huh-7 cells were transfected with p3XFlag-CMV (control) and Flag-tagged 14-3-3 $\sigma$  overexpression vectors, followed by selection with G418 for 4 weeks. Expression of 14-3-3 $\sigma$  in stable cells was confirmed by Western blot analysis of flag antibody. Actin was used as loading control.



Supplementary Figure S3: Effect of 14-3-3 $\sigma$  silencing on 14-3-3 $\sigma$ -CM induced MMPs expression. A. THP-1 cells were incubated with CM and expression of MMPs was determined by Q-PCR. B. PMA-THP-1 cells were incubated with CM and expression of MMPs was determined by Q-PCR. These results are from three independent experiments. Scale bars: mean  $\pm$  SD.



Supplementary Figure S4: Expression of 14-3-3 $\sigma$  in CM from 14-3-3 $\sigma$  stable cells was abolished by siRNA. 14-3-3 $\sigma$  stable and control cells were transfected with scramble or three different 14-3-3 $\sigma$  siRNA sequences for 48h. CM was harvested and expression of 14-3-3 $\sigma$  was determined by Western blot analysis of Flag antibody. Actin was used as loading control.



**Supplementary Figure S5: Purification and identification of recombinant 14-3-3** $\sigma$  (r14-3-3 $\sigma$ ) proteins. cDNA of 14-3-3 $\sigma$  was amplified and cloned into a BL21/pET28a vector. Expression of r14-3-3 $\sigma$  was induced by IPTG (1 mM, 4h) followed by purification. **A.** SDS-PAGE analysis of r14-3-3 $\sigma$  protein. Samples were analyzed on 4-12% SDS polyacrylamide gel follow by coomassie blue staining. **B.** The expression of r14-3-3 $\sigma$  was confirmed by Western blot analysis. Arrow indicates r14-3-3 $\sigma$ . Lane 1, protein marker; Lane 2, uninduced cell lysate of BL21/pET28a-14-3-3 $\sigma$ ; Lane 3, IPTG induced BL21(DE3)/pET28a-14-3-3 $\sigma$ ; Lane 4, post-sonication sample were collected after 8 minutes, supernatant of the bacterial lysate; Lane 5, post-sonication samples were collected after 12 minutes, supernatant of the bacterial lysate; Lane 6, eluted BL21(DE3)/pET28a-14-3-3 $\sigma$  of the fraction 1; Lane 7, eluted BL21(DE3)/pET28a-14-3-3 $\sigma$  of the fraction 2; Lane 8, eluted BL21(DE3)/pET28a-14-3-3 $\sigma$  of the fraction 3; Lane 9, wash buffer was collected after the final elution step.



Supplementary Figure S6: Endogenous protein levels of 14-3-3<sup>o</sup> in Huh-7, HS68, THP-1 and PMA-THP-1 cells were analyzed by Western blot analysis.



**Supplementary Figure S7: Quantification of 14-3-3** $\sigma$  level in CM. The expression of 14-3-3 $\sigma$  in CM of control and 14-3-3 $\sigma$  stable cells (1X and 5X dilution, 20  $\mu$ l per lane) was determined by Western blot analysis (upper panel). The r14-3-3 $\sigma$  proteins (0.5, 1, 3, 6 and 12 ng/ $\mu$ l) were loading as control for calibration of protein concentrations. The quantification of 14-3-3 $\sigma$  level in CM was estimated by densitometry according to the detection of the concentration of r14-3-3 $\sigma$  as standard curve (lower panel).

| Gene        | Primers Sequences                    |
|-------------|--------------------------------------|
| MMP-1       | Fw 5'- AGCTAGCTCAGGATGACCTTGATG -3'  |
|             | Rv 5'- GCCGATGGGCTGGACAG -3'         |
| MMP-2       | Fw 5'- TGCTGGAGACAAATTCTGGAGATAC -3' |
|             | Rv 5'- ACTTCACGCTCTTCAGACTTTGG -3'   |
| MMP-9       | Fw 5'- AGGACGGCAATGCTGATG -3'        |
|             | Rv 5'- TCGTAGTTGGCGGTGGTG -3'        |
| MMP-12      | Fw 5'- CATGAACCGTGAGGATGTTGA -3'     |
|             | Rv 5'- GCATGGGCTAGGATTCCACC -3'      |
| MMP-14      | Fw 5'- CGAGGTGCCCTATGCCTAC -3'       |
|             | Rv 5' - CTCGGCAGAGTCAAAGTGG -3'      |
| ANPEP (APN) | Fw 5' - CTGTGAGCCAGTCTAGTTCCTGAT -3' |
|             | Rv 5' - CATCGAGAGCTTCTGCTCATCT -3'   |

## Supplementary Table S1: Oligonucleotide sequences for Q-PCR

## Supplementary Table S2: Oligonucleotide sequences of small interfering RNAs

| Accession no. | Gene name     | siRNA primer sequences               | Concentration (nm) |
|---------------|---------------|--------------------------------------|--------------------|
| NM_006142.3   | SFN (14-3-3σ) | Sequence 1                           | 40                 |
|               |               | Fw 5'- UCUCAGUAGCCUAUAAGAACGUGGU -3' |                    |
|               |               | Rv 5'- AGAGUCAUCGGAUAUUCUUGCACCA -3' |                    |
|               |               | Sequence 2                           |                    |
|               |               | Fw 5'-CCGUCUUCCACUACGAGAUCGCCAA-3'   |                    |
|               |               | RV 5'-GGCAGAAGGUGAUGCUCUAGCGGUU-3'   |                    |
|               |               | Sequence 3                           |                    |
|               |               | Fw 5'-GCGCAUCAUUGACUCAGCCCGGUCA-3'   |                    |
|               |               | Rv 5'-CGCGUAGUAACUGAGUCGGGCCAGU-3'   |                    |
| NM_001150.2   | ANPEP (APN)   | Sequence 1                           |                    |
|               |               | Fw 5'-GAUUAUGGUGGUGGCUCGUUCUCCU-3'   | 60                 |
|               |               | Rv 3'-CUAAUACCACCACCGAGCAAGAGGA-5'   |                    |
|               |               | Sequence 2                           |                    |
|               |               | Fw 5'-GGCCACCACCUUGGACCAAAGUAAA -3'  |                    |
|               |               | Rv 3'-CCGGUGGUGGAACCUGGUUUCAUUU-5'   |                    |
|               |               | Sequence 3                           |                    |
|               |               | Fw 5'-CCAACACGCUGAAACCCGAUUCCUA-3'   |                    |
|               |               | Rv 3'- GGUUGUGCGACUUUGGGCUAAGGAU-5'  |                    |