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Supplementary Figure 1. Using 10% of the ExAC alleles to predict the number of 
unique variants in the entire ExAC cohort. Each panel corresponds to one variant type. 
For each variant type, we applied UnseenEst on 10% of the ExAC alleles (5919 
individuals) to predict the number of unique variants that we would expect to observe in a 
cohort of size less than or equal to ExAC (59198 individuals). The blue curves are the 
average predictions over the different 10% sub-samples and the blue shaded regions 
correspond to one standard deviation from the average. The red curves are the actual 
number of unique variants observed in ExAC. For all variant types, the predicted number 
of unique variants is in good agreement with the observed number of unique variants.  
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplementary Figure 2. Applying UnseenEst on 10% of the alleles in each ExAC 
population to predict the total number of observed variants. For each of the ExAC 
populations, we trained UnseenEst on random 10% of the alleles and applied it to predict 
the total number of unique variants in the entire population. The x-axis of each panel 
indicate the number of individuals of that population; the first mark (e.g. 499 in (a)) 
indicate the size of the training set and the last mark (e.g. 4994 in (a)) is the total cohort 
size of that population in ExAC. The blue curves are the average predictions over the 
different 10% sub-samples and the blue shaded regions correspond to one standard 
deviation from the average. The red curves are the actual number of unique variants 
observed in ExAC. In every population, the predicted number of unique variants is in 
good agreement with the observed number of unique variants. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplementary Figure 3. Using 10% of the alleles in each ExAC population to 
predict the total number of observed variants with harmonic jackknife. For each of 
the ExAC populations, we used the harmonic jackknife estimator on random 10% of the 
alleles and applied it to predict the total number of unique variants in the entire 
population. The x-axis of each panel indicate the number of individuals of that 
population; the first mark (e.g. 499 in (a)) indicate the size of the training set and the last 
mark (e.g. 4994 in (a)) is the total cohort size of that population in ExAC. The red curves 
are the actual number of unique variants observed in ExAC. The blue curves are the 
average harmonic jackknife predictions over the different 10% sub-samples. The standard 
deviations of the harmonic jackknife predictions are too small to show up clearly in the 
plots.  In all the populations, the jackknife predictions underestimate the true number of 
distinct variants in the cohort.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 4. UnseenEst estimated allele frequencies. UnseenEst was 
trained on the U.S. Census matched ExAC cohort and the synonymous (a), missense (b), 
LoF (c) and CpG (d) allele frequencies were estimated for the US population. The 
variants are grouped into bins based on allele frequency: less than 10-5, 10-5 to 10-4, 10-4 
to 10-3, and greater than 10-3. The y-axes indicate the log10 number of variants in each 
bin. The error bars correspond to one standard deviation. 
 



 
Supplementary Figure 5. Predicted number of unique variants in cohorts of size up 
to 500K individuals with the same demographic distribution as the ExAC dataset. 
The x-axis indicates the number of individuals in the cohort and the y-axis indicates the 
fraction of possible variants that we expect to observe at in a cohort of that size. We 
trained UnseenEst on the full ExAC dataset and made the predictions for synonymous 
(grey), missense (orange) and loss-of-function (brown) variants.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
Supplementary Figure 6. Predicted number of unique missense variants in gene 
families. We trained the model on the cohort that matches U.S. demographics and 
predicted the fraction of possible missense variants in each gene family that we can 
expect to observe in cohorts of size up to 500K individuals. (a) Recessive genes (red) and 
dominant genes (blue). (b) All genes (red) and genes with cerebral specific expression 
(blue).  (c) Genes associated with GWAS loci (red) and drug target genes (blue).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Supplementary Figure 7. Validation of the estimated number of genes with at least 
10 LoF alleles. We trained UnseenEst on random subsamples of 10% of the alleles in the 
U.S. Census matched cohort and applied it to estimate the number of genes with at least 
10 LoF alleles in the entire cohort. The red curve is the actual number of genes with at 
least 10 LoF alleles and the blue curve is the average predictions over the different 
subsamples. The shaded blue region corresponds to one standard deviation of the 
predictions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
Supplementary Figure 8. Discovery rate of LoF genes in non-Finnish Europeans. 
Estimated number of genes with at least 10 LoF alleles in non-Finnish Europeans as a 
function of the sample size. The number of genes with at least 10 LoF alleles saturates 
around 16K genes, in agreement with the saturation level of LoF genes in the U.S. 
Census-matched population (Figure 1d). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Tables 
 
  

 
   
Allele counts 
 

  

     
 0-10 10-100 100-1000 >1000 
All variants ExAC 6.55M 0.57M 0.17M 109422 
All variants predicted 6.59M (0.57M) 0.55M (0.09M) 0.18M (0.01M) 109391 (55) 
Syn ExAC 1.22M 0.13M 40571 27499 
Syn predicted 1.19M (0.12M) 0.13M (0.02M) 40658 (2042) 27446 (187) 
Mis ExAC 2.67M 0.21M 52794 27539 
Mis predicted 2.63M (0.23M) 0.22M (0.03) 51957 (2180) 27352 (178) 
LoF ExAC 0.11M 4300 782 240 
LoF predicted 0.11M (0.01M) 4196 (789) 775 (76) 225 (12) 
 
 
Supplementary Table 1. Observed and predicted allele counts. Blue rows are the 
number of ExAC variants with empirical allele counts in bins of 0-10, 10-100, 100-1000, 
and greater than 1000. Red rows are the predicted allele counts based on UnseenEst 
trained on 10% of the samples. The standard deviations are shown in the parentheses.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                                       



                                       Number of individuals 
 

 Non-
Hispanic 
white 

Latino African-
American 

East Asian South 
East Asian 

Total 

US 
Census 
(2010) 
 

196,817,552 
(65.8%) 

50,477,594 
(16.9%) 

37,685,848 
(12.6%) 

10,953,102 
(3.7%) 

3,374,478 
(1.1%) 

299,308,574 
(100%) 

ExAC 
 
 

35897 
(61%) 

5693  
(9.7%) 

4994 
(8.5%) 

4255 
(7.2%) 

7919 
(13.5%) 

58758 
(100%) 

ExAC 
census 
adjusted 

22212 
(65.8%) 

5693 
(16.9%) 

4253 
(12.6%) 

1249 
(3.7%) 

371 
(1.1%) 

33778 
(100%) 

 
Supplementary Table 2. The number of individuals by ancestry. The top row shows 
the number of individuals of each ancestry in the 2010 U.S. Census. The middle row 
shows the ancestry composition of the ExAC cohort. The bottom row shows the number 
of individuals of each ancestry in the ExAC cohort that was adjusted to match the 2010 
U.S. Census.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Variant class Upper bound on the # of possible variants 

LoF 5,720,461 

CpG 2,086,001 

synonymous 18,762,312 

missense 63,986,829 

missense in cerebral genes 4,204,277 

missense in dominant genes 3,678,497 

missense in drug target genes 1,908,788 

missense in GWAS genes 12,517,761 

missense in recessive genes 5,628,661 

transitions 45,824,366 

transversions 91,648,732 

 
Supplementary Table 3. Upper bound on the number of possible variants. For each 
class of single-nucleotide variation, we estimated an upper bound on the number of 
variants in the class based on the reference human genome.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Supplementary Notes

1 Supplementary Note 1: Preliminaries

Given the genetic variation observed in a sample of individuals, what can one infer about all the
genetic variation across the entire population? We introduce a robust, general, and theoretically
sound algorithm, UnseenEst, for accurately quantifying the distribution of frequencies of all the
genetic variation, including the ones that we have not observed in the current samples, based on
the sequences from surprisingly small sets of individuals. This estimated distribution of frequen-
cies can then be leveraged to yield accurate estimates of a number of useful properties, including
accurate estimates of the number of new variants that are likely to be observed in larger cohorts
of individuals.

