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Supplementary Figure 1. Use of the electromagnetic spectrum in medical/biological imaging.
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Supplementary Figure 2. Limiting factors for choice of XRF contrast tag elements. Upper energy bound is
determined by ability to excite the element using typical synchrotron radiation at XRF beamlines. Lower
bound is a result of the absorption of emitted X-rays by air (i.e. nitrogen, oxygen, and carbon). Primary XRF
emission lines of biologically prevalent elements are shown on the left, and those of xenobiotic elements

on the right. Elements used in

this study are highlighted.
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Supplementary Figure 3. XPS spectrum of PbO@SWCNT. Both locations of bands, and the shoulder on the
O 1s peak, are consistent with the reported XPS spectrum of a-PbO.*

Supplementary Figure 4. Further HAADF STEM images of PbO@SWCNT.
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Supplementary Figure 5. Normalised Raman spectra of SWCNT starting material, PbO@SWCNT,
Bal,@SWCNT, and Kr@SWCNT.
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Supplementary Figure 6. TGA curves of SWCNT starting material, PbO@SWCNT, Bal,@SWCNT, and
Kr@SWCNT measured in air.
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Supplementary Figure 7. XPS spectra of Bal,@SWCNT.

Supplementary Figure 8. Further HAADF STEM images of Bal,@SWCNT.



Supplementary Figure 9. Further TEM images of Kr@SWCNT illustrating the closed ends.
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Supplementary Figure 10. X-ray absorption edge of Kr@SWCNT, measured using synchrotron radiation,
confirming the elemental assignment. Measured: 14.325 keV, expected: 14.3256 keV.
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Supplementary Figure 11. 'H and *C NMR spectra of 1 recorded in CDCl; (400 MHz).

Normalzed Intensiy

CHal,

CcH.Cl,

)

Normalzed Intenvsty

o
o
1

b~ —18550

‘I3C

14043

~140.15

b 12845

—12361

<o

p—7943

SED g

L

~28.38

15602

85 570

80

55

50 45 40
Chernical Shit (ppm)

35

30

25

20

15

10

05

130

120

110

00

Supplementary Figure 12. 'H and ®C NMR spectra of 2 recorded in CDCl; (400 MHz).
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Supplementary Figure 13. 'H and >C NMR spectra of 3 recorded in CDCl; (400 MHz).
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Supplementary Figure 14. 'H and ®C NMR spectra of 4 recorded in CDCl; (400 MHz).
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Supplementary Figure 15. 'H and >C NMR spectra of 5 recorded in CDCl; (400 MHz).
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Supplementary Figure 16. HPLC trace and MS spectrum of FmocNH-RGDC-CONH, peptide for attachment
to CNTs. Yellow region in designates portion of the sample collected.
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Supplementary Figure 17. HPLC trace and MS spectrum of FmocNH-CGKDEL-CO,H peptide for attachment
to CNTs. Yellow region in designates portion of the sample collected.
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Supplementary Figure 18. HPLC trace and MS spectrum of FmocNH-PPKKKRKVC-CONH, (SV40 NLS) peptide
for attachment to CNTs. Yellow region in designates portion of the sample collected.
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Supplementary Figure 19. HPLC trace and MS spectrum of FmocNH-KVLKKRRC-CONH, (IL-1a NLS) peptide
for attachment to CNTs. Yellow region in designates portion of the sample collected.
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Supplementary Figure 20. TGA curves of maleimide functionalised filled SWCNTs measured in air.
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Supplementary Figure 21. TGA curves of peptide decorated empty SWCNTs measured in air.
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Supplementary Figure 22. MTS assay for filled and decorated SWCNTs administered to Hela cells. Each
sample was measured in triplicate. Heights are mean values, error bars represent the standard deviation.
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Supplementary Figure 23. Raman G-band (1500 — 1650 cm™) mapping of untreated fixed Hela cells.
Intensities normalised. Total of five maps collected.
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Supplementary Figure 24. Further Raman G-band (1500 — 1650 cm™) maps of fixed Hela cells treated with
RGD-SWCNTs. Intensities normalised. Total of ten maps collected.



