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Alternative formulation of the generalized-growth model (GGM) 

 

Here we derive an alternative formulation of the generalized-growth model where the 

biological factor acts on the growth rate r  rather than C . The original generalized-

growth model is given by [1]: 

′C = rC p                                                              (2.1)    

     

where ′C (t)  describes the incidence curve over time t , the solution C(t)  describes the 

cumulative number of cases at time t , r  is a positive parameter denoting the growth rate 

(with the units of (people)1− p  per time), and p∈[0,1]  is a ‘deceleration of growth’ 

parameter (dimensionless).   

 

We first apply a change of variable u = log(C)  so thatC = eu . Then the model becomes: 

u ' = reu( p−1)  

The solution of this model is given by: 

u(t) =
rt p = 1

1
1− p

log r(1− p)t + eu0 (1−p)( ) 0 ≤ p <1

⎧

⎨
⎪

⎩
⎪

 

where u0 = log(C0 ) . The rate of change of the growth rate in the original generalized-

growth model (Equation 1) is given by: 

u '(t) =
r p = 1
r

r(1− p)t + eu0 (1−p)
0 ≤ p <1

⎧

⎨
⎪

⎩
⎪

 

Hence, the alternative formulation of the generalized-growth model is given by: 

 
C '(t) = u '(t)C(t)  

where   u '(t) =
r

r(1− p)t + elog(C0 )(1−p)
0 ≤ p <1

r p = 1

⎧

⎨
⎪

⎩
⎪

 



 

The same numerical results are obtained from both formulations of the generalized 
growth model as shown in Figure S1. 
 

 
Figure S1.  Comparison of the numerical results derived from both formulations of the 
generalized-growth model for different values of p  when r = 1.5  and C0 = 1 . 
 

 
 

 

 



 
Mathematical proof for Rg

subexp → erTg  as p→1−
 

 

Using methods of limit, one can easily show that the reproduction number Rg
subexp  

according to disease generations converges to erTg  as p→1−  as follows: 

Rg
subexp = 1+

r(1− p)Tg
r(1− p)gTg +C0

1−p

⎡

⎣
⎢

⎤

⎦
⎥

p
1−p

                (2.6)  

 

If p→1−   then Rg
subexp ≈1∞  

 

Taking the logarithm on both sides we obtain (when C0 ≠ 0 ): 

 

ln(Rg
subexp ) = p

1− p
ln 1+

r(1− p)Tg
r(1− p)gTg +C0

1−p

⎡

⎣
⎢

⎤

⎦
⎥ ≈

0
0

 when p→1−  

 

Applying L'Hospital's Rule, we obtain: 

 

 y =

1
−rTg[1]− 0

12

1+ 0

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

−1

0

=
−rTg
−1

= rTg  

as p→1−
. Then limp→1− Rg

subexp = erTg  

 

Putting everything together, we have: 

 

Rg
subexp =

1
erTg

If g→∞  and  p <1
If p →1−

⎧
⎨
⎪

⎩⎪  
 



	
Figure	S2.  Simulated profiles of the effective reproduction number during the first 5 
generation intervals derived from case incidence curves of the generalized-growth model 
with different values of the growth rate (r) and the deceleration of growth parameter (p). 
The initial number of cases is set to C(0)=1. Estimates of the effective reproduction 
number are generated assuming a fixed generation interval at 3 days.  
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Figure S3.  Simulations of the early epidemic growth phase derived from the SIR model 
described by Equations (2.10) for different values of the power-law scaling parameter α , 

γ = 1
5

, and (A) β0 = 0.4 , (B) β0 = 0.48 , (C) β0 = 0.56 , and (D) β0 = 0.6with a large 

population size N set at 108. The epidemic simulations start with one infectious 
individual. In semi-logarithmic scale, exponential growth is evident if a straight line fits 
well several consecutive disease generations of the epidemic curve, whereas a strong 
downward curvature in semi-logarithmic scale is indicative of sub-exponential growth. 
Our simulations show that case incidence curves display early sub-exponential growth 
dynamics even for values of α  slightly below 1.0. 
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Figure S4. Examples of the fits provided by the exponential and generalized-growth 
models to three infectious disease outbreaks (pandemic influenza in San Francisco in 
1918, HIV/AIDS epidemic in Japan, and Ebola epidemic in Western Urban, Sierra Leone 
in 2014).  
 

 
 
 
 



 
Figure S5. Comparison of the goodness of fit provided by the exponential and the 
generalized-growth models across all of the 21 infectious disease outbreaks (see Table 1). 
 
	

	
	
	
 



 
Figure S6. Mean estimates of the effective reproduction number and the deceleration of 
growth parameter p  derived from our sample of infectious disease datasets (Table 1) 
were significantly correlated for three estimation periods with an initial phase length 
comprising 3 to 5 generation intervals. 
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Figure S7. The 1918 influenza pandemic in San Francisco. Estimates and 95% 
confidence intervals of the effective reproduction number derived from fitting the 
generalized-growth model to an increasing length of the early epidemic phase comprising 
of approximately 3-5 disease generation intervals. The generation interval is assumed to 
be gamma distributed with the mean of 3 days and standard deviation of 1 day. Estimates 
and 95% confidence intervals for parameters r  and p  are also shown. 
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Figure S8.  The 2001 foot-and-mouth disease epidemic in Uruguay.  
Estimates and 95% confidence intervals of the effective reproduction number derived 
from fitting the generalized-growth model to an increasing length of the early epidemic 
phase comprising of approximately 3-5 disease generation intervals. The generation 
interval is assumed to be gamma distributed with the mean of 5 days and standard 
deviation of 1 day. Estimates and 95% confidence intervals for parameters r  and p  are 
also shown. 
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Figure S9. The HIV/AIDS epidemic in Japan (1985-2012).  
Estimates and 95% confidence intervals of the effective reproduction number derived 
from fitting the generalized-growth model to an increasing length of the early epidemic 
phase comprising of approximately 3-5 disease generation intervals. The generation 
interval is assumed to be gamma distributed with the mean of 4 years and standard 
deviation of 1.4 years. Estimates and 95% confidence intervals for parameters r  and p  
are also shown. 
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Figure S10. The 2014-15 Ebola epidemic in Gueckedou, Guinea.  
Estimates and 95% confidence intervals of the effective reproduction number derived 
from fitting the generalized-growth model to an increasing length of the early epidemic 
phase comprising of approximately 3-5 disease generation intervals. The generation 
interval is assumed to be gamma distributed with the mean of 19 days and standard 
deviation of 11 days. Estimates and 95% confidence intervals for parameters r  and p  
are also shown. 
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Figure S11. The 2014-15 Ebola epidemic in Western Area Urban, Sierra Leone.  
Estimates and 95% confidence intervals of the effective reproduction number derived 
from fitting the generalized-growth model to an increasing length of the early epidemic 
phase comprising of approximately 3-5 disease generation intervals. The generation 
interval is assumed to be gamma distributed with the mean of 11.6 days and standard 
deviation of 5.6 days. Estimates and 95% confidence intervals for parameters r  and p  
are also shown. 
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