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SUPPLEMENTARY MATERIAL - APPENDICES 

A.  DERIVATION OF EQUATIONS OF MOTION 

The equations of motion of two coupled doublets are derived below. This derivation follows reference 

(1) which in turn is based on the flagella model of Hines and Blum (2). Each doublet is modeled as a 

slender elastic beam in viscous fluid, subject to both active and passive inter-doublet forces  

 

A.1 Equilibrium conditions, kinematics, and constitutive relationships 

The equilibrium equations are written in terms of the two tangent angles  𝜓1 and 𝜓2,  the net internal 

tangential and normal force components in each doublet (𝑇1, 𝑁1, 𝑇2, 𝑁2), and the external viscous force 

components per unit length (𝑞𝑇 and 𝑞𝑁). The baseline separation between doublets in this model is the 

effective diameter,  𝑎. The net inter-doublet shear (tangential) force component, 𝑓𝑇,  is due to 

distributed active (dynein arms) and passive elements (nexin links, e.g.). In addition, these elements also 

provide a transverse inter-doublet force component, 𝑓𝑁.  

 
Supplementary Figure S1. The current models are based on two pairs of doublets driving flagellar 

bending. (A) Side views of 𝑃 and 𝑅 doublet pairs show sliding displacement, effective diameter 𝑎, active 

(green) and passive (red) shear forces ( 𝑓𝑇𝑃(𝑠, 𝑡) and 𝑓𝑇𝑅(𝑠, 𝑡) ) and internal doublet tension (𝑇1𝑃,  𝑇2𝑃, 

𝑇1𝑅, 𝑇2𝑅). (B) Representation of the axoneme by a simplified structural model with six doublets, of which 

two pairs are active. Activity on the 𝑃 side drives doublet 4 tip-ward relative to doublet 2;  𝑅 activity 

drives doublet 9 tip-ward relative to doublet 7. Reproduced from reference (1).  The moment per unit 

length produced by inter-doublet components is: 𝑚 =
𝑎

2
(𝑓𝑇𝑃 − 𝑓𝑇𝑅) (1). If active shear forces are equal 

on 𝑃 and 𝑅 sides, a straight equilibrium position will exist with tension and compression in the active 

doublets (see Fig. 3).  

fTR(s,t)

a

s

T1R

T2R

fTP(s,t)

a

s

T1P

T2P

Active

Passive

P R

PR

1

5-6
2

-3
-4

7
-8

-9

A B



Flagellar flutter   APPENDICES 
 

Supp-3 
 

 
Supplementary Figure S2. (A) Schematic representation of inter-doublet mechanics, consisting of active 

dynein arms and passive elastic and viscous components. (B) Free-body diagram of a differential 

element of the two-doublet model of the axoneme. See also Fig. S1, and Fig. 3. 

 

 

The key variables and parameters of this model of flagella mechanics are summarized in Table S1 (which 

parallels Table 1 in the main text). 

 
The equilibrium equations for each doublet are: 

 Doublet 1     Doublet 2       

𝒆𝑇:   
𝜕𝑇1

𝜕𝑠
− 𝑁1

𝜕𝜓1

𝜕𝑠
+ 𝑓𝑇 + 𝑞𝑇1 = 0,  

𝜕𝑇2

𝜕𝑠
− 𝑁2

𝜕𝜓2

𝜕𝑠
− 𝑓𝑇 + 𝑞𝑇2 = 0,   (A.1ab) 

 

𝒆𝑁:  
𝜕𝑁1

𝜕𝑠
+ 𝑇1

𝜕𝜓1

𝜕𝑠
− 𝑓𝑁 + 𝑞𝑁1 = 0,  

𝜕𝑁2

𝜕𝑠
+ 𝑇2

𝜕𝜓2

𝜕𝑠
+ 𝑓𝑁 + 𝑞𝑁2 = 0 .     (A.2ab) 

 

  𝜓:       
𝜕𝑀𝐵1

𝜕𝑠
+ 𝑚 + 𝑁1 = 0,   

𝜕𝑀𝐵2

𝜕𝑠
+ 𝑚 + 𝑁2 = 0.   (A.3ab) 