Supplementary Figure 25. Further Raman G-band (1500 — 1650 cm™) maps of fixed Hela cells treated with
KDEL-SWCNTSs. Intensities normalised. Total of nine maps collected.

Supplementary Figure 26. Further Raman G-band (1500 — 1650 cm™) maps of fixed Hela cells treated with
SV40 NLS-SWCNTSs. Intensities normalised. Total of nine maps collected.
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Supplementary Figure 27. Further Raman G-band (1500 — 1650 cm™) maps of fixed Hela cells treated with
IL-1a NLS-SWCNTs. Total of eleven maps collected.
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Supplementary Figure 28. Carbon K-edge Electron Energy Loss spectrum (EELS) of the cells (left) SWCNT
bundles inside (centre) and outside (right) cells. A peak at 285 eV (1s to nt* transition) with a broad band at
290 — 310 eV (o*) is characteristic of amorphous carbon,? while the fine structure of the o* band, and in
particular the sharp peak at 293 eV, is indicative of graphitic carbon.® The SWCNT bundles can be visually
recognised by their high contrast, fibrous texture, bright spots (iron nanoparticle impurities), and
‘smearing’ due to resistance to the microtome. Total of seven areas imaged with point spectra collected.
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Supplementary Figure 29. Further HAADF-STEM images of Hela cells treated with IL-1a NLS-SWCNTSs. Total
of 38 images collected.




Supplementary Figure 30. Further HAADF-STEM images of Hela cells treated with SV40 NLS-SWCNTs. Note
proximity to nuclear envelope. Total of 41 images collected.




Supplementary Figure 31. Further HAADF-STEM images of Hela cells treated with KDEL-SWCNTSs. Note that
rough ER is difficult to distinguish from SWCNT bundles in small cellular compartments. Total of 35 images
collected.
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Supplementary Figure 32. Fitting of Pb L signals for the point (62,13) in map shown in Supplementary
Figure 41 (RGD targeting).
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Supplementary Figure 33. Fitting of Pb L signals for the point (58,27) in map shown in Supplementary
Figure 43 (IL-1a NLS targeting).
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Supplementary Figure 34. Fitting of Ba and | L signals for the point (74,45) in map shown in Supplementary
Figure 44 (RGD targeting).

10000

Ba L fit

DA 2 A Y L

Recorded counts =] L fit
1000

5\

Fluorescence intensity
(counts)
=
o
o

5 6
Energy (keV)

Supplementary Figure 35. Fitting of Ba and | L signals for the point (9,42) in map shown in Supplementary
Figure 47 (SV40 targeting).
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Supplementary Figure 36. Fitting of Kr K signal for the point (5,20) in map shown in Supplementary Figure
48 (RGD targeting).
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Supplementary Figure 37. Fitting of Kr K signal for the point (24,22) in map shown in Supplementary Figure
51 (SV40 targeting)
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Supplementary Figure 38. XRF map of fixed Hela cells in the absence of CNTs, scaled linearly. 60 x 45 um.
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Supplementary Figure 39. XRF map of fixed Hela cells in the absence of CNTs, scaled linearly. 50 x 80 um.
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Supplementary Figure 40. XRF map of fixed Hela cells treated with RGD-decorated PbO@SWCNT, scaled
linearly. 85 x 55 um.

