Supporting Information

An Aldol Reaction-Based Iridium(III) Chemosensor for the Visualization of Proline in Living Cells

Jin-Biao Liu^{a,b,*}, Li-Juan Liu^c, Zhen-Zhen Dong^b, Guan-Jun Yang^c, Chung-Hang Leung^c and Dik-Lung Ma^{b,*}

^a Department of Chemistry, Jiangxi University of Science and Technology, Ganzhou, China.

^b Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.

^c State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.

* Corresponding author:

Dr. Jin-Biao Liu, E-mail: liujbgood@hotmail.com.

Dr. Dik-Lung Ma, E-mail: edmondma@hkbu.edu.hk, Tel: (+852) 3411-7075, Fax: (+852) 3411-7348.

Contents:

General experimental
Materials
Scheme S1. Synthesis of 1
Table S1. Photophysical properties of iridium(III) complex 1. 4
Figure S1. Excitation and emission spectra of 1 (10 μ M) in DMSO/acetone (4:1, v/v)4
Figure S2. UV-Vis absorption spectra of 1 (20 μM) in DMSO4
Figure S3. Time course of luminescence response of 1 (10 $\mu M)$ in the presence of Pro (80 $\mu M)$ at
25 °C
Figure S4. Luminescence enhancement of 1 (10 μM) with Pro (80 μM) in various percentage of
acetone in DMSO5
Figure S5. High-resolution mass spectrum of the reaction product 25
Figure S6. Luminescence enhancement of system in response to 1 (10 $\mu M)$ in the absence or
presence of L, D, or DL-proline (80 $\mu M).$
Figure S7. Luminescence enhancement of 1 (10 μM) with Pro (80 μM) in various percentage of
PBS buffer in DMSO/acetone (4:1, v/v)6
Figure S8. Influence of pH (5 to 9) on the luminescence enhancement of 1 (10 $\mu M)$ with Pro (80
$\mu M)$ in the assay of 5% PBS medium
Figure S9. Influence of KCl concentration on the luminescence enhancement of $\boldsymbol{1}$ (10 $\mu M)$ with
Pro (80 $\mu M)$ in the assay of 5% PBS medium7

General experimental. Mass spectrometry was performed at the Mass Spectroscopy Unit at the Department of Chemistry, Hong Kong Baptist University, Hong Kong (China). Deuterated solvents for NMR purposes were obtained from Armar and used as received.

¹H and ¹³C NMR were recorded on a Bruker Avance 400 spectrometer operating at 400 MHz (¹H) and 100 MHz (¹³C). ¹H and ¹³C chemical shifts were referenced internally to solvent shift (acetone- d_6 : ¹H, δ 2.09, ¹³C δ 205.87, 30.60; DMSO- d_6 : ¹H δ 2.50, ¹³C δ 39.5). Chemical shifts (δ) are quoted in ppm, the downfield direction being defined as positive. Uncertainties in chemical shifts are typically ±0.01 ppm for ¹H and ±0.05 for ¹³C. Coupling constants are typically ±0.1 Hz for ¹H-¹H and ±0.5 Hz for ¹H-¹³C couplings. The following abbreviations are used for convenience in reporting the multiplicity of NMR resonances: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad.

Materials. Reagents, unless specified, were purchased from Sigma Aldrich (St. Louis, MO) and used as received. Iridium chloride hydrate ($IrCl_3 \times H_2O$) was purchased from Precious Metals Online (Australia).

Scheme S1. Synthesis of 1.

Complex **1**. Yield: 64%. ¹H NMR (400 MHz, acetone) δ 10.76 (s, 1H), 9.30 (d, J = 9.2 Hz, 1H), 8.95 (dd, J = 8.3, 1.3 Hz, 1H), 8.76 (d, J = 5.1 Hz, 1H), 8.58 (d, J = 9.2 Hz, 1H), 8.50 (dd, J = 6.6, 4.5 Hz, 2H), 8.25 – 8.23 (m, 1H), 8.12 (dd, J = 8.3, 5.1 Hz, 1H), 7.93 (d, J = 1.7 Hz, 2H), 7.92 – 7.87 (m, 2H), 7.70 (dd, J = 15.6, 5.5 Hz, 2H), 7.08 (tdd, J = 7.7, 3.5, 1.1 Hz, 2H), 7.00 – 6.93 (m, 4H), 6.45 (t, J = 7.7 Hz, 2H); ¹³C NMR (100 MHz, acetone) δ 192.95, 168.65, 168.53, 153.23, 152.72, 150.44, 149.01, 147.60, 145.20, 145.05, 139.64, 139.08, 132.70, 132.40, 131.59, 131.33, 130.92, 129.33, 128.45, 125.88, 125.40, 124.47, 123.69, 120.85. MALDI-TOF-HRMS: Calcd. for C₃₈H₃₂F₆IrN₄OP [M–PF₆]⁺: 709.1592, found: 709.1576.

¹H NMR,¹³C NMR and mass spectrum of **1**.

Table S1. Photophysical properties of iridium(III) complex 1.

Quantum yield	$\lambda_{em}/\ nm$	Lifetime/ µs	UV-Vis absorption λ_{abs} / nm (ϵ / dm ³ mol ⁻¹ cm ⁻¹)
0.718	580	3.750	235 (3.6×10^4), 370 (1.5×10^3)

Figure S1. Excitation and emission spectra of **1** (10 μ M) in DMSO/acetone (4:1, v/v).

Figure S2. UV-Vis absorption spectra of **1** (20 μ M) in DMSO.

Figure S3. Time course of luminescence response of **1** (10 μ M) in the presence of Pro (80 μ M) at 25 °C.

Figure S4. Luminescence enhancement of **1** (10 μ M) with Pro (80 μ M) in various percentage of acetone in DMSO.

Figure S5. High-resolution mass spectrum of the reaction product 2.

Figure S6. Luminescence enhancement of system in response to **1** (10 μ M) in the absence or presence of L, D, or DL-proline (80 μ M).

Figure S7. Luminescence enhancement of **1** (10 μ M) with Pro (80 μ M) in various percentage of PBS buffer in DMSO/acetone (4:1, *v*/*v*).

Figure S8. Influence of pH (5 to 9) on the luminescence enhancement of **1** (10 μ M) with Pro (80 μ M) in DMSO/acetone (4:1, *v*/*v*) with 5% PBS medium.

Figure S9. Influence of KCl concentration on the luminescence enhancement of **1** (10 μ M) with Pro (80 μ M) in DMSO/acetone (4:1, *v*/*v*) with 5% PBS medium.