 

Each doublet is modeled as an elastic beam with flexural rigidity, 𝐸𝐼: 

𝑀𝐵𝑛 = 𝐸𝐼
𝜕𝜓𝑛

𝜕𝑠
 .      (A.4) 

A B

Table S1. Key variables of the 1D PDE model of flagella mechanics 

Variable Definition (unit) 

𝜓𝑛(𝑠, 𝑡) Tangent angle of doublet 𝑛 at location 𝑠 and  time 𝑡 (rad) 

𝑇𝑛(𝑠, 𝑡) Tangential component of internal force in doublet 𝑛 (pN) 

𝑁𝑛(𝑠, 𝑡) Normal component of internal force in doublet 𝑛 (pN) 

𝑀𝐵𝑛(𝑠, 𝑡) Bending moment in doublet 𝑛 (pN-μm) 

𝑓𝑇(𝑠, 𝑡) Inter-doublet tangential (shear) force per unit length  (pN/μm) 

𝑓𝑁(𝑠, 𝑡) Inter-doublet normal force per unit length  (pN/μm) 

𝑞𝑇𝑛(𝑠, 𝑡) Viscous tangential force per unit length  (pN/μm) 

𝑞𝑁𝑛(𝑠, 𝑡) Viscous normal force per unit length  (pN/μm) 

𝑚(𝑠, 𝑡) Net inter-doublet moment per unit length (pN) 
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Using resistive force theory to model viscous drag, as in (2-4), the tangential and normal force 

components are:  

𝑞𝑇𝑛 = −𝑐𝑇𝑣𝑇𝑛,      (A.5) 

𝑞𝑁𝑛 = −𝑐𝑁𝑣𝑁𝑛.     (A.6) 

where the velocity is 𝒗𝑛 = 𝑣𝑁𝑛𝒆𝑁𝑛 + 𝑣𝑇𝑛𝒆𝑇𝑛.  Using the kinematic relationships (2), 

𝜕𝑣𝑇𝑛

𝜕𝑠
= 𝑣𝑁

𝜕𝜓𝑛

𝜕𝑠
 ,      (A.7) 

𝜕𝑣𝑁𝑛

𝜕𝑠
=

𝜕𝜓𝑛

𝜕𝑡
− 𝑣𝑇

𝜕𝜓𝑛

𝜕𝑠
 ,     (A.8) 

the equilibrium, kinematic, and constitutive equations can be combined to form three equations for 

each doublet, describing the motion of a slender elastic beam moving in viscous fluid, subject to active 

and passive inter-doublet forces (2, 5).  

𝑇1,𝑠𝑠 − 𝑁1𝜓1,𝑠𝑠 − (1 +
𝑐𝑇

𝑐𝑁
) 𝑁1,𝑠𝜓1,𝑠 − 

𝑐𝑇

𝑐𝑁
𝑇1𝜓1,𝑠

2 −
𝑐𝑇

𝑐𝑁
𝑓𝑁𝜓1,𝑠 + 𝑓𝑇,𝑠 = 0 ,   (A.9a) 

𝑁1,𝑠𝑠 + (1 +
𝑐𝑁

𝑐𝑇
) 𝑇1,𝑠𝜓1,𝑠 + 𝑇1𝜓1,𝑠𝑠 −

𝑐𝑁

𝑐𝑇
 𝑁1𝜓1,𝑠

2 +
𝑐𝑁

𝑐𝑇
𝑓𝑇𝜓1,𝑠 + 𝑓𝑁,𝑠 = 𝑐𝑁𝜓1,𝑡 ,  (A.9b) 

𝐸𝐼𝜓1,𝑠𝑠 + 𝑚 + 𝑁1 = 0 .      (A.9c) 

𝑇2,𝑠𝑠 − 𝑁2𝜓2,𝑠𝑠 − (1 +
𝑐𝑇

𝑐𝑁
) 𝑁2,𝑠𝜓2,𝑠 −  

𝑐𝑇

𝑐𝑁
𝑇2𝜓2,𝑠

2 +
𝑐𝑇

𝑐𝑁
𝑓𝑁𝜓2,𝑠 − 𝑓𝑇,𝑠 = 0 ,  (A.9d) 