We begin by formalizing the model in which we are working, and describe the sense in which our
algorithm recovers the distribution of variant frequencies. The core of our approach is a linear
programming (LP) based algorithm, and we discuss the intuition behind this method. We then
establish the performance guarantees of our algorithm, proving that, with high probability, it will
recover an accurate estimate of the true frequency distribution, and yields accurate predictions
for the number of new variants that will be observed in larger samples. We also discuss in detail
related approaches to estimate different statistical properties of frequency distributions based on
other linear program, jackknife and Bayesian methods in Section 5.

The model. Let S denote a particular variant class of interest. For example, S can correspond
to all possible missense mutations in a gene family. Each possible variant s ∈ S is associated with
a probability ps, which is the probability that an allele contains s. We model all the alleles as
independent and all variants as independent. Hence the ps’s are the parameters of independent
Bernoulli random variables. When we sample an allele, we obtain an independent draw from the
Bernoulli at each s, s ∈ S. In a sample of k alleles, the frequency of observing variant s is distributed
according to bin(ps, k).

Definition 1.1. Given P ≡ {ps : s ∈ S}, its histogram is a mapping hP : (0, 1] → N∪{0}, where
hP (x) = |{s : s ∈ S and ps = x}|. Informally, h(x) is the number of variants with probability x.
The histogram represents all of the information of P except for the labels of the variants.

In this work, we are interested in accurately recovering the histogram hP . For the purpose of
estimating any property of the ps’s that does not depend on the specific labels of the variants
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themselves, the histogram, hP , contains all of the useful information. Such properties are referred
to as symmetric as they are unaffected by ’renaming’ the variants. The following examples illustrate
several interesting symmetric properties:

Examples:

• The total number of variants that occur with probability more than c is a symmetric property,
and is given by

∑

x>c:h(x)>0 h(x).

• The expected number of unique variants that will be observed in a sample of k alleles is a
symmetric property, and is given by

∑

x:h(x)>0 h(x) Pr[bin(x, k) > 0].

• The expected number of unique variants that will be observed more than 10 times in a sample
of k alleles is a symmetric property, and is given by

∑

x:h(x)>0 h(x) Pr[bin(x, k) > 10].

Because our goal is to recover an accurate approximation of the histogram hP , it will be useful to
define a metric on histograms to provide a concrete notion of what it means for two histograms to
be “similar”.

Definition 1.2. Given two histograms, g and h, assume without loss of generality that
∑

x:g(x)>0 x ·
g(x) ≤

∑

x:h(x)>0 x · h(x). The generalized relative earthmover distance between them, denoted

R(g, h), is defined to be
∣

∣

∣

∑

x:h(x)>0 x · h(x)−
∑

x:g(x)>0 x · g(x)
∣

∣

∣
plus the minimum over all schemes

of moving the mass of histogram g to yield h′, where

• h′ is any histogram such that
∑

x:h′(x)>0 x · h′(x) =
∑

x:g(x)>0 x · g(x) and h′(x) ≤ h(x) ∀x;

• the cost, per unit mass, of moving from probability value x to probability y is | log x
y |.

Note that the amount of mass in histogram g at probability value x is given by x · g(x).

The following example illustrates this definition.

Example 1.3. Let h denote the histogram representing 200 variants that each occur with probability
1/100. Hence h(1/100) = 200, and for all x 6= 1/100, h(x) = 0. Let g denote the histogram
consisting of 50 variants with probability 1/100, and 300 variants that occur with probability 1/200,
hence g(1/100) = 50, and g(1/200) = 300. Note that both histograms have the same total mass, since

200· 1
100 = 50· 1

100+300· 1
200 . The relative earthmover distance satisfies R(h, g) = 3

2 | log
1/100
1/200 | =

3 log 2
2 ,

since g can be obtained from h by moving 3/2 mass from probability 1/100 to probability 1/200 to
yield histogram g.

The generalized relative earthmover distance allows for comparisons of histograms with different
total masses, which is necessary since the inferred histogram from data will typically have a slightly
different mass from the true distribution. Intuitively, relative earthmover also highlights the im-
portance of estimating the rare variants well: mistaking variants with frequency 10−5 for frequency
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10−6 suffers substantial distance cost. The other main reason for using the relative earthmover
distance is that many properties of interest are Lipschitz continuous with respect to this distance:
if two histograms are close in relative earthmover distance, then they have similar property values.
In particular, if we guarantee that, with high probability, our algorithm recovers an estimate of the
underlying histogram that is accurate in relative earthmover distance, then estimates of properties
that we obtain from the recovered histogram will be accurate.

The following proposition, whose proof is given in Section 6.3 illustrates this point, and shows that
if two histograms are close in relative earthmover distance, then the expected number of variants
that will be observed in any given sized sample will be correspondingly similar.

Proposition 1.4. Given two lists of probabilities P = {ps ∈ S} and Q = {qs : s ∈ S}, let
E[Sk,P ] =

∑

s∈S Pr[bin(ps, k) > 0] denote the expected number of variants observed in a sample
of k alleles with the distribution of frequencies given by P , and let E[Sk,Q] denote the analogous
quantity corresponding to frequencies Q. Then, for any k > 3,

|E[Sk,P ]− E[Sk,Q]| ≤ k ·R(hP , hQ),

where R(hP , hQ) is the generalized relative earthmover distance between the histograms correspond-
ing to P and Q.

In analogy to the histogram hP giving us a label-less representation of the true underlying P = {ps},
it is convenient to have a label-less representation of the observed variant counts from a sample
of alleles. To this end, we define the fingerprint of the observed variants, which is also known as
the site frequency spectrum (SFS) in genetics, or the “pattern” of the sample in some statistics
contexts.

Definition 1.5. Given sample X of k alleles, the associated fingerprint, F = (F1,F2, ...) is the
“histogram of the histogram” of X. Formally, F is the vector whose ith component, Fi, is the
number of variants in S that occur exactly i times in sample X.