19



3200

2800

2400

2000

1600

1200

800

400

25500

24000

22500

21000

19500

18000

16500

15000

27000

24000

21000

18000

15000

12000

9000

6000

3000

12000 9000

8000
10500

7000
9000 Sn

30
% 6000
7500
20 5000
6000 En
10 4000
5
4500 ; 2000

0 10 20 30 40 50 60 70 80

3000 Hm 2000

1500 1000
0

Supplementary Figure 41. XRF map of fixed Hela cells treated with RGD-decorated PbO@SWCNT, scaled
linearly. 80 x 29 um.
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Supplementary Figure 42. XRF map of fixed Hela cells treated with IL-1a NLS-decorated PbO@SWCNT,

scaled linearly. 45 x 28 um.
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Supplementary Figure 43. XRF map of fixed Hela cells treated with IL-1a NLS-decorated PbO@SWCNT,
scaled linearly. 80 x 65 um.
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Supplementary Figure 44. XRF map of fixed Hela cells treated with RGD-decorated Bal,@SWCNT, scaled
linearly. 100 x 48 pm.
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Supplementary Figure 45. XRF map of fixed Hela cells treated with RGD-decorated Bal,@SWCNT, scaled
linearly. 85 x 40 um.
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Supplementary Figure 46. XRF map of fixed Hela cells treated with SV40 NLS-decorated Bal,@SWCNT,
scaled linearly. 100 x 59 um.
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Supplementary Figure 47. XRF map of fixed Hela cells treated with SV40 NLS-decorated Bal,@SWCNT,
scaled linearly. 66 x 56 um.
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Supplementary Figure 48. XRF map of fixed Hela cells treated with RGD-decorated Kr@SWCNT, scaled
linearly. 80 x 45 um.
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Supplementary Figure 49. XRF map of fixed Hela cells treated with RGD-decorated Kr@SWCNT, scaled
linearly. 135 x 45 pum.
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Supplementary Figure 50. XRF map of fixed Hela cells treated with RGD-decorated Kr@SWCNT, scaled
linearly. 51 x 36 um.
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Supplementary Figure 51. XRF map of fixed Hela cells treated with SV40 NLS-decorated Kr@SWCNT, scaled

linearly. 50 x 44 um.
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Supplementary Figure 52. XRF map of fixed Hela cells treated with SV40 NLS-decorated Kr@SWCNT, scaled
linearly. 54 x 54 um.
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Supplementary Tables

Supplementary Table 1. ICP-MS analysis of supernatants from washed of filled SWCNTs at 1 mg mL™.

Sample Metal present (ug mL™, corrected for dilution)
PbO@SWCNT (1% HCl wash) 71.820 Pb
PbO@SWCNT (2™ HCl wash) 4.5849 Pb
PbO@SWCNT (water wash) 39.889 Pb
Bal,@SWCNT (water wash) 0.2486 Ba

Supplementary Table 2. Decoration yields for empty SWCNTs as determined by TGA and Fmoc numbering.

Decoration Conjugation yield (Fmoc) /umol mg™ Conjugation yield (TGA) /umol mg™
Maleimide n/a 1.01
RGD 0.81 0.37
KDEL 0.62 0.30
IL-1a NLS 0.27 0.21
SV40 NLS 0.24 0.22

Supplementary Table 3. Yields (mg) for attachment of peptides to filled SWCNTs starting from 2.0 mg of
maleimide-decorated filled SWCNT.

Filling RGD KDEL IL-1ae NLS SV40 NLS
Kr 1.17 0.43 0.55 0.70
Bal, 1.16 1.23 1.17 1.47
PbO 0.63 0.71 1.08 0.68

Supplementary Table 4. Conjugation yields (umol mg?) for attachment of peptides to filled SWCNTs
determined by Fmoc numbering.

Filling RGD KDEL IL-1a0 NLS SV40 NLS
Kr 1.58 1.09 1.36 0.46
Bal, 1.18 0.45 0.28 0.29
PbO 1.92 1.13 0.48 0.77

Supplementary Table 5. XRF mapping parameters

Beam size 2.0x2.3um

Pixel increment 1um

Exposure time per pixel 1 sec

Photon flux density ~10" ph um?s™ (5-10 keV), ~5 x 10" ph um™s™ (14 keV)
Detector type 6-element silicon drift detector (SGX)