𝑁2,𝑠𝑠 + (1 +
𝑐𝑁

𝑐𝑇
) 𝑇2,𝑠𝜓2,𝑠 + 𝑇2𝜓2,𝑠𝑠 −

𝑐𝑁

𝑐𝑇
 𝑁2𝜓1,𝑠

2 −
𝑐𝑁

𝑐𝑇
𝑓𝑇𝜓2,𝑠 − 𝑓𝑁,𝑠 = 𝑐𝑁𝜓2,𝑡 ,  (A.9e) 

𝐸𝐼𝜓2,𝑠𝑠 + 𝑚 + 𝑁2 = 0 .   (A.9f) 

Subscripts after the comma denote partial derivatives: (. ),𝑧 =
𝜕(.)

𝜕𝑧
 .  Parameters estimated for 

Chlamydomonas flagella (4, 6) (Table 2) are used, unless otherwise noted. 

 

The following boundary conditions apply to the case in which each doublet is fixed at the base and free 

at its tip. 

(A.9)  (i)        Zero angle at base:     𝜓𝑛(0, 𝑡) = 0  

(A.9)  (ii) Zero bending moment at distal end:   𝐸𝐼𝜓𝑛,𝑠(𝐿, 𝑡) = 0 

(A.9)  (iii) Zero transverse force at distal end:   𝑁𝑛(𝐿, 𝑡) = 0 

(A.9)  (iv) Zero tangential force at distal end:   𝑇𝑛(𝐿, 𝑡) = 0 

(A.9)  (v) Zero normal velocity at base 1 (𝑣𝑁1(0, 𝑡) = 0):  [
𝜕𝑁1

𝜕𝑠
+ 𝑇1

𝜕𝜓1

𝜕𝑠
]

𝑠=0
= −𝑓𝑁  

(A.9)  (vi) Zero tangent velocity at base 1 (𝑣𝑇1(0, 𝑡) = 0):  [
𝜕𝑇1

𝜕𝑠
− 𝑁1

𝜕𝜓1

𝜕𝑠
]

𝑠=0
= −𝑓𝑇 

(A.9)  (vii) Zero normal velocity at base 2 (𝑣𝑁2(0, 𝑡) = 0):  [
𝜕𝑁2

𝜕𝑠
+ 𝑇2

𝜕𝜓2

𝜕𝑠
]

𝑠=0
= +𝑓𝑁  

(A.9)  (viii) Zero tangent velocity at base 2 (𝑣𝑇2(0, 𝑡) = 0):  [
𝜕𝑇2

𝜕𝑠
− 𝑁2

𝜕𝜓2

𝜕𝑠
]

𝑠=0
= +𝑓𝑇 

 



Flagellar flutter   APPENDICES 
 

Supp-5 
 

A.2 Inter-doublet forces due to steady, distributed dynein activity and passive components 

Passive components of the axoneme resist doublet separation, coupling the motion of the two doublets. 

These components are modeled as distributed elements with linear elastic and viscous coefficients,  𝑘𝑁 

and 𝑏𝑁, respectively, and a nonlinear elastic coefficient 𝑘3𝑁. 

 
𝜕𝑓𝑁

𝜕𝑠
= −𝑘𝑁(𝜓1 − 𝜓2) − 𝑏𝑁(𝜓1,𝑡 − 𝜓2,𝑡) − 𝑘3𝑁(𝜓1 − 𝜓2)3.   (A.10) 

 

In the tangential direction we include a steady, distributed dynein force per unit length, 𝑓𝑇 = 𝑝𝐷(𝑠), as 

well as passive resistance to inter-doublet sliding. The dynein distribution function,  𝐷(𝑠), allows the 

steady dynein activity to vary along the length. For longitudinally uniform dynein activity, 𝐷(𝑠) = 1;  for 

dynein activity that increases distally,  𝐷(𝑠) = 1 − exp (𝑠/𝑠0).  The moments due to equal and opposite 

dynein forces on the 𝑃 and 𝑅 sides cancel (Fig. S1, Fig. 3), but the moments due to passive shear 

resistance add. The net inter-doublet moment per unit length is thus: 