Remarks on the model. Our model assumes that all the variants are independent random vari-
ables. Population demography and linkage disequilibrium introduce correlations especially between
the common genetic variants. For the common variants, UnseenEst uses the empirical frequency
to accurately estimate the true population frequency. For the very rare variants, which Unseen-
Est tries to estimate while using the independence assumption, this assumption is also a better
approximation of the real data.

While the discussion here focuses on estimating the histogram of genetic variation, UnseenEst
is an general approach to estimate the histogram and statistical properties of any finite lists of
probabilities {p1, ..., pn} from independent Bernoulli samples, and can have broad applications
beyond genetics. Note that

∑

s ps can be significantly smaller or larger than 1.
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2 Supplementary Note 2: The UnseenEst Algorithm

We partion the variants into two classes: common variants and rare variants. In our applications,
variants with empirical allele frequency above 1% are defined to be common. With current cohorts
of 10s of thousands of alleles, we are likely to have observed all the common variants and the
empirical allele frequencies of the common variants should be very close to the true population
frequencies. Therefore we focus the efforts of the algorithm on estimating the frequencies of rare
variants.

Given a sample of k alleles and the associated fingerprint F , we truncate the fingerprint to only
the rare variants with frequency less than 1%, i.e. we consider {Fi :

i
k ≤ 0.01}. For the common

variants with frequency above 1%, we simply use their empirical frequency as an estimator of the
true frequency. On the truncated fingerprint, we solve the following linear program for variables
corresponding to h(x), x ∈ X for a finite mesh of probabilities X.

Algorithm UnseenEst.

Input:

• Fingerprint F from k alleles.

• A set of probability values X = { 1
1000k , α

1
1000k , ..., α

i 1
1000k , ..., 0.01}. We use α = 1.05.

• n = upper bound on the number of possible variants.

Output: histogram {h(x) : x ∈ X} ∪ {h(i/k) = Fi : i/k > 0.01}.

Solve for h(x), x ∈ X, to minimize the objective function

∑

i: i
k
≤0.01

1√
1 + Fi

∣

∣

∣

∣

∣

Fi −
∑

x∈X
h(x) · bin(x, k, i)

∣

∣

∣

∣

∣

subject to the constraints

h(x) ≥ 0,
∑

x∈X
h(x) ≤ n

∑

x∈X
x · h(x) +

m
∑

i:i/k>0.01

i

k
Fi =

m

k
.

where m ≡
∑

i i · Fi is the total number of observed variants .

For a given histogram h,
∑

x∈X h(x) · bin(x, k, i) is the expected number of variants observed i
times in k alleles. The objective function of the LP captures how much this expected number of
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variants deviates from the empirical number of variants observed i times (represented by the entries
of the fingerprint Fi). The term 1√

1+Fi
normalizes the deviation by the standard deviation. The

constraints enforce that h(x) ≥ 0, namely that there can not be a negative number of variants that
arise with a given probability, and that the total sum of the probabilities matches the empirical
estimate of the sum of the probabilities. Note that m

k is a very accurate estimator of
∑

ps for large
k. In practice, we found it sufficient to use the probability mesh X with geometrically increasing
probabilities with rate α = 1.05. Using a smaller α can marginally improve accuracy at the cost
of run-time. UnseenEst is very efficient; on the ExAC dataset (described below) the computation
took less than 10s on a standard laptop.

Estimating the number of unique variants. Given the estimated histogram h produced by
UnseenEst, the expected number of unique variants in a sample of j alleles is

V (h, j) ≡
∑

x:h(x)>0

h(x)(1− (1− x)j).

Confidence interval for prediction. We quantify the uncertainty around the prediction for
V (h, j) using bootstrapping as follows. Suppose histogram h(F , k) is the output of UnseenEst
trained on a sample of k alleles. We use binomial sampling from h(F , k) to generate Ns synthetic
cohorts, each of k alleles, with the corresponding fingerprints {F1, ...,FNs}. Then we apply Unseen-
Est on each of these fingerprints to generate histograms {h1, ..., hNs}. These are what the estimated
histogram could be if we have a different sample of k alleles from the population, assuming the
frequency distribution is h. The uncertainty of V (h, j) is quantified as the standard deviation of
the estimates {V (h1, j), ..., V (hN2 , j)}.

2.1 Performance Guarantees

For the performance guarantees, we analyze the slightly modified linear program, UnseenEst2,
below. The core algorithm of UnseenEst2 is identical to UnseenEst. The only differences are that
UnseenEst2 uses a finer grid for the probability values, X, and it uses a different cutoff frequency
threshold for what are considered to be the common variants. These parameter settings simplify
the theoretical analysis of the algorithm. Empirically, we find that using the probability grid and
frequency threshold as in UnseenEst gives very similar results compared to UnseenEst2 and is
faster.

To simplify the notations, we set the constants B,C,D such that

0.1 > B > C > B(
1

2
+D) >

B

2
> D > 0.

Given as input an untruncated fingerprint Fi of m total variants generated from k alleles, the linear
program algorithm is
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Algorithm UnseenEst2.

Input:

• Fingerprint F from k alleles; m ≡
∑

i i · Fi is the total number of variants observed.

• A set of probability values X = { 1
m2 ,

2
m2 , ...,

mB+mC

m }.

• n = upper bound on the number of possible variants.

Output: histogram {h(x) : x ∈ X} ∪ {h(i/k) = Fi : i ≥ mB + 2mC}.

Solve for h(x), x ∈ X, to minimize the objective function

mB+mC
∑

i=1

1√
1 + Fi

∣

∣

∣

∣

∣

Fi −
∑

x∈X
h(x) · bin(x, k, i)

∣

∣

∣

∣

∣

subject to the constraints

h(x) ≥ 0,
∑

x∈X
h(x) ≤ n

∑

x∈X
x · h(x) +

m
∑

i=mB+2mC

i

k
Fi =

m

k
.

For each integer i ≥ mB + 2mC , set h( ik ) to Fi.

The UnseenEst2 algorithm satisfies the following guarantee.

Theorem 2.1. Let n be the support size (the number of possible variants), k be the number of
alleles sequenced, and P = {ps} denote the true distribution of the variant frequencies with

∑

ps
the expected number of variants per allele. For sufficiently large n, with probability at least 1 −
e−(k

∑
ps)Ω(1)

, the algorithm will return a histogram g satisfying:

R(hP , g) ≤ O(
√
δ
∑

ps),

where δ = n
(k

∑
ps) log(k

∑
ps)

and the ‘O’ notation hides an absolute constant.

Theorem 2.1 demonstrates that UnseenEst2 is asymptotically unbiased. The interesting regime to
interpret the bound in Theorem 2.1 is when, for a fixed n, δ < 1. As the number of sequenced
samples, k, increases, the error bound factor δ decreases to 0, implying that the estimated frequency
distribution, g, becomes arbitrarily close to the true distribution, hP . Moreover UnseenEst2 is also
efficient in leveraging the information in the samples. As k increases, the error bound decreases
rapidly as 1/

√

(k
∑

ps) log(k
∑

ps). Here
∑

ps can be interpreted as the average number of variants
per allele and k

∑

ps is the total number of variants we expect to observe in the cohort.