Detector distance 70 mm

Detector area 530 mm?*

Solid angle ~0.1sr
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Supplementary Discussion

Although the fillings are toxic to humans and animals, it is important to note that their effect on cells grown
in vitro cannot be expected to follow the same trends: Ba is a neurotoxin, while Pb affects a number of
organs (such as heart, bones, intestines, and kidneys). Nonetheless, for reference, the lethal oral dose of Pb
for humans is ca. 450 mg kg™ of subject,® and that of Ba ca. 50 mg kg™.> The exposure inhalation limits
considered immediately dangerous to life or health (IDLH) are 0.10 ug mL™ of atmosphere and 0.25 pg mL*
respectively. Our experiments dosed cells with 0.14 (Pb) and 0.031 (Ba) mg kg™ of cells, which is well under
to lethal oral dose, but 14 (Pb) and 3.1 (Ba) pg mL™ of media which is much higher than the IDLH values.

Supplementary Methods

Assessment of SWCNT end sealing. The sealing efficacy of the synthetic protocol was experimentally
assessed in more detail for PbO@SWNT and Bal,@SWCNT. The existence of Kr@SWCNT at ambient
temperature without sealing being theoretically impossible; even more so after high vacuum treatment and
given intervals of months between synthesis and measurement necessitated by beamtime allocations.

PbO@SWCNTs. To test the ultimate strength of encapsulation of PbO, PbO@SWCNT (1 mg) was sonicated
in 1 mL of concentrated HCI for one hour at ambient temperature. The nanomaterials were separated from
the supernatant by centrifugation at 21.100 xg for 10 minutes. The supernatant was diluted 1000x with
Mili-Q H,0 and analysed quantitatively by ICP-MS, giving a value of 72 pg mL™" of Pb (Supplementary Table
1) corrected for dilution). This represents 51 % of the total mass of lead in the sample (140 pg, taken from
TGA result). A second wash was performed similarly, and analysed, giving a value of just 4.6 ug mL™. This
indicates that approximately half of the PbO was completely sealed within the tubes. Such a result is
unexpected, given that all reports to date of the vacuum filling of CNTs which examine the tube ends have
found them closed. In this case, the lack of complete closure may relate to the filling materials itself, since
previous studies on end-closing of SWCNTs after molten phase filling, typically in the range 700-900 °C,
have focused on metal halides. Heating PbO with carbon is a traditional method for the generation of
metallic lead, and indeed some metallic particles were observed in the crude mixture here; the oxidising
nature of PbO may therefore impede the complete closure of the SWCNTSs. Such an effect would not need
to affect many sites in order to create holes through which PbO could escape under these conditions. The
original report of PbO@SWCNT did not discuss closure of the ends.® We note that remaining 44% was not
given up in the second wash, and was therefore irreversibly sealed. To test the loss of Pb under more
biologically relevant conditions, the same sonication-centrifugation-dilution procedure was conducted
using Mili-Q water rather than conc. HCI. A value of 40 ug mL™ of Pb was obtained, representing 28 % of the
initially encapsulated lead. It is therefore theoretically possible that this lead could still escape during tissue
culture. However, since water sonication and wash steps were performed during each stage of
functionalisation of PbO@SWCNT (attachment of maleimide, conjugation of peptide, ring-opening of
succinimide, Fmoc deprotection — see below for further details), it is unlikely that any bioavailable,
unsealed Pb remains at the time of interaction with cells. This hypothesis was confirmed both by
cytotoxicity measurements and XRF maps (particularly the co-location of Pb and CNT-associated Fe).