 

𝑚 = −𝑘𝑇𝑎2�̅� − 𝑏𝑇𝑎2�̅�,𝑡 − 𝑘3𝑇𝑎3�̅�3,    (A.11) 

 

where the mean shear angle is �̅� = (𝜓1 + 𝜓2)/2.  The coefficients 𝑘𝑇 and 𝑏𝑇 represent linear elastic 

and viscous resistance to sliding (1, 7, 8), and 𝑘3𝑇 a nonlinear stiffness.  The nonlinear terms in Eqs. 

A.10-A.11 represent assumed nonlinear, stiffening behavior of elastic elements between doublets (3). 

 

A.3 Linearized equation and boundary conditions 

If both 𝑃 and 𝑅 sides of the flagellum are simultaneously active with identical baseline dynein activity, 

active bending moments will cancel. Accordingly, we study the stability of the zero (straight) equilibrium 

solution to Eqs. A.9 with dynein-driven tension and compression in the doublets, but only passive 

internal moments. To describe small-amplitude motion about a straight, equilibrium configuration, Eqs. 

A.9 may be linearized to obtain much simpler equations (5, 8, 9). Dropping terms that are nonlinear in 

the dependent variables, under uniform, steady dynein force (𝐷(𝑠) = 1, 𝑓𝑇 = 𝑝), the baseline tension 

(or compression) in the two doublets is: 

 

Doublet 1:    𝑇10(𝑠) = 𝑝(𝐿 − 𝑠)  (tension) 

Doublet 2: 𝑇20(𝑠) = −𝑇10  (compression)   

 

Equations A.9 then become 

 

𝐸𝐼𝜓1,𝑠𝑠𝑠𝑠 −
𝜕

𝜕𝑠
(𝑝(𝐿 − 𝑠)𝜓1,𝑠) + 𝑐𝑁𝜓1,𝑡 = −𝑚,𝑠𝑠 − 𝑘𝑁(𝜓1 − 𝜓2) − 𝑏𝑁(𝜓1,𝑡 − 𝜓2,𝑡) (A.12a) 

𝐸𝐼𝜓2,𝑠𝑠𝑠𝑠 +
𝜕

𝜕𝑠
(𝑝(𝐿 − 𝑠) 𝜓2,𝑠) + 𝑐𝑁𝜓2,𝑡 = −𝑚,𝑠𝑠+𝑘𝑁(𝜓1 − 𝜓2) + 𝑏𝑁(𝜓1,𝑡 − 𝜓2,𝑡) (A.12b) 

𝑚 = −𝑘𝑇𝑎2�̅� − 𝑏𝑇𝑎2�̅�,𝑡.  (�̅� = (𝜓1 + 𝜓2)/2).       (A.12c) 
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Solutions to Eqs. A.12 must also satisfy appropriate boundary conditions. For example, if the flagellum is 

fixed at its proximal end ( 𝑠 = 0) and free at its distal end (𝑠 = 𝐿), solutions must satisfy the eight 

conditions: 

(A.12)  (i) Zero angle at base:   𝜓𝑛(0, 𝑡) = 0,      𝑛 = 1, 2  

(A.12)  (ii) Zero moment at distal end:  𝐸𝐼𝜓𝑛,𝑠(𝐿, 𝑡) = 0,     𝑛 = 1,2 

(A.12)  (iii) Zero transverse force at distal end: 𝐸𝐼𝜓𝑛,𝑠𝑠(𝐿, 𝑡) + 𝑚(𝐿, 𝑡) = 0,    𝑛 = 1,2 

(A.12)  (iv) Zero normal velocity at base:  𝐸𝐼𝜓1,𝑠𝑠𝑠(0, 𝑡) + 𝑚,𝑠(0, 𝑡) = 𝑝𝐿𝜓1,𝑠   

(A.12)  (v) Zero normal velocity at base:  𝐸𝐼𝜓2,𝑠𝑠𝑠(0, 𝑡) + 𝑚,𝑠(0, 𝑡) = −𝑝𝐿𝜓2,𝑠   

 