The above theorem, together with Proposition 1.4 implies the following corollary:
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Corollary 2.2. Let n be the support size (the number of possible variants), k be the number of
alleles sequenced and

∑

ps is the expected number of variants per allele. Given a sample of k alleles,

with probability at least 1 − e−(k
∑

ps)Ω(1)
, the algorithm estimates the expected number of unique

variants that will be observed in a sample of k′ alleles to within additive error

k′ ·
(

∑

ps

)

(

1

(k
∑

ps)0.4
+O

(
√

n

(k
∑

ps) log(k
∑

ps)

))

.

One interpretation of the above corollary is that the estimate of the expected number of unique
variants will be accurate, relative to the total expected number of observed variants, k′

∑

ps,
provided n < (k

∑

ps) log(k
∑

ps).

3 Supplementary Note 3: Datasets

We used the exome sequencing data from the Exome Aggregation Consortium (ExAC) [1]. This
dataset consists of high-quality sequencing of the protein-coding regions in the genome (exomes)
from 60706 healthy individuals. Consistent with the ExAC analysis, we considered only regions of
the exome with sufficient sequencing depth: each nucleotide must be covered by at least 10 reads
in at least 80% of all ExAC individuals.

Loss-of-function (LoF) variants. We define LoF variants to be single-nucleotide substitu-
tions that introduce a stop codon in the reading frame or disrupts a splice donor or receptor
site. We do not include insertion/deletions (indels) in the class of LoF variants. Variant anno-
tation was performed using the Variant Effect Predictor (VEP) v81 on Gencode v19 and genome
build GRch37. LoF annotation was performed using LOFTEE (version 0.2; available at avail-
able at https://github.com/konradjk/loftee) plugin to VEP. While early stop codon and splice
donor/receptor disruptions often lead to truncated proteins, this does not imply that the protein
has lost all of its function. Our annotation of LoF variants does not explicitly assess protein function
and hence serves only as a proxy for the true deleteriousness of the variant.

Upper bound on the number of possible variants. A natural way to interpret the discovery
rate of a given variant class is to calculate, among all possible variants in this class, what fraction
of them do we expect to observe at a given sample size. To estimate an upper bound for the total
number of possible variants in each class, we first identified all the nucleotides for which we have
sufficient read coverage (at least 10 reads in at least 80% of all ExAC individuals). Then at each
well-covered nucleotide we identified the number of possible variants that belongs to a given class.
For example, if the reference genome at a particular nucleotide is A, then there are two possible
transversions (A → C and A → T) and one possible transition (A → G). The upper bound for
the number of possible transversions is then calculated as the sum of the possible transversions
across all well-covered nucleotides (which is just 2 times the number of well-covered nucleotides),
and similarly for other variant classes. The upper bound on the number of possible variants in each
variant class in the ExAC data is given in Supplementary Table 3.
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For each variant class, we divided the number of unique variants we expect to identify by this upper
bound to obtained the fraction of possible variants observed at a given cohort size. As technology
improves in future sequencing projects, we expect the well-covered regions of the exome to increase
and hence the number of identified variants to also increase.

LoF genes. We used the same set of 18225 genes as in the ExAC analysis [1]. Briefly, we summed
all exon level variant counts across Gencode v.19 canonical transcripts. If an exon had a median
depth < 1, the variant counts for that exon were not included in the total for the transcript. We
then removed all transcripts where no variants were observed. We also removed the outliers whose
observed synonymous and missense counts deviated significantly from the expected. This left 18225
for which ExAC had high-quality data.

We associated with each gene, g, a Bernoulli random variable with probability pg, which corresponds
to the probability that an allele of the gene contains at least one LoF variant as defined above or
at least one insertion-deletion (indel) that disrupts the reading frame. The presence of such a LoF
variant or indel is a proxy for true loss-of-function and does not necessarily mean that the gene is
entirely non-functional on that allele. For example, if the LoF variant introduces a stop codon near
the 3’ end of the gene, then the corresponding truncated protein may still retain some functions.

UnseenEst can be applied to estimate the histogram of any set of probabilities {pg}, and hence it
directly applies in this setting. On the U.S. Census matched cohort, we assign a gene 1 on an allele
if it has at least one LoF variant or frame-shift indel. Otherwise it is assigned a 0. The fingerprint
Fi here corresponds to the number of genes that are LoF in exactly i alleles. We trained UnseenEst
on this gene-level fingerprint.

Gene lists. We describe the curation of the various gene lists below.

• Dominant genes: 691 OMIM disease genes deemed to follow autosomal dominant inheri-
tance according to [2][3].

• Recessive genes: 1163 OMIM disease genes deemed to follow autosomal recessive inheri-
tance according to [2][3].

• GWAS genes: 2801 genes that are the closest 3’ and 5’ genes to GWAS hits in the NHGRI
GWAS catalog as of February 9, 2015.

• Drug target genes: 460 genes whose protein products are known to be the mechanistic
targets of drugs; curated from [4][5].

• Genes with cerebral specific expression: 979 genes with cerebral specific expression
downloaded from [6].
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4 Supplementary Note 4: Validation experiments

We performed multiple experiments to validate the prediction accuracy of UnseenEst.

Accuracy of allele frequency estimation. For each class of variant (synonymous, missense,
LoF, CpG) we randomly partitioned all the ExAC alleles into ten groups. We trained UnseenEst
on the site frequency spectrum of one partition (i.e. 10% of the alleles) and used the model to
predict the allele frequency distribution of the entire ExAC cohort. We grouped variants into 4
frequency bins: 1) variants that occur in 0-10 alleles; 2) variants that occur in 11-100 alleles; 3)
variants that occur in 101-1000 alleles; and 4) variants that occur in more than 1000 alleles. We
repeated this procedure for each of the ten random partitions and computed the average and the
standard deviation for the number of variants predicted to belong to each bin. These estimates are
compared with the observed number of variants in each bin in ExAC.

Accuracy of the estimated number of unique variants. For each variant class, we randomly
sampled 10% of the alleles and applied UnseenEst on the SFS of this subsample to estimate the
histogram ĥ of the variant frequencies. For any positive integer k, the number fo unique variants
we expect to see in k alleles is

∑

p h(p)(1− (1− p)k). As before, we compute the average and the
standard deviation of the estimates across the different 10% subsamples. To produce the ‘true’
discovery rate, we create a random ordering of all the ExAC alleles. Then for each k less than the
ExAC cohort size, we count the number of unique variants observed in the first k alleles.

Accuracy of gene LoF frequency. We randomly partitioned the alleles into ten subsets. For
each subset with 10% of the alleles, we generated the gene-level LoF fingerprint from this subsample.
We trained UnseenEst on this subsampled fingerprint and compared the predicted number of genes
with at least 10 LoF alleles with that of the observed in the entire ExAC data. The mean and
standard deviations of the predictions were computed from the 10 different partitions.