Bal,@SWCNTs. Being soluble in water, Bal,@SWCNT (1 mg) was sonicated in 1 mL of Mili-Q water for one
hour at ambient temperature. The nanomaterials were separated from the supernatant by centrifugation
at 21.100xg for 10 minutes. The supernatant was diluted 1000x with Mili-Q H,0 and analysed quantitatively
by ICP-MS, giving an undiluted value of 0.25 ug mL™ of Pb (Supplementary Table 1). This represents 0.8 % of
the total mass of lead in the sample (31 pg, taken from TGA result), and is regarded as negligible.
Encapsulation is therefore irreversible; the SWCNT ends are capped.
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Synthesis of Bifunctional Linker
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tert-Butyl (2-(2-(2-aminoethoxy)ethoxy)ethyl)carbamate 1. Boc anhydride (2.45 g, 0.011 mol) was
dissolved in 30 mL dioxane, and then added dropwise to 1,2-di(2-aminoethoxy)ethane (12.5 g, 0.085 mol)
in 30 mL dioxane over two hours. The mixture was allowed to stir for a further 24 hours, after which the
solvent was removed to yield a colourless liquid to which water (100 mL) was added. Three extractions with
DCM (50 mL) were performed and the combined organic fractions were re-extracted with water (50 mL).
The organic portion was dried over MgSQ,, and after filtration and solvent removal gave the product as a
pale oil (2.18g, 80%). '"H NMR (400 MHz, CDCls) (ppm) 5.00 (1H, s, CONH), 3.54 (4H, s, OCH,CH,0), 3.50 —
3.44 (4H, m, OCH,), 3.27 (4H, m, CH,N), 2.02 (2H, br, NH,), 1.38 (9H, s, CHs); *C NMR (100 MHz, CDCls)
(ppm) 156.0 (C=0), 79.3 (CMejs), 70.3 (CH,), 70.2 (3 x CH;), 40.4 (CNHCO, CNH,), 28.4 (CH3); ESMS m/z calc.
for [M+H]" 249.2, found 249.2. See Supplementary Fig. 11 for NMR spectra.

Boc-(2-(2-(2-(4-nitrobenzamido)ethoxy)ethoxy)ethylamine (2). 4-Nitrobenzoic acid (2.02 g, 12.1 mmol)
was refluxed in thionyl chloride (25 mL) with catalytic DMF and DMAP for three hours under N,. The solvent
was removed in vacuo and DCM (25 mL) was used to dissolve the residue. Mono-Boc bis(amine) 1 (1.50 g,
6.04 mmol) was added, followed by triethylamine (1.5 mL), and the mixture was stirred overnight under
nitrogen. The system was washed with 1M NaOH, 1M HCI, and brine (25 mL each), before being dried over
MgSQ,, filtered, and subjected to solvent removal, to give a yellow residue containing some impurities
(2.38 g, 100% if pure). It was found that purification could be achieved much more efficiently after the next
step. *H NMR (400 MHz, CDCl3) (ppm) 8.20 (2H, d, ) = 2.7 Hz, ArH), 7.91 (2H, d, ®) = 2.7 Hz, ArH), 6.97 (1H,
br, CONH), 6.86 (1H, br, CONH), 3.64 — 3.54 (12H, m, CH,), 1.38 (9H, s, CH;); **C NMR (100 MHz, CDCl;)
(ppm) 165.6 (ArCON), 156.0 (NC=00), 149.4 (CNO;), 140.2 (ArC), 128.5 (ArC), 123.6 (ArC), 79.4 (CMe3), 70.2
(4 x CH,), 40.3 (CH,NH), 40.0 (CH,NH), 28.4 (CH;); HR ESMS m/z calc. for [M+Na]" 420.17412, found
420.17401. See Supplementary Fig. 12 for NMR spectra.