A.4 Distally-increasing, steady, dynein force density 

Other longitudinal distributions of dynein force will lead to slightly different PDEs and boundary 

conditions. For example, to model distally-increasing dynein activity, we use the function  

𝐷(𝑠) = 1 − exp (−𝑠/𝑠0).    A.13 

To obtain the dynein shear force: 𝑓𝑇𝐷 = 𝑝𝐷(𝑠). We use 𝑠0 = 𝐿/3 in this study. Then the baseline 

tension in the doublets becomes: 

Doublet 1:    𝑇10(𝑠) = 𝑝 [𝐿 + 𝑠0 exp (−
𝐿

𝑠0
) − (𝑠 + 𝑠0 exp (−

𝑠

𝑠0
))]  (tension) 

Doublet 2: 𝑇20(𝑠) = −𝑇10, (compression). 

In this case, the expression 𝑝(𝐿 − 𝑠) in each of the equations of motion Eqs. A.12a-b is replaced by the 

corresponding baseline tension 𝑇10(𝑠).  The distribution functions and corresponding profiles of axial 

tension are shown in Supplementary Fig. S3. 
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B. STABILITY OF EQUILIBRIUM AND OSCILLATORY SOLUTIONS TO THE EQUATIONS OF MOTION 

 

B.1 Definition of the eigenvalue problem 

The behavior of the flagellum model can be described in terms of characteristic modes of oscillation, 

which are eigenfunctions of the linearized equations. Following references (5, 8, 10) and (1, 11), 

separable solutions are sought of the form  

 

𝜓𝑛(𝑠, 𝑡) = exp(𝜎𝑡) �̃�𝑛 (𝑠),  𝑛 = 1,2    (B.1) 

with  𝜎 = 𝛼 + 𝑖𝜔 (𝛼 and 𝜔 are real). Each such solution that satisfies the equation of motion and all 

boundary conditions is called an independent mode. If 𝛼 > 0, the mode grows exponentially. If 𝑀 such 

modes are found with exponents 𝜎𝑚 and shape,  �̃�𝑛
(𝑚)

(𝑠), then a solution can also be formed from any 

linear combination of these modes:  𝜓𝑛(𝑠, 𝑡) = ∑ 𝑎𝑚𝑒𝜎𝑚𝑡𝑀
𝑚=1 �̃�𝑛

(𝑚)
(𝑠). In general, for arbitrary initial 

conditions, the least stable mode will dominate the response.  

These separable solutions are substituted into the linearized equations of motion (Eqs. A.12). After 

defining a characteristic time for the system,  𝜏 = 𝑐𝑁𝐿4/𝐸𝐼,  and a normalized eigenvalue, �̅� =

𝜎𝑐𝑁𝐿4/𝐸𝐼, the resulting ordinary differential equations (ODEs) may be written in non-dimensional form: 

 
Supplementary Figure S3. Steady dynein force distributions and corresponding axial tension profiles. 

(A) Uniform distribution (𝐷(𝑠) = 1) of steady dynein force vs axial coordinate, 𝑠. (B) Baseline axial 

tension profile due to steady, uniform dynein activity. (C) Distally-increasing distribution  

𝐷(𝑠) = 1 − 𝑒𝑠/𝑠0 of steady dynein force vs axial coordinate, 𝑠, with 𝑠0 = 𝐿/3. (D) Baseline axial tension 

profile due to steady, distally-increasing dynein activity. 
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�̃�1
′′′′ − �̅�[(1 − �̅�)�̃�1

′ ]
′

+ �̅��̃�1 = 𝑐̅(�̅�)(�̃�1
′′ + �̃�2

′′) − �̅�(�̅�)(�̃�1 − �̃�2),   (B.2a) 

�̃�2
′′′′ + �̅�[(1 − �̅�)�̃�2

′ ]
′

+ �̅��̃�2 = 𝑐̅(�̅�)(�̃�1
′′ + �̃�2

′′) + �̅�(�̅�)(�̃�1 − �̃�2),   (B.2b) 

 

where the new non-dimensional parameters are �̅� = 𝑝𝐿3/𝐸𝐼,  𝑐̅(�̅�) = (𝑘𝑇𝑎2 + 𝑏𝑇𝑎2 �̅�)𝐿2/𝐸𝐼 , and 

�̅�(�̅�) = (𝑘𝑁 + 𝑏𝑁 �̅�)𝐿2/𝐸𝐼.    

