

Supplementary Figure 1.

Electron density map of the GMM-lipid complex at the interface of the CD1b and GEM42 TCR. The GEM42 TCR is coloured in pale pink for the α -chain and pale blue for the β -chain, with the CDR1, CDR2 and CDR3 loops coloured in blue, green and yellow, respectively, for the α -chain and red, orange and yellow for the β -chain. The CD1b is coloured in white and the GMM is represented in pale orange stick. The left panel represents the unbiased omit map (Fo-Fc) at 3σ in green mesh, while the right panel shows the refined map (2Fo-Fc) at 1σ in blue mesh.

Supplementary Figure 2.

Comparison of the GEM42 TCR-CD1b-GMM complex structure in pink (left side) with the BK6 TCR-CD1a-LPC complex in pale blue (right side), with an overlay of both complexes. The bottom panels represent the footprint of the respective TCR, coloured by atomic contacts with the TCR, namely α -chain and pale blue for the β -chain, with 3 CDR loops coloured in blue, green and yellow for the α -chain and red, orange and yellow for the β -chain, respectively. The pink and blue spheres represent the mass centre of the V α and V β domains, while the pale orange sphere represent the lipid antigen.

!	!	!	!	70	8	0	90	100	110!	
							1			!
CD1b	D	KEVAEI	E <u>E</u> I	FR <u>V</u> YI FG	FA RE	VQDFAGDF	QMKYPFEIQ	GIAGCELHSO	GAIVSFLRG	ALG!
CD1c	N	EELSDI	ELI	FR <mark>F</mark> YLFG	LTRE	IQDHASQD	YSKYPFEVQ	VKAGCELHSO	KSPEGFFQV	AFN!
CD1a	Ν	EEWKEI	ΞΕ <mark>Τ</mark> Ι	FRIRTIR	SFEG	IRRYAHEL	QFEYPFEIQ	VTGGCELHSO	GKVSGSFLQL	AYQ!
CD1d	D	QQWETI	LQ <mark>H</mark> I	FRVYRSS	FTRD	VKEFAKML	RLSYPLELQ	VSAGCEVHPO	GNASNNFFHV	AFQ!
!										
!	!12	0!	!	130!	! 1	40!!	150!	160	! 170	180
!	!								! !	!
CD1b	G	LDFLS	/KNA	SCVPSPE	GGSR	AQKFCALI	-IQ Y<u>QG</u>I M <u>E</u>	TV <mark>RI</mark> LLYETO	CPRYLLGVLN	AGK!
CD1c	G	LDLLSE	QNT	TWVPSPG	CGSL	AQSVCHLL	NHQYEGVTE	TV <mark>YN</mark> LIRSTO	PRFLLGLLD	AGK!
CD1a	G	SDFVSE	TQNN	ISWLPYPV	AGNM	AKHFCKVL	-NQ <mark>N</mark> QHEND	ITHNLLSDTO	CPRFILGLLD	AGK!
CD1d	G	KDILSI	FQGI	SWEPTQE	APLW	VNLAIQVL	-NQ <mark>DKWT</mark> RE	TV <mark>QW</mark> LLNGT(PQFVSGLLE	SGK!
!										

Supplementary Figure 3.

Sequence alignment of human CD1a, CD1b, CD1c and CD1d heavy chains. The red residues indicate the CD1b amino acid forming interaction with GEM42 TCR. Underlined and red indicates interaction with the α -chain of GEM42 TCR. The orange residues indicate the residues from CD1b involved in the interaction with the GEM42 TCR and not conserved with some of the other CD1 heavy chains. The bottom panel show a surface representation of the CD1b-GMM in complex with the GEM42 TCR (represented by CDR loops). The CD1b residues involved only with the GEM42 TCR α -chain are coloured either in orange (if not conserved with other CD1 molecules) or black (if conserved with other CD1 molecules). The GEM42 TCR CDR loops are coloured teal, green and purple for the CDR1, 2 and 3 α ; and red, orange and yellow for the β -chain.

Supplementary Figure 4.

Within the CD1b-GMM binary structure, while the electron density for the acyl chains were clear, the electron density corresponding to glucose headgroup was poor, indicating mobility of this moiety. Representation of the CD1b in white cartoon and GMM in green stick from the binary CD1b-GMM-C32 structure. The electron density map is represented in green mesh for the unbiased omit map Fo-Fc at 3σ (a) and 1.5σ (b), while the 2Fo-Fc map are coloured in blue mesh and represented at 1σ (c) and 0.6σ (d).

Supplementary Figure 5.

Superimposition of the free structure of CD1b represented in cartoon bound to either the C32 GMM (green) or C54 GMM (white), with in both cases the GMM represented in stick. The different panels represent different view of the same superimposition.