N-(2-(2-(2-aminoethoxy)ethoxy)ethyl)-4-nitrobenzamide trifluoroacetate (3). Boc-amine 2 (2.38 g,
6.01 mmol) was stirred in dichloromethane (50 mL) with trifluoroacetic acid (25 mL) for three hours at
room temperature. The volatiles were removed under vacuum and the residue was triturated with diethyl
ether which was discarding. Remaining impurities were removed by azeotroping with dichloromethane to
give the trifluoroacetate salt 3 as an orange oil (2.22 g, 79%). *H NMR (400 MHz, CD;0D) (ppm) 8.23 (2H, d,
%) = 8.9 Hz, ArH), 7.93 (2H, d, *J = 8.9 Hz, ArH), 7.77 (1H, br, CONH), 3.62 (8H, m, CH,), 3.45 (2H, m,
CH,NHCO), 2.77 (2H, m, CH,NH,), 1.67 (3H, br, NH;); *C NMR (100 MHz, CD;0D) (ppm) 165.5 (ArCONH),
149.3 (CNO,), 140.3 (CCONH), 128.4 (ArC), 123.5 (ArC), 73.1 (CH,), 70.3 (CH,), 70.0 (CH;), 69.5 (CH,), 41.5
(CONHCH,), 40.0 (CH,NH,); ESMS m/z calc. for [M+H]" 298.1, found 298.1. See Supplementary Fig. 13 for
NMR spectra.

Maleimide 4. Amine 3 (0.10 g, 0.36 mmol) was added to acetic acid (10 mL), followed by maleic anhydride

(0.040 g, 4.0 mmol). The mixture was stirred at room temperature for three hours, before being refluxed at

170 °C overnight. The solvent was removed and the product purified by silica gel column chromatography

eluting with a gradient from 3 % to 10 % methanol in dichloromethane. The product emerged as the first

band, and gave a yellow oil after solvent evaporation (0.055 g, 43 %). *H NMR (400 MHz, CDCls) (ppm) 8.22
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(2H, d, ’J = 8.6 Hz, ArH), 7.97 (2H, d, ®J = 8.6 Hz, ArH), 7.28 (1H, br, NH), 6.65 (2H, s, MalH), 3.66 — 3.41 (12H,
m, CH,); *C NMR (100 MHz, CDCls) (ppm) 170.7 (MalCO), 165.5 (ArC0O), 149.5 (CNO,), 134.2 (MalCH), 128.4
(ArC), 123.6 (ArC), 70.1 (CH;), 69.9 (CH.), 69.5 (CH,), 67.9 (CH,), 40.0 (CH,Mal), 37.1 (CONHCH,); HR-ESMS
m/z calc. for [M+H]* 378.12958, found 378.12958. See Supplementary Fig. 14 for NMR spectra.

Aniline-maleimide 5. Maleimide 4 (20 mg, 5.3 x 10 mol) and tin dichloride dehydrate (54 mg, 2.12 x
10™ mol) were dissolved in ethanol (2 mL). The mixture was heated to 70 °C for three hours. After cooling,
saturated sodium hydrogen carbonate was added (1 mL), and the mixture was extracted with chloroform (3
x 5 mL). The combined organics were backwashed with saturated sodium hydrogen carbonate and brine (5
mL each), before being dried over magnesium sulphate, filtration, and solvent evaporation. The product
was obtained as a yellow oil (13.3 mg, 72 %). "H NMR (400 MHz, CD;0D) (ppm) 7.54 (2H, d, 3 = 7.6 Hz, ArH),
6.64 (3H, m, MalH + NH), 6.57 (2H, d, *J = 7.6 Hz, ArH), 3.65-3.42 (6H, m, CH,); *C NMR (100 MHz, CD;0D),
170.7 (MalC0), 167.3 (ArCONH), 149.9 (CNH,), 134.2 (MalCH), 128.8 (ArC), 123.8 (ArC), 114.0 (ArC), 70.1
(CH,), 70.0 (CH,), 69.8 (CH,), 67.8 (CH,), 39.5 (MalCH,), 37.1 (ArCONHCH,); HR-ESMS m/z calc. for [M+Na]"
370.13734, found 370.13743. See Supplementary Fig. 15 for NMR spectra.