 

(B.2) (i)        Zero angle at base:   �̃�𝑛(0) = 0,      𝑛 = 1, 2  

(B.2) (ii)        Zero moment at distal end:  �̃�𝑛
′ (1) = 0,     𝑛 = 1,2 

(B.2) (iii) Zero transverse force at distal end: �̃�𝑛
′′(1) − 𝑐̅(�̅�)(�̃�1 + �̃�2) = 0,    𝑛 = 1,2 

(B.2) (iv) Zero normal velocity at base:  �̃�1
′′′(0) − 𝑐̅(�̅�)(�̃�1

′ + �̃�2
′ ) = �̅��̃�1

′    

(B.2) (v)        Zero normal velocity at base:  �̃�2
′′′(0) − 𝑐̅(�̅�)(�̃�1

′ + �̃�2
′ ) = −�̅��̃�2

′    

These two coupled ODEs, together with the associated boundary conditions, form an eigenvalue 

problem. The coupling between these two differential equations, as well as the factor of  1 − �̅� 

complicate the solution of the eigenvalue problem, so that numerical methods (weighted residual or 

finite element calculations, e.g.) are required to find the natural modes and frequencies of oscillation. 

Approximate solutions to the eigenvalue problem can be obtained using numerical methods. Such 

methods include finite element analysis and the method of weighted residuals (12). Eigenfunctions can 

be approximated by linear combinations of the vibration modes of an Euler-Bernouilli beam with fixed-

free boundary conditions. The application of the method of weighted residuals to this problem is 

described in reference (11) and in section B.2 below. 

 

B.2 Solution of eigenvalue problem by the method of weighted residuals 

The eigenvalue problem was solved numerically by the method of weighted residuals (12) with up to 

𝑁 = 12 trial functions to obtain a matrix form of the eigenvalue problem.  

We can approximate �̃� by a linear combination of admissible functions (12): 

�̃�1(�̅�) ≈ ∑ 𝑞1𝑗𝑄𝑗(�̅�)𝑁
𝑗=1 ,  �̃�2(�̅�) ≈ ∑ 𝑞2𝑗𝑄𝑗(�̅�)𝑁

𝑗=1      (B.3) 

These expressions are substituted into the eigenfunction equations and boundary conditions, and the 

residual error weighted by each of a set of test functions, 𝜙𝑖(�̅�) and weighting factors 𝑤𝑖
(𝑘)

 is set to zero. 

In this method the weighting factor for the 𝑠 = 0 boundary condition is  𝑤𝑖
(0)

= 𝜙𝑖(0) and at the 

opposite end (𝑠 = 1),  𝑤𝑖
(1)

= 𝜙𝑖
′(1). For the case of uniform dynein activity, we obtain: 

∑ 𝑞1𝑗 {∫ 𝜙𝑖
1

0
𝑄𝑗

′′′′𝑑�̅� − ∫ 𝜙𝑖�̅�[(1 − �̅�)𝑄𝑗
′]

′
𝑑�̅�

1

0
 + �̅� ∫ 𝜙𝑖𝑄𝑗𝑑�̅�

1

0
− 𝑐̅(�̅�) ∫ 𝜙𝑖𝑄𝑗

′′𝑑�̅�
1

0
+𝑁

𝑗=1

�̅�(�̅�) ∫ 𝜙𝑖𝑄𝑗𝑑�̅�
1

0
+ 𝑤𝑖

(1)
[𝑄𝑗

′′(1) − 𝑐̅(�̅�)𝑄𝑗(1)] + 𝑤𝑖
(0)