5 Supplementary Note 5: Related works

While our algorithm and analysis are closely related to the approach in [7][8], there are important
differences in the model. In [7], we have an unknown discrete distribution P on n elements and we
have k independent samples from P . This model was motivated by the classic problem of estimating
the vocabulary size of Shakespeare from a sample of his works [9][10]. The discrete distribution
setting can be reformulated by associating with each element s an independent Poisson random
variable poi(ps), where ps is the weight of P for s. Here, unlike in our model,

∑

s ps = 1. The
number of times that s appears in k samples is distributed according to poi(k · ps). In our genetics
model, the number of times that a variant s appears in k alleles is distributed according to bin(ps, k)
(a related linear program proposed in [11] uses hypergeometric distributions to model the variant
frequencies). While poi(k ·ps) and bin(ps, k) both have expectation k ·ps, the Poisson has a slightly
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larger variance. Because the number of elements n is potentially very large, this difference between
Poisson and Binomial aggregates over all the elements and can give rise to substantial differences
in the expected fingerprints between the two models.

Harmonic jackknife estimator have been used to estimate discovery rates [12, 4]. Unlike UnseenEst,
harmonic jackknife does not estimate the frequency distribution of variants. Instead it seeks to
directly estimate number of variants that are missed in the samples observed so far by positing
a specific parametric form for the number of missing variants. Let V (n) denote the number of
distinct variants we expect to find in a cohort of n samples. For n2 > n1, harmonic jackknife of
order p assumes that

V (n2)− V (n1) =

p
∑

i=1

ai(H(n2)−H(n1))
i

where H(n) =
∑n−1

i=1 1/i is the (n − 1)st harmonic number. The constants ai are given in [12]
and, in practice, 3rd order harmonic jackknife is used. In general, there is no guarantee that the
actual discover rate of variants has the parametric form above, and this model mismatch can lead
to biased predictions.

We tested harmonic jackknife on the ExAC data in exactly the same way that we used to validate
UnseenEst. For each ancestry population, we applied the jackknife estimator to a random sampling
of 10% of the alleles and compared the predicted discovery rate with the true discovery rate for
the entire ExAC cohort (Supp. Figure 3). The number of distinct variants predicted by harmonic
jackknife is consistently lower than the ground truth in all ancestry groups. At the actual cohort
size, harmonic jackknife on average underestimated the true discovery size by 3.6%. In comparison,
UnseenEst was unbiased and the average difference between its prediction and the ground truth is
0.15%. In addition, the uncertainty interval of jackknife is very narrow (too narrow to be noticeable
in Supp. Figure 3) and does not accurately capture the real uncertainty in the predictions.

Recently, [11] also proposed using linear program to estimate the discovery rate of new variants.
They solve two linear programs with hypergeometric coefficients, to estimate the upper and lower
bounds on the number of unique variants at a given sample size that are consistent with the
observed site frequency spectrum. Under the infinite genome assumption (i.e. there are infinitely
many possible variants), [11] showed that there exist solutions to these two linear programs. The
approach of [11] tries to identify the range of the number of unique variants that is consistent
with the observed data, though it does not guarantee how wide this interval is and whether it
concentrates around the true value in general. Our linear program is guaranteed to produce a
histogram that is close to the true SFS. Moreover our analysis makes explicit the dependence on
the sample size k and the frequency distribution ps which was not present in [11].

Bayesian approaches have also been applied to estimate the number of unseen variants [10][13].
A limitation of this approach is that it requires parametric forms for the distribution of variant
frequencies, which corresponds to assumptions on the underlying demographic process and selection.
For example, in [10], the mutation probabilities of the variants are assumed to be i.i.d. samples
from a Beta(a, b) prior, where the hyperparameters a, b are fitted from data. The Beta prior is
a reasonable model for neutrally evolving variants but may not be appropriate for deleterious
mutations. The advantage of UnseenEst is that it does not require any modeling assumption about
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selective pressure and demographic history, i.e. it is non-parametric. Theorem 2.1 applies in all
settings where the independence assumption is a reasonable approximation.

How to design sequencing studies to optimize variant discovery was analyzed in [13]. This study
was limited to 500-kilobase regions in the genomes of 39 ENCODE individuals. Consistent with
our results, [13] showed that adjusting the distribution of the cohort over different ancestries can
increase the number of variants discovered.

6 Supplementary Note 6: Proofs of the Guarantees

The proof of Theorem 2.1 for UnseenEst2 has three main components. First we show that given
a sample of k alleles from the above model, with high probability the empirical fingerprint Fi’s
are close to their expected values

∑

ps
h(ps) · bin(ps, k, i). This sample of k alleles is what we

call a faithful sample. Next we show that given a faithful sample, the histogram of the true
distribution, h(p), rounded so as to be supported on the set X of discrete probability values, is a
point in the plausible region of the linear program in UnseenEst2. Intuitively the plausible region
captures all the histograms that can plausibly generate the observed SFS. The last component of
the proof will argue that any two points in the plausible region must be close in generalized relative
earthmover distance. This completes the proof because the solution returned by the linear program
in UnseenEst2 is in the plausible region and hence must be close in relative earthmover distance to
the rounded true histogram, which is close to the true histogram.

The proof of Theorem 2.1 follows the steps of the proof of Theorem 2 in [7]. We have to replace
calculations involving Poisson distributions with Binomials in the appropriate places. We also have
to rescale all the earthmoving costs by

∑

ps. We provide explicit analysis where our proof differs
from that of [7]; otherwise we refer to the appropriate part of [7] when the calculations are identical.

6.1 Faithful samples

Definition 6.1. A sample of k alleles with fingerprint F , drawn from a set P = {ps} of probabilities
with histogram h and sum t =

∑

s ps, is said to be faithful if the following conditions hold:

• |m− kt| ≤ (kt)0.6.

• For all i,
∣

∣

∣

∣

∣

∣

Fi −
∑

x:h(x) 6=0

h(x) · bin(x, k, i)

∣

∣

∣

∣

∣

∣

≤ max
(

F0.5+D
i , (kt)B(0.5+D)

)

.

• For all possible variants s ∈ S, letting ps denote the true probability of s, the number of times
s occurs in the sample from P differs from its expectation k · ps by at most

max
(

(kps)
0.5+D, (kt)B(0.5+D)

)

.
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Lemma 6.2 (Analogous to Lemma 11 in [7]). There is a constant γ > 0 such that for sufficiently
large number of individuals, k, the empirical distribution is faithful with probability at least 1 −
e−(kt)γ , where t =

∑

s ps.

Proof. The first condition follows from Hoeffding bound with high probability.

In our model, E[Fi] =
∑

ps
h(ps) ·bin(ps, k, i). Each fingerprint Fi is the sum of independent binary

variables, representing whether each mutation occurred exactly i times in the population. Hence
Chernoff bounds apply. The analysis showing that the second condition is satisfied is the same as
in the proof of Lemma 11 in [7]. We include it here for completeness.