Peptide Synthesis. Peptides were synthesised on a 0.5 mmol scale using rink amide or Wang resins as
appropriate for an amide or acid group at the C-terminus respectively. The Fmoc-based synthesis was
performed on the CEM Liberty microwave peptide synthesiser using acid-labile side chain protecting groups
(Boc, Trt, Pbf). Quantities of Fmoc-X(PG)-OH peptide reagents were calculated through the provided
software using the default coupling settings for each residue, and were dissolved in the indicated quantities
of synthesiser-grade DMF, using sonication if necessary. Reagents were calculated similarly, using HBTU
(0.5 M in DMF) as activator, DIPEA (2.0 M in NMP) as activator base, and piperidine (20%) and HOBt (0.1 M)
in DMF for deprotection. The final Fmoc group was left on. After completion of synthesis, the resin was
collected and washed thoroughly with DMF (3 x 15 mL), dichloromethane (3 x 15 mL), and diethyl ether (3 x
15 mL). TFA (10 mL) containing 2.5 % water and 2.5 % triisopropylsilane was added to cleave the peptide
from the resin and remove the protecting groups. After allowing to react for an hour with occasional
agitation, the mixture was filtered, with the solids being washed with further TFA (ca. 5 mL). The combined
solutions were concentrated under a flow of nitrogen to less than 5 mL. Diethyl ether (20 mL) was then
added to precipitate the crude peptide. About 0.1 g of crude product should be expected per peptide.
Purification was achieved by reverse-phase HPLC using a C18 column (Phenomenex Synergi 4u Hydro-RP
80A (100 x 4.6 pm, 4 micron) for analytical and Phenomenex Synergi 4u Hydro-RP 80A (100 x 21.2 um, 4
micron) for semi-prep scale). Initial screening was performed on the analytical scale, injecting 20 uL of
sample at 2.0 mg/mL and running a gradient of 0 to 95 % MeCN in 95:5 H,0:MeCN. Both solvent systems
were spiked with 0.1 % formic acid and sonicated thoroughly to remove dissolved gases before use. Major
peaks were collected as they eluted and analysed by MS to find the product — in all cases the largest peak.
The gradient was optimised to ensure maximum separation of the product peak, and preparative
separation of the peptide was performed using 1 mL injections at the maximum concentration of peptide in
the starting solvent system. Multiple injections were required, and the collected product fractions were
first concentrated on a rotary evaporator to remove organics, before the aqueous remainder was freeze-
dried to give the pure product as a white to cream-coloured powder. See Supplementary Fig. 16-19 for
HPLC traces and MS.

Attachment of Maleimide to SWCNTs. Aniline 5 (0.180 g, 0.518 mmol) was sonicated with SWCNTs (31 mg,
2.59 mmol with respect to carbon atoms: 5 equivalents) in orthodichlorobenzene (25 mL) for 20 minutes.
Isoamyl nitrite (84 uL, 73 mg, 0.622 mmol) was added and the mixture heated to 100 °C for 24 hours.
Ethanol (75 mL) was added, and the mixture centrifuged. The supernatant was decanted, and 50 mL EtOH
was added, followed by sonication. Centrifugation/supernatant removal was performed two more times
with EtOH and two times with water. The SWCNTs were collected on a cyclopore membrane and dried
under vacuum (51 mg). Raman Ap/Ag ratio of starting material = 4.85, product = 7.53. TGA (air) mass loss
peaks 116, 361 °C (organics), 635 °C (CNTs), residue remaining = 0.2 wt%.
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Attachment of Maleimide to PbO@SWCNTs. Aniline-maleimide 5 (29.5 mg, 8.5 x 10 mmol) was sonicated
with PbO@SWCNTs (5.4 mg) in orthodichlorobenzene (5 mL) for 20 minutes. Isoamyl nitrite (13.7 pL,
12.0 mg, 0.102 mmol) was added and the mixture heated to 100 °C for 24 hours. Ethanol (35 mL) was
added, and the mixture centrifuged. The supernatant was decanted, and 40 mL EtOH was added, followed
by sonication. Centrifugation/supernatant removal was performed two more times with EtOH and two
times with water. The SWCNTs were collected on a cyclopore membrane and dried under vacuum (9.1 mg).
Raman Ap/Ag ratio of starting material = 7.44, product = 7.26. TGA (air) mass loss peak 133, 364, 487 °C
(organics), 622 °C (CNTs), residue remaining = 14.9 wt%.