[𝑄𝑗
′′′(0) − 𝑐̅(𝑄𝑗

′(0) − �̅�𝑄𝑗
′(0)]} +

∑ 𝑞2𝑗 {−𝑐̅(�̅�) ∫ 𝜙𝑖𝑄𝑗
′′𝑑�̅�

1

0
− �̅�(�̅�) ∫ 𝜙𝑖𝑄𝑗𝑑�̅�

1

0
−𝑤𝑖

(1)
[𝑐̅(�̅�)𝑄𝑗(1)] − 𝑤𝑖

(0)
[𝑐̅(�̅�)𝑄𝑗

′(0)]}𝑁
𝑗=1 = 0,  

 (B.4a) 



Flagellar flutter   APPENDICES 
 

Supp-9 
 

∑ 𝑞2𝑗 {∫ 𝜙𝑖
1

0
𝑄𝑗

′′′′𝑑�̅� + ∫ 𝜙𝑖�̅�[(1 − �̅�)𝑄𝑗
′]

′
𝑑�̅�

1

0
 + �̅� ∫ 𝜙𝑖𝑄𝑗𝑑�̅�

1

0
− 𝑐̅(�̅�) ∫ 𝜙𝑖𝑄𝑗

′′𝑑�̅�
1

0
−𝑁

𝑗=1

�̅�(�̅�) ∫ 𝜙𝑖𝑄𝑗𝑑�̅�
1

0
+ 𝑤𝑖

(1)
[𝑄𝑗

′′(1) − 𝑐̅(�̅�)𝑄𝑗(1)] + 𝑤𝑖
(0)

[𝑄𝑗
′′′(0) − 𝑐̅(𝑄𝑗

′(0) + �̅�𝑄𝑗
′(0)]} +

∑ 𝑞1𝑗 {−𝑐̅(�̅�) ∫ 𝜙𝑖𝑄𝑗
′′𝑑�̅�

1

0
+ �̅�(�̅�) ∫ 𝜙𝑖𝑄𝑗𝑑�̅�

1

0
−𝑤𝑖

(1)
[𝑐̅(�̅�)𝑄𝑗(1)] − 𝑤𝑖

(0)
[𝑐̅(�̅�)𝑄𝑗

′(0)]}𝑁
𝑗=1 = 0.  

 (B4b) 

Analogous equations can be obtained for other dynein distributions. The 2𝑁 equations for the weighted 

residual error may be integrated by parts, simplified and expressed as matrix-vector system: 

[𝐾(11) +  �̅�𝐶(11)]𝒒𝟏 + [𝐾(12) +  �̅�𝐶(12)]𝒒𝟐 = 𝟎,      (B.5a) 

[𝐾(21) +  �̅�𝐶(21)]𝒒𝟏 + [𝐾(22) +  �̅�𝐶(22)]𝒒𝟐 = 𝟎,      (B.5b) 

 

Where the 𝑁 × 𝑁  matrices 𝐾 and 𝐶 contain the coefficients of 𝑞𝑗 in the 𝑖𝑡ℎ equation above. Defining  

 𝒒 = [
𝒒𝟏

𝒒𝟐
],      (B.6) 

we obtain the compact form of the eigenvalue problem: 

[𝐾 +  �̅�𝐶]𝒒 = 𝟎      (B.7) 

𝐾 = [𝐾(11) 𝐾(12)

𝐾(21) 𝐾(22)
],   𝐶 = [𝐶(11) 𝐶(12)

𝐶(21) 𝐶(22)
]   (B.8) 

The matrix elements were calculated numerically using numerical quadrature, and the resulting matrix 

eigenvalue problem was solved using MATLAB software (The Mathworks, Natick, MA).  The free 

vibration modes of a uniform, fixed-free beam were used as trial functions (𝑄𝑗) for flagella with fixed-

free boundary conditions. 
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C. ADDITIONAL RESULTS 

 

 
 

 

 

Supplementary Figure S4. Oscillatory behavior of the 1D PDE model (two-doublet system) with 

steady, uniform, dynein loading  obtained by eigenanalysis of the linearized PDEs. (A) Oscillation 

frequency vs shear stiffness 𝑘𝑇, and dynein force density, 𝑝, for conditions in which the straight 

equilibrium configuration is unstable. (B) Oscillation frequency vs coupling viscous resistance, 𝑏𝑁, 

and dynein force density, 𝑝. Other parameters are given in Table 2. 