The analysis of the second condition is split into two cases, according to whether E[Fi] ≥ (kt)B. If
E[Fi] < (kt)B, we have that Pr

[

|Fi − E[Fi]| ≥ (kt)B(0.5+D)
]

is upper bounded by the case where
E[Fi] = (kt)B. By Chernoff bound,

Pr
[

|Fi − E[Fi]| ≥ E[Fi]
B(0.5+D)

]

≤ 2e(kt)
2BD/3.

In the case that E[Fi] ≥ (kt)B, we have that Pr
[

|Fi − E[Fi]| ≥ E[Fi]
B(0.5+D)

]

is monotonically
decreasing in E[Fi] and hence this quantity is bounded by setting E[Fi] = (kt)B. A union bound
over the first 2kt fingerprints shows that the probability that a sample of k alleles violate the first
condition is at most k ·2e−(kt)2BD/3 ≤ e−(kt)Ω(1)

. Note that the probability that there are more than
2kt nonzero fingerprints is similarly bounded, as the probability that a variant is observed more
than 2kt times is inverse exponential in kt.

For the third condition, we want to show that for all variants s, the number of times that s is
observed in k alleles differs from its expectation psk by at most max((kps)

0.5+D, (kt)B(0.5+D)). The
analysis also splits into two cases depending on whether psk ≥ (kt)B and follows from the same
Chernoff bound as before, replacing Fi by the number of times s occurs in the sample and replacing
E[Fi] by psk.

Definition 6.3. Given a fingerprint F , an upper bound on the support size n, m =
∑

i i · Fi, and
a finite set of probability values X, the plausible region is the set of histograms h supported on X
satisfying the conditions

mB+mC
∑

i=1

1√
1 + Fi

∣

∣

∣

∣

∣

Fi −
∑

x∈X
h(x) · bin(x, k, i)

∣

∣

∣

∣

∣

≤ m2B,

∑

x∈X
x · h(x) +

m
∑

i=mB+2mC

i

k
Fi =

m

k
,

∀x ∈ X,h(x) ≥ 0 and
∑

x∈X
h(x) ≤ n.

As the name suggests, the plausible region is the set of histograms that can plausibly generate
the observed fingerprint F . The last three requirements of plausibility are the same as the LP
constraints in UnseenEst2.

12



The following lemma shows that, given a faithful sample of k alleles, the corresponding plausible
region has a point that is extremely close to the histogram of the true distribution.

Lemma 6.4. (Analogous to Lemma 12 of the [7].) For sufficiently large k, and n < m2+B/2/k:
given a distribution of support size at most n and a faithful sample of k alleles with fingerprint F ,
the plausible region has a point v′ such that v′ is close to the true histogram h

R(h, hv′) = O

(∑

ps

kΩ(1)

)

where hv′ is obtained from v′ by appending the empirical fingerprint entries Fi for i ≥ mB + 2mC .

Proof. The idea of the proof is to show that, provided the sample is faithful, the true histogram
h can be minimally modified into a plausible point v′. We construct v′ by taking the portion of h
with probabilities at most mB+mC

m and rounding the support of h to the closest multiple of 1/m2,
so as to be supported at points in the set X = {1/m2, 2/m2, ...}.

We construct h′ and v′ as in [7]. The first two steps of the construction are the same. In the third
step, we want to normalize the total probability mass mF +

∑

x xv
′
x to be m/k instead of to 1.

This involves rescaling v′x by a factor of s = (m/k −mF )/
∑

x xv
′
x.

Next we show that the discretization does not violate the requirements of plausibility. We note
that

∣

∣

d
dxbin(x, k, i)

∣

∣ ≤ k. Since we discretize to multiples of 1/m2, the discretization alters the
contribution of each site to each expected fingerprint by at most k/m2. The support size is bounded
by n, the discretization alters each expected fingerprint by at most n ·k/m2. The rescaling step also
does not violate the plausibility conditions. Finally the last part of the proof bounds the per unit
earth-moving cost, which does not use any properties of the Poisson distribution. We can apply
the same earth-moving scheme and analysis of the per unit cost. The final cost R(h, hv′) needs to
be scaled by m/k since that’s the total amount of probability mass.

6.2 Chebyshev construction

The previous section established that, given a faithful sample (which we are likely to obtain with
high probability), there exists a plausible point which is very close to the true histogram. In this
section, we will show that any two plausible points are close in generalized relative earthmover
distance. By the triangle inequality, this guarantees that the solution returned by UnseenEst2 will
be close to the true histogram. To establish the closeness of the histograms, we will explicitly con-
struct a earthmoving scheme using Chebyshev polynomials. This is analogous to the earthmoving
scheme in [7], replacing all instances of poi(kx, i) by bin(x, k, i).

Definition 6.5. For a given k, a β-bump earthmoving scheme is defined by a sequence of positive
real numbers {ci}, the bump centers, and a sequence of functions {fi} : (0, 1] → R such that
∑

i fi(x) = 1 for each x and each function fi may be expressed as a linear combination of Binomials,
fi(x) =

∑

j aijbin(x, k, j) such that
∑

j |aij | ≤ β. Given a generalized histogram h, the scheme
works as follows: for each x such that h(x) 6= 0, and each integer i ≥ 0, move xh(x) · fi(x) units of
probability mass from x to ci. We denote the resulting histogram by (c, f)(h).
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We define binomial Chebyshev bumps, following [7].

Definition 6.6. Let s = ⌊0.2 log kt⌋, where t =
∑

s ps. Define g1(θ) =
∑s−1

j=−s cos(jθ) to be an
approximation of the delta function, truncated at Fourier degree s. Define a slightly fatter version

g2(θ) =
1

16s

(

g1(θ −
3π

2s
) + 3g1(θ −

π

2s
) + 3g1(θ +

π

2s
) + g1(θ +

3π

2s
)

)

,

and, for i ∈ {1, . . . , s−1}, define its shifted versions gi3(θ) = g2(θ− iπ
s )+g2(θ+

iπ
s ), and g03 = g2, and

gs3 = g2(y + π). Let ti(x) be the linear combination of Cheybyshev polynomials so that ti(cos θ) =
gi3(θ). We define s + 1 functions, the “skinny bumps”, to be Bi(x) = ti(1 − xk

2s )
∑s−1

j=0 bin(x, k, j),
for i ∈ {0, . . . , s}.

Definition 6.7. The Chebyshev earthmoving scheme is defined in terms of k as follows: let s =
0.2 log kt. For i ≥ s + 1, define the ith bump function fi(x) = bin(x, k, i) and associated bump
center ci = i−1

k . For i ∈ {0, ..., s} let fi(x) = Bi(x) and define their associated bump centers
ci =

2s
k (1− cos( iπs )), and let c0 = c1.

We now prove a number of nice properties about the Chebyshev earthmoving scheme.

Lemma 6.8 (Lemma 18 in [7]). For any θ,

s−1
∑

i=−s

g2

(

θ +
iπ

s

)

= 1,

and for any x,
∞
∑

i=0

fi(x) = 1.