Attachment of Maleimide to Bal,@SWCNTs. Aniline-maleimide 5 (29.5 mg, 8.5 x 10° mmol) was sonicated
with Bal,@SWCNTs (5.4 mg) in orthodichlorobenzene (5 mL) for 20 minutes. Isoamyl nitrite (13.7 pL,
12.0 mg, 0.102 mmol) was added and the mixture heated to 100 °C for 24 hours. Ethanol (35 mL) was
added, and the mixture centrifuged. The supernatant was decanted, and 40 mL EtOH was added, followed
by sonication. Centrifugation/supernatant removal was performed two more times with EtOH and two
times with water. The SWCNTs were collected on a cyclopore membrane and dried under vacuum (10.9
mg). Raman Ap/Ag ratio of starting material = 4.96, product = 7.03. TGA (air) mass loss peak 117, 361, 482
°C (organics), 623 °C (CNTs), residue remaining = 17.0 wt%.

Attachment of Maleimide to Kr@SWCNTs. Aniline-maleimide 5 (29.5 mg, 8.5 x 10 mmol) was sonicated
with Kr@SWCNTs (5.4 mg) in orthodichlorobenzene (5 mL) for 20 minutes. Isoamyl nitrite (13.7 uL, 12.0
mg, 0.102 mmol) was added and the mixture heated to 100 °C for 24 hours. Ethanol (35 mL) was added,
and the mixture centrifuged. Incomplete separation was ameliorated by adding 10 mL of pentane (i.e. a less
dense solvent). The supernatant was decanted, and 40 mL EtOH was added, followed by sonication.
Centrifugation/supernatant removal was performed two more times with EtOH and two times with water.
The SWCNTs were collected on a cyclopore membrane and dried under vacuum (10.0 mg). Raman Ap/Ag
ratio of starting material = 6.88, product = 8.51. TGA (air) mass loss peak 112, 363, 480 °C (organics), 620 °C
(CNTSs), residue remaining = 13.7 wt%.

Further XRF details. The maps were of varying sizes, and hence took different amounts of time. The
average time per map was slightly over one hour at 1 second per 1 pum? pixel. By reference to other
measurements on the beamline, the photon flux was ca. 5 x 10 ph sec™ for 5 — 10 keV X-rays, and
approximately half of that for 14 keV. Flux density was therefore on the order of 10™ ph pm?s™ for 5 and
10 keV and half of that for 14keV. The detector was a 6-element silicon drift detector (from SGX) with a
total area of 530 mm? and at distance of 70 mm was subtending ~0.1 sr. Synchrotron x-ray microprobes
have detection limits in the sub-ppm regime, with the precise values depending on many factors including
how the beamline has been setup and varies for the energy range covered by the elements observed. For a
beam area of 5 um? scanning a depth of 2 pum, 1 ppm corresponds to 10" g — i.e. the attogram regime. A
conservative limit of detection would be 100 ag, which corresponds to ca. 10> heavy metal atoms. Given
filled SWCNT diameters of 1 nm (as seen by HAADF-STEM), SWCNT lengths of 450 nm, and the Pb density of
crystalline PbO, the limit of detection is in the region of 20 fully filled SWCNTSs, or 150 SWCNTSs filled at the
levels seen here.

The spectra presented in Supplementary Figures 32 — 37 are taken from the maps, using single points of
high intensity regions of the encapsulated material, and are indicative of the signal-to-noise which was
obtained. In general, the XRF signals of the encapsulated agents were of similar magnitude to those the
naturally present elements, and were 10-100 times more intense than the baseline. Much stronger signals
can of course be seen taking the whole map average spectrum.
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