SUPPLEMENTARY INFORMATION

A Presenilin/Notch1 pathway regulated by miR-375, mR-30a, and miR-34a mediates

glucotoxicity induced-pancreatic beta cell apoptosis

Yating Li, Tao Zhang, Yuncai Zhou, Yi Sun, Yue Cao, Xiaoai Chang, Yunxia Zhu, and

Xiao Han

Supplementary Table 1 Primers for wt and mt 3'utr plasmids cloning.

NAME	SEQUENCES (5'-3')	
	Forward	Reverse
wt-Psen1	CTAGT TCCTGTGTCCTCAGCGAACAAA A	AGCTT TTTGTTCGCTGAGGACACAGGA A
mt-Psen1	CTAGT TCCTGTGTCCTCAGCGTAGATA A	AGCTT TATCTACGCTGAGGACACAGGA A
wt-Psen2	CTAGT ATAAAAAGTGTTGTGTTTACT A	AGCTT AGTAAACACAACACTTTTTTAT A
mt-Psen2	CTAGT ATAAAAAAGTGTTGTGATAAGT A	AGCTT ACTTATCACAACACTTTTTTAT A
wt-Notch1	CTAGT TTTTCCACAGAAACACTGCCT A	AGCTT AGGCAGTGTTTCTGTGGAAA A
mt-Notch1	CTAGT TTTTCCACAGAAACAGTCCGT A	AGCTT ACGGACTGTTTCTGTGGAAAA A

NAME	SEQUENCES (5'-3')		
	Forward	Reverse	
Notch1	GGTGCGAGCGCAGTGAAGGA	CCCGCTGCTGCCCTCTTTCC	
Psen1	CAAGAGCTGCTGTCCAGGAA	TGAAAATGGCGAGCAGGAGT	
Psen2	TGTACGATCTCGTGGCTGTG	TCCATCTCTGGATCGTAAGGGA	
Ncstn	CTGGGCCACAGAGACGATG	CTCCACTGAGTTTCCCCCAC	
Psenen	GAAGGGGTAAACCCCACTG	GTACTTCCGGCACAGGTTCA	
Ins1	CATAGACCATCAGCAAGCAGG	GAAGAAACCACGTTCCCCAC	
Ins2	TGTCAAACAGCACCTTTGTGG	GTGCCAAGGTCTGAAGGTCAC	
Pdx1	GGTATAGCCAGCGAGATGCT	TCAGGTGGGAGCCTGATTCT	
Mafa	AAGGAGGAGGTCATCCGACT	TCTGGAGCTGGCACTTCTCG	
Neurod1	ATGACCAAATCATACAGCGAGAG	TCTGCCTCGTGTTCCTCGT	
Actb	GCCATGTACGTAGCCATC	CTCTCAGCTGTGGTGGTG	
miR-375	ACACTCCAGCTGGGTTTGTTCGTTCGGC	CTCAACTGGTGTCGTGGAGTCGGCAATTC	
	ТС	AGTTGAGTCACGCGA	
miR-34a	ACACTCCAGCTGGGTGGCAGTGTCTTAG	CTCAACTGGTGTCGTGGAGTCGGCAATTC	
	CTG	AGTTGAGAACAACCA	
Urp		TGGTGTCGTGGAGTCG	
u6	CTCGCTTCGGCAGCACA	AACGCTTCACGAATTTGCGT	

Supplementary Table 2 Primers for quantitative RT-PCR.

Supplementary Figure. 1 Glucotoxicity caused beta-cell dysfunction. (A-C) Rat islets were treated with low glucose (5.5 mmol/l glucose, control), or high glucose (11.1, 25, 33.3 mmol/l glucose) for 72 h by which time glucose-stimulated insulin secretion assay as shown by GSI (A), insulin content (B), as well as *Ins1* (white bars) and *Ins2* (black bars) genes level (C) analyzed by qRT-PCR were accessed. (D-F) INS-1 cells were treated with low glucose (5.5 mmol/l glucose, control, white bars), or high glucose (11.1, 25, 33.3 mmol/l glucose, blark bars) for 24 h by which time potassium-stimulated insulin secretion assay as shown by KSI (A), insulin content (B), as well as *Ins1* (white bars) and *Ins2* (black bars) (C) analyzed by qRT-PCR were accessed. Data shown are means \pm SEM and representative of three separate experiments. **p*<0.05 and ***p*<0.01 *vs.* control.

Supplementary Figure 2. Overexpression of NICD1 could not recover glucotoxicity-induced insulin secretion defect. After transient transfection with vector (control, white bar) or NICD (black bar) plasmid for 24 h, INS-1 cells were further treated with glucose for 24 h and KSIS was performed. Data shown are means \pm SEM and representative of three separate experiments. **p<0.01 *vs.* control.

Supplementary Figure 3. *miR-375*, *miR-30a* and *miR-34a* induced beta cell dsyfunction in INS-1 cells. INS-1 cells were transfected with *miR-375*, *miR-30a* and *miR-34a* for 24 h when KSI (A), insulin content (B) and *Ins2* gene level (C) were determined. Data shown are means \pm SEM and representative of three separate experiments. **p*<0.05 and ***p*<0.01 *vs.* control.

Supplementary Figure 4. *miR-375*, *miR-30a* and *miR-34a* induced beta cell apoptosis in INS-1 cells. INS-1 cells were transfected with *miR-375*, *miR-30a* and *miR-34a* for 48 h whenTUNEL assay was performed (A), and quantitative result of TUNEL assay was analyzed (B). Data were obtained from 8 scans in each group *p<0.05 and **p<0.01 vs. control.

Supplementary Figure. 5 The inverted regulation between PDX1 and miR-375 by glucotoxicity. INS-1 cells were treated with 5.5 or 25 mmol/l glucose for indicated time when expression level of miR-375 was detected by qRT-PCR (A). INS-1 cell were exposure to 5.5 or 25 mmol/l glucose for indicated time when protein level of PDX1 was measured (B). AKT was used as an internal standard. Data shown are means \pm SEM and representative of three separate experiments. **p*<0.05 and ***p*<0.01 *vs.* control.