Proof. Same as in Lemma 18 of [7]. Nothing special about Poisson density was used in that
proof.

Lemma 6.9 (Analogous to Lemma 19 in [7]). Each Bi(x) may be expressed as
∑s

j=0

∑s
q=0 aijqbin(x, k+

q, j + q) for aijq satisfying
s
∑

q=0

s
∑

j=0

|aijq| ≤ 2(kt)0.3.

Proof. We decompose gi3(θ) into a linear combination of cos(ℓθ), for ℓ ∈ {0, . . . , s}. Since cos(−ℓθ) =
cos(ℓθ), g1(θ) consits of one copy of cos(sθ), two copies of cos(ℓθ) for each ℓ strictly between 0 and
s, and one copy of cos(0θ). g2(θ) consists of ( 1

16s times) 8 shifted copies of g1(θ)’s. The shifts
changes the phases of the Fourier coefficients but not their magnitude. Sine components may have
been introduced in the shifts, but since gi3 is an even function, the sine components cancel out.
Since each g3 contains at most two shifted g2’s, each gi3(θ) is a linear combination

∑s
ℓ=0 cos(ℓθ)biℓ

with the Fourier coefficients bounded by |biℓ| ≤ 2
s .
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Since ti was defined so that ti(cos θ) = gi3(θ) =
∑s

ℓ=0 cos(ℓθ)biℓ, by the definition of Chebyshev
polynomials we have ti(x) =

∑s
ℓ=0 Tℓ(x)biℓ. Thus the bumps are expressed as

Bi(x) =

(

s
∑

ℓ=0

Tℓ

(

1− xk

2s

)

biℓ

)





s−1
∑

j=0

bin(x, k, j)



 .

We further express each Chebyshev polynomial via its coefficients as Tℓ(1− xk
2s ) =

∑ℓ
m=0 βℓm(1−

xk
2s )

m. We then expand each term via binomial expansion as (1− xk
2s )

m =
∑m

q=0(−xk
2s )

q
(

m
q

)

to yield

Bi(x) =

s
∑

ℓ=0

ℓ
∑

m=0

m
∑

q=0

s−1
∑

j=0

βℓm

(

−xk

2s

)q (m

q

)

biℓbin(x, k, j).

In general we can re-express

xqbin(x, k, j) = xq
(

k

j

)

xj(1− x)k−j

=

(

k

j

)

xq+j(1− x)k−j

=
(q + j)!k!

(k + q)!j!
bin(x, k + q, q + j)

Following the same calculations as in the Unseen, we have

∣

∣

∣

∣

∣

∣

s
∑

ℓ=0

ℓ
∑

m=0

m
∑

q=0

s−1
∑

j=0

βℓm

(

− k

2s

)q (m

q

)

biℓ
(q + j)!k!

(k + q)!j!

∣

∣

∣

∣

∣

∣

≤ 2(kt)0.3

Lemma 6.10 (Lemma 20 in [7]). |g2(θ)| ≤ π7

θ4s4
for θ ∈ [−π, π] \ (−3π/s, 3π/s), and |g2(θ)| ≤ 1/2

everywhere.

Proof. Same proof as in Lemma 20. This lemma doesn’t involve Poisson density at all.

Lemma 6.11 (Analogous to Lemma 21 in [7]). The Chebyshev earthmoving scheme is [O(
√
δt), n]-

good, where δ = n
kt log(kt) and δ ≥ 1

log kt .

Proof. The analysis has two parts. For the first part, we consider the cost of bumps fi for i ≥ s+1,
where recall that s = 0.2 log kt. This is the cost of moving bin(x, k, i) mass from x to i

k . The unit

cost of moving mass from x to i
x is | log xk

i |, which is upper bounded by xk
i − 1 when i < xk and

i
xk − 1 otherwise. We split the calculation into two parts. First, for i ≥ ⌈xk⌉,

bin(x, k, i)

(

i

xk
− 1

)

= bin(x, k − 1, i− 1)− bin(x, k, i)

≤ bin(x, k, i− 1)− bin(x, k, i).
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When summed over i ≥ max{s, ⌈xk⌉}, this telescopes to an expression bounded by

bin(x, k,max{s, ⌈xk⌉} − 1) = O(
1

√

max{s, ⌈xk⌉}
) = O(

1√
s
).

For i ≤ ⌈xk⌉ − 1, since i ≥ s, we have bin(x, k, i)(xki − 1) ≤ bin(x, k, i)((1 + 1
s )

x(k+1)
i+1 − 1). The

1
s term sums to at most 1

s . Note that bin(x, k, i)x(k+1)
i+1 = bin(x, k + 1, i + 1) ≤ bin(x, k, i + 1),

where the last inequality is because i ≤ ⌈xk⌉ − 1. Therefore the rest of the sum telescopes to
bin(x, k, ⌈xk⌉) − bin(x, k, s) = O( 1√

s
). Thus in total, fi for i ≥ s + 1 contributes O( 1√

s
) to the

relative earthmover cost, per unit of weight moved.

Next we analyze the skinny bumps fi(x) for i ≤ s. The simple case is when xk ≥ 4s. Recall
the definition fi(x) = ti(1 − xk

2s

∑s−1
j=0 bin(x, k, j). Since xk > x, we bound

∑s−1
j=0 bin(x, k, j) ≤

s · bin(x, k, s). Each fi(x) is exponentially small in both x and s, the thus the total earthmoving
scheme, per unit of mass above 4s

k is exponentially small.

The remaining case is xk ≤ 4s and i ≤ s. The trigonometric calculations here does not use any
properties of Poisson distributions and carry over without change to our Binomial case. The per
unit earthmoving cost in this regime is O( 1√

sxk
). For a distribution with histogram h, the cost of

moving earth on this region, for bumps fi where i ≤ s is thus

O

(

∑

x

h(x) · x · 1√
sxk

)

= O

(

1√
sk

∑

x

h(x)
√
x

)

.

Since
∑

x x · h(x) = m/k and
∑

x h(x) ≤ n, by the Cauchy-Schwarz inequality,

∑

x

√
xh(x) =

∑

x

√

x · h(x)
√

h(x) ≤
√

mn

k
.

The total earthmoving cost in this regime is O(mk

√

n
m log kt) and hence we need n = δm log kt to

ensure that the total cost here is O(m
√
δ/k).

Finally we put all the pieces together. The total probability mass that need to be moved is O(m/k).

The regimes of i ≥ s + 1 and i ≤ s, xk ≥ 4s both require O( m
k
√
s
) ≤ O(m

√
δ

k ) earthmoving cost,

since s = 0.2 log kt and δ > 1
log kt by assumption. The last regime of i ≤ s, xk ≤ 4s also incurs

O(m
√
δ/k) cost and hence the overall earthmoving cost is O(m

√
δ/k).