 

 

Supplementary Figure S5. Stability analysis of the 1D PDE model (two-doublet system) with steady, 

distally-increasing, dynein loading of amplitude 𝑝 (pN/µm). (A) Real and (B) imaginary parts of 

eigenvalue of the linearized equations as the amplitude of the steady dynein load is increased. A 

dynamic instability occurs near 𝑝 =410 pN/µm when the real parts of one pair of eigenvalues 

become positive while the imaginary parts are non-zero. (C) Root locus showing the trajectories of 

the eigenvalues from the left (stable) to right (unstable) half-plane, as 𝑝 increases. 
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Figure S6. Predicted shapes of both doublets in the 1D PDE model (two-doublet system) at six 

equally-spaced intervals during the flagellar beat. Flutter instability and flagellar oscillations are 

induced by steady, uniformly-distributed dynein loading with force density 𝑝=350 pN/µm. (A) The 

first mode of the linearized system. (B) Shape predicted by simulation of the nonlinear PDEs (motion 

will include contributions from more than one mode).   

 

 
Supplementary Figure S7. (A) Snapshots from the time-domain simulation of the 3D FE model of the 

flagellum (six doublets) with length 𝐿=12 µm, total flexural rigidity 𝐸𝐼𝑓=700 pN-µm2, under steady, 

uniformly-distributed dynein loading of amplitude 𝑝=174 pN/µm per active doublet. Images are 

shown at six equally-spaced phases during one period of oscillation (A) Side-view (𝑋 − 𝑍 plane). 

Color indicates axial stress along the centerline: red (positive) = tension; blue (negative) = 

compression. (B) Tip position vs time in simulations of the 3D FE structural model of the flagellum 

with steady, uniformly-distributed dynein loading, 𝑝. (i) 𝑝 =46 pN/µm. (ii) 𝑝 =69 pN/µm. (ii) 𝑝 =93 

pN/µm. (iv) 𝑝 =116 pN/µm.  Above a critical value of dynein force density, p, the straight 

equilibrium configuration becomes unstable, and a limit cycle emerges.  
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D. SUPPLEMENTARY MOVIE LIST 

Movie M1: Flutter of beam with a constant-amplitude, tangential (follower) tip load (Fig. 2C). The non-

dimensional load amplitude is  �̅� = 𝑃𝐿2/𝐸𝐼 =  48. 

Movie M2: Oscillatory wave-like motion of two coupled doublets predicted by stability analysis of the 

1D PDE model; the movie shows the least stable mode (eigenfunction) of the linearized equations with 

steady, uniform dynein density amplitude 𝑝=350 pN/µm (see Fig. 4A).  

Movie M3: Waveform predicted by time-domain simulation of the nonlinear equations of motion of the 

1D PDE model with distally-increasing dynein density amplitude 𝑝=450 pN/µm.  

Movie M4: Waveform predicted by time-domain simulation of the nonlinear equations of motion of the 

1D PDE model with distally-increasing dynein density amplitude 𝑝=600 pN/µm (Fig. 5C).  

Movie M5: Waveform predicted by time-domain simulation of the nonlinear equations of motion of the 

1D PDE model with distally-increasing dynein density amplitude 𝑝=800 pN/µm (Fig. 5D).  

Movie M6: Oscillatory motion predicted by time-domain simulation of a 3D FE structural model of an 

axoneme with simultaneous antagonistic dynein activity on opposing doublets with distally-increasing, 

dynein force amplitude 𝑝=184 pN/µm (Fig. 6). Viewed in the 𝑋 − 𝑍 plane. 

Movie M7: Oscillatory motion predicted by simulation of the 3D FE model of the axoneme with distally-

increasing, dynein force amplitude 𝑝=184 pN/µm (Fig. 6). Viewed in the 𝑋 − 𝑌 plane.  

 

  

 
Supplementary Figure S8. Time series of potential energy and kinetic energy during oscillations of 

the 3D finite element model of the axoneme. The kinetic energy is negligible, even after mass 

scaling, confirming that inertial effects are not significant. 
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