Supplementary Figure 6.

(a) Surface plasmon resonance (SPR) sensogram of a range of concentration of GEM42 TCR onto the CD1b-GMM (green curves) or CD1b-Ile160Ala-GMM (orange curves) extracted from the same experiment. The right panel show an overlay of the curves showing the slower off rate of the GEM42 TCR when binding to the CD1b-Ile160Ala compare to the CD1b- GMM complex.

(b) Superimposition of the binary CD1b-GMM structure and in complex with the GEM42 TCR, the CD1b is represented in white cartoon, the Ile160 from the free CD1b-GMM structure is in green stick and the Ala160 form the GEM42 TCR-CD1b-GMM complex is in orange stick. The CDR3 α is in purple, the CDR1 α in teal, and the Thr109 α is represented as purple stick.

Supplementary Figure 7.

Surface representation of CD1b (white) and GMM (pale orange stick) with the mutated residues coloured as per their impact on the GEM42 TCR affinity, ranging from 3-fold improvement (green), no impact (yellow), 3-fold decrease (orange) and more than 5-fold decrease (red). The CDR loops of the GEM42 TCR are represented as loop and coloured in teal, green and purple for the α -chain and red, orange and yellow for the β -chain.

Supplementary Table 1. GEM TCR sequences.

GEM TCR	TRAV	CDR1α□	CDR2α□	CDR3α TRAV1-2 TRAJ9
GEM42	1-2*01	TSGFNG	NVLDGL	AVRNTGGFKTI
				<mark>gct g</mark> tt c <mark>ga aat act gga ggc ttc aaa act atc</mark>
GEM18	1-2*01	TSGFNG	NVLDGL	AVLNTGG FKTI
				<mark>get gt</mark> e et <mark>a aat aet gga gge tte aaa aet ate</mark>
GEM21	1-2*01	TSGFNG	NVLDGL	AVR R TGGFKTI
				<mark>gct gtg aga</mark> agg <mark>act gga ggc ttc aaa act atc</mark>
GEM1	1-2*01	TSGFNG	NVLDGL	AVRVTGGFKTI
				<mark>gct gtg aga g</mark> tc <mark>act gga ggc ttc aaa act atc</mark>
A14 PCR1	1-2*01	TSGFNG	NVLDGL	AVRGTGGFKTI
				<mark>gct gtg ag</mark> g gg <mark>t act gga ggc ttc aaa act atc</mark>
A14 PCR2	1-2*01	TSGFNG	NVLDGL	AVRNTGGFKTI
				<mark>gct gtg aga</mark> aat act gga ggc ttc aaa act atc

GEM TCR	TRBV	CDR1β□	CDR2β□	CDR3β□
GEM42	6-2*01	MNHEY	SVGEGT	ASSPRLAGDEQFF
GEM18	6-2*01	MNHEY	SVGEGT	ASRPPLTARGLKHTGELFF
GEM21	30*01	GTSNPN	SVGIG	AWAKTGFGGDTQYF
GEM1	30*01	GTSNPN	SVGIG	AWSPTSLRLASTDTQYF

All sequences have been reported previously¹. Two sequences were derived from PCR on single CD1b-GMM tetramer+ T cells (A14 PCR1 and 14 PCR2), and for these, no TCR β chain is known. The residue coloured in red is the Arg107 α characteristic of the GMM-specific GEM T cells, the bold residues represent the variable residue at position 108 α . The Asp113 β of GEM42 TCR (blue and bold) is conserved with GEM21 and GEM1 TCRs.

TCR gene	PDB	CD1b	Bond type
CDR1a	Phe30-O	Arg159-NH2	HB
CDR1a	Asn31-Oδ1	Gly153-O, Glu156, Thr157-N-Oγ1	HB, VDW
FWα	Tyr55-OH	Gly153-N	VDW, HB
CDR2a	Val57	Gln152, Glu156	VDW
CDR2a	Leu58	Gln152, Glu156	VDW
FWα	Arg84-NH1-NH2	Glu156-Oɛ1, Oɛ2, Arg159	SB, VDW
CDR3a	Thr109	Ile69, Ala160	VDW
CDR3a	Gly110	Thr157	VDW
CDR3a	Phe112	Glu68, Ile69, Val72	VDW
CDR1β	Tyr31	Val72	VDW
FWβ	Tyr55-OH	Glu68-OE1-OE2	SB, VDW
CDR2β	Val57	Val72	VDW
FWβ	Ala67	Glu68	VDW
CDR3β	Arg109-Nε-NH2	Phe75, Gly76, Arg79, Glu80-Oε1	SB, VDW
CDR3β	Leu110	Glu80, Tyr151, Ile154	VDW
CDR3 _β	Ala111	Tyr151	VDW
TCR gene	PDB	GMM	Bond type
CDR1a	Asn31-Nδ2	1-OH	HB, VDW
FWα	Tyr55	2-OH	VDW
CDR3a	Arg107-NH2	С1, 2-ОН	HB, VDW
CDR3a	Gly110-O	С7, 7-О, С9, 9-ОН	HB, VDW
CDR3a	Gly111	C1, 5-O, C5, C6	VDW
CDR3a	Phe112	7-O,	VDW
CDR1β	Tyr31-OH	C7, CAQ, 7-O1, C6	HB, VDW
CDR3β	Pro108	4-OH	VDW
CDR3β	Arg109-0	CAR, C4, 4-OH, C6, 6-O	HB, VDW
CDR3β	Leu110	CAT,	VDW
CDR3β	Ala111-N	С4, 4-ОН, С3, 3-ОН	HB, VDW
CDR3β	Gly112-N	4-OH,	HB, VDW
CDR3β	Asp113-Oδ2-Oδ1	2-OH, C3, 3-OH	VDW, HB