Proof of Theorem 2.1. To wrap up the proof of the theorem, let g be the generalized histogram
returned by the linear program and let h be the plausible point constructed to be close to the

true histogram p, R(p, h) = O
(

m
k·kΩ(1)

)

. Let h′ and g′ be the generalized histograms that result

from applying the Chebyshev earthmoving scheme to h and g, respectively. We have R(h, h′) =
O(m

√
δ/k) and R(g, g′) = O(m

√
δ/k).

What is left if to bound R(g′, h′) by O
(

m
k·kΩ(1)

)

. For the bump centers i ≥ s+1, the same analysis

as in [7] shows that relative earth mover cost is O( 1
kΩ(1) ). We consider the first s + 1 = O(logkt)
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bump centers corresponding to the skinny Chebyshev bumps. Recall that for these centers, ci, the
bump functions Bi(x) may be expressed as

∑s
j=0

∑s
q=0 aijqbin(x, k + q, j + q) for aijq satisfying

s
∑

q=0

s
∑

j=0

|aijq| ≤ β ≡ 2(kt)0.3.

Using the shorthand
∑

x for
∑

x:h(x)+g(x) 6=0, we have

|h′(ci)− g′(ci)| =

∣

∣

∣

∣

∣

∑

x

(h(x)− g(x))xfi(x)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∑

x

(h(x)− g(x))x

s
∑

j=0

s
∑

q=0

aijqbin(x, k + q, j + q)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

s
∑

j=0

s
∑

q=0

aijq
∑

x

(h(x)− g(x))xbin(x, k + q, j + q)

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

s
∑

j=0

s
∑

q=0

aijq
j + q + 1

k + q + 1

∑

x

(h(x)− g(x))bin(x, k + q + 1, j + q + 1)

∣

∣

∣

∣

∣

∣

≤ O

(

β
k2B

√
m

k
log3 kt

)

where we have used triangle inequality and the first condition of plausibility in the last inequality.
Since B < 0.1, we have that this discrepancy is O(max{1,∑ ps}

kΩ(1) ) for each center ci, and since there

are log kt centers, the total discrepancy is also O(max{1,∑ ps}
kΩ(1) ). Putting all the pieces together, by

the triangle inequality, we have

R(p, q) ≤ R(p, h) ≤ R(p, h) +R(h, h′) +R(h′, g′) +R(g′, g) ≤ O(m
√
δ/k).

Moreover, E[nk ] =
∑

ps = t and since alleles are independent, Chernoff bounds applies and with

probability at least 1− e−(kt)Ω(1)
, R(p, g) ≤ O(

∑

ps
√
δ).

6.3 Proof of Proposition 1.4

For convenience, we restate the proposition in a slightly more general form:

Proposition 1.4 Given two lists of probabilities P = {ps ∈ S} and Q = {qs : s ∈ S} with
∑

s ps ≥
∑

s qs, let E[Sk,P ] =
∑

s∈S Pr[bin(k, ps) > 0] denote the expected number of variants
observed in a sample of k alleles with the distribution of frequencies given by P , and let E[Sk,Q]
denote the analogous quantity corresponding to frequencies Q. Let P ′ = {p′s : s ∈ S} be any list of
probabilities satisfying:

1. Either for all s ∈ S, p′s ≤ ps, or for all s ∈ S, p′s ≥ ps,
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2.
∑

i p
′
s =

∑

i qs,

then, for any k,

|E[Sk,P ]− E[Sk,Q]| ≤ k

∣

∣

∣

∣

∣

∑

i

pi −
∑

i

qi

∣

∣

∣

∣

∣

+ (0.3(k − 1) + 1)R(hP ′ , hQ),

where R(hP ′ , hQ) is the relative earthmover distance between the histograms corresponding to P ′

and Q. Hence for k > 3,

|E[Sk,P ]− E[Sk,Q]| ≤ k

∣

∣

∣

∣

∣

∑

i

pi −
∑

i

qi

∣

∣

∣

∣

∣

+ 0.5k ·R(hP ′ , hQ),

Proof. By the triangle inequality, |E[Sk,P ]− E[Sk,Q]| ≤
∣

∣E[Sk,P ]− E[Sk,P ′ ]
∣

∣+
∣

∣E[Sk,P ′ ]− E[Sk,Q]
∣

∣ .
The first term is trivially bounded by k

∑

i |pi−p′i| = k |
∑

i pi −
∑

i qi| , since each unit of probability
mass can, in expectation, account for at most k distinct observations. To bound the second term,
first note that both the relative earthmover cost, and expected number of distinct elements observed
are linear functions of the number of elements of P and Q with each different probability value, it
suffices to analyze the costs of the earthmoving distance and the change in the expected number
of distinct elements for a single earthmoving operation: consider moving c units of mass from
probability value x to y. The change to the expected number of distinct elements observed is
exactly

∣

∣

∣

c

x

(

1− (1− x)k
)

− cy

x

(

1− (1− y)k
)∣

∣

∣
,

and the relative earthmover cost of this is c| log x
y |. We now show that the ratio of these quantities

is always at most k
4 .

We seek to bound the maximum change in 1
x

(

1− (1− x)k
)

relative to the change in log x as
x changes, namely the maximum ratio of their derivatives, where we add a negative sign since
1
x

(

1− (1− x)k
)

is a decreasing function. Since d
dx log x = 1/x, the ratio of derivatives is

− x
d

dx

(

1− (1− x)k
)

x
=

1− (1− x)k−1((k − 1)x+ 1)

x
(1)

Consider the approximation (1− x)k−1 ≈ e−x(k−1). Taking logarithms of both sides, and using the
fact that x ≤ 1

2 we have log 1−x ≥ −x−x2, we have that for x ≤ 1
2 the inequality (k−1) log(1−x) ≥

−(k− 1)(x+ x2); exponentiating yields (1− x)k−1 ≥ e−x(k−1) · e−x2(k−1) ≥ e−x(k−1)(1− x2(k− 1)).

Thus for x ≤ 1
2 the ratio of derivatives is bounded as

−x
d

dx

(

1− (1− x)k
)

x
≤1− (e−x(k−1)(1− x2(k − 1)))((k − 1)x+ 1)

x

=
1− e−x(k−1)((k − 1)x+ 1)

x
+

e−x(k−1)x2(k − 1)((k − 1)x+ 1)

x
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The first term of the right hand side, after dividing by k − 1, can be reexpressed in terms of

y = x(k− 1) as 1−e−y(y+1)
y , which has a global maximum less then 0.3; the second term in the right

hand side, after the same variable substitution, equals e−yy(y+1), which has a global maximum less
than 1. Thus, for x ≤ 1

2 , the absolute value of the ratio of derivatives is bounded as 0.3(k− 1) + 1.
For x ≥ 1

2 , the right hand side of Equation 1 is 1
x minus some positive quantity, and is hence at

most 2. Since 0.3(k − 1) + 1 ≥ 2 for any k ≥ 5, all that remains is to checking the k = 2, 3, 4 cases
where 0.3(k − 1) + 1 < 2 by hand to confirms that 0.3(k − 1) + 1 is in fact a global bound.
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