Supplementary Table 2. Contacts between GEM42 TCR and CD1b-GMM

VDW: Van der Waals, HB: Hydrogen bond, SB: salt bridge.

Supplementary Table 3.

TRAV1-2	CD1b-lipid	MHC-peptide	MR1-metabolite
Ser28 (CDR1a)	-	Glu166	-
Gly29 (CDR1a)	-	Leu163, Glu166	Glu160
Phe30 (CDR1a)	Arg159	-	Glu160, Asn155
Asn31 (CDR1a)	Gly153, Glu156, Thr157, lipid	Ala158, Leu163, peptide	-
Tyr55 (FWa)	Gly153, lipid	Glu154	His148, Tyr152
Val57 (CDR2a)	Gln152, Glu156	Ala158	Leu151,TyrY152, Asn155
Leu58 (CDR2a)	Gln152, Glu156	Arg157	Leu151, Lys154, Asn155
Arg84 (FWa)	Glu156, Arg159	Gly162	Asn155, Glu159

The table summarises the contacts made by the germline encoded TRAV1-2 residues with CD1blipid (white), MHC-peptide (dark gray) and MR1 (gray), coloured accordingly to the bottom panels of Figure 1. FW indicate framework residues.

	GEM 42	ΔΔGeq	GEM 21	ΔΔGeq
CD1b-GMM	Kd (μM)	(kcal.mol ⁻¹)	Kd (µM)	(kcal.mol ⁻¹)
CD1b-WT	1.15 ± 0.01		0.70 ± 0.02	
CD1b mutant				
E65A	1.92 ± 0.02	0.300 ± 0.003	2.14 ± 0.06	0.669 ± 0.008
E68A	5.46 ± 0.16	0.922 ± 0.020	12.21 ± 0.05	1.690 ± 0.001
I69A	> 20	> 1.690	6.09 ± 0.03	1.282 ± 0.001
V72A	13.22 ± 1.07	1.420 ± 0.025	4.60 ± 0.64	1.153 ± 0.038
R79A	0.35 ± 0.01	-0.712 ± 0.008	1.00 ± 0.03	0.219 ± 0.008
E80A	1.21 ± 0.05	0.017 ± 0.012	0.92 ± 0.01	0.164 ± 0.003
Y151A	3.69 ± 0.09	0.682 ± 0.008	0.93 ± 0.01	0.171 ± 0.003
Q152A	2.57 ± 0.05	0.475 ± 0.011	1.65 ± 0.02	0.509 ± 0.005
I154A	NB	>> 1.690	>20	> 1.984
T157A	> 20	> 1.690	> 20	> 1.984
R159A	1.13 ± 0.01	-0.013 ± 0.004	0.68 ± 0.02	-0.008 ± 0.001
I160A	0.81 ± 0.03	-0.218 ± 0.011	0.44 ± 0.01	-0.268 ± 0.001
E164A	1.95 ± 0.01	0.312 ± 0.003	0.80 ± 0.02	0.078 ± 0.014
T165A	1.67 ± 0.02	0.220 ± 0.007	0.78 ± 0.02	0.063 ± 0.015

Supplemental Table 4. SPR with CD1b mutants

 $\Delta\Delta$ Geq= RTln(KdeqMut/KdeqWT), WT refers to wild-type, T is the temperature of the experiment and R is the gas constant, NB refers to no binding.

References

1. Van Rhijn I, Kasmar A, de Jong A, Gras S, Bhati M, Doorenspleet ME, *et al.* A conserved human T cell population targets mycobacterial antigens presented by CD1b. *Nat Immunol* 2013, **14**(7): 706-713.