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S1 Linear Spin Vibronic Model Hamiltonian

The Hamiltonian used in the present work is based upon a Linear model Vibronic Coupling Hamiltonian described
in ref. 1. Here the diabatic potentials, most appropriate for quantum dynamics simulations, are obtained by fixing
a point at which the adiabatic and diabatic potentials are equivalent (i.e. the coupling is zero). This is chosen to
be the Franck-Condon point. The Hamiltonian is then expanded up to first order as a Taylor series around this
point Q0, using dimensionless (mass-frequency scaled) normal mode coordinates:

H = H(0) + W(0) + W(1) (S1)

The zeroth order term is the ground state harmonic oscillator approximation. The zeroth order coupling matrix
contains the adiabatic state energies for each state at Q0, i.e. The Franck-Condon excitation energies. The
elements of the first order linear coupling matrix (W(1)) are written:

W
(1)
ij =

∑
α

〈Φi( Q0)|
∂Hel

∂Qα
|Φj( Q0)〉Qα (S2)

In the present model only the off-diagonal elements (〈Φi( Q0)|
∂Hel

∂Qα
|Φj( Q0)〉), usually represented by the symbol

λ, are present and act between the two triplet states (3CT and 3LE).
An important consideration when setting up a model Hamiltonian for large polyatomic molecules is which

nuclear degrees of freedom are required in the model to ensure an accurate description of the dynamics of
interest. Here we used symmetry considerations to determine all of the mode for which coupling between the two
triplet states could be non-zero. At the equilibrium geometry PTZ-DBTO2 has Cs symmetry, and therefore the
symmetry rule can be written:

Γi ⊗ Γj ⊗ Γα ⊃ A′ (S3)

where Γi and Γj are symmetries of the two states and Γα is the symmetry of the mode. Therefore off diagonal el-
ements (nonadiabatic coupling elements) will only be non-zero if the product of the two states gives the symmetry
of the specific mode.

As the 3CT and 3LE states are of A” and A’ symmetry, respectively only modes of A” symmetry will couple
them. Subsequently all A” modes with a frequency <500 cm−1, i.e. those which can reasonably be thermally
activated, (15 in total) were calculated and fitted to determine the magnitude of non-adiabatic coupling. Only
modes with significant coupling, > 50cm−1 were included. These are given in Table S1. The potentials are shown
in Figure 2 in the main text and Figure S1.

Mode Symmetry Frequency (cm−1) Character
1 A” 13.60 D-A bond rock

11 A” 173.65 A- Torsion
23 A” 422.60 D-A Torsion

Table S1: Mode symmetry and vibration energies (in cm−1) for the normal modes of PTZ-DBTO2 found to
promote significant vibronic coupling and which are included in the model Hamiltonian.

The potential energy surfaces were calculated using TDDFT(M062X) [2] within the Tamm-Dancoff approxima-
tion (TDA) [3] and a def2-TZVP basis set [4] as implemented within the Gaussian quantum chemistry package [5].
While TDDFT is well documented to have difficulties in addressing charge transfer excitations, the large fraction
(54%) of non local exact exchange incorporated within the M062X functional remedies, to a large extent, this
problem [6]. In addition, the TDA is critical for avoiding problems associated with the triplet instability [7]. The
excited state energies for the relevant excited states at the Franck-Condon geometry are shown in Table S2 and
are in good agreement with the onset of the experimental absorption spectra [8–10]. The SOC matrix element
between the 1CT and 3LE states were computed at the ground state equilibrium geometry using the perturbative
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approach developed by Wang and Ziegler [11] as implemented within ADF [12–14]. Using the M062X functional
and a TZP basis set for all atoms. Scalar relativistic effects were included using the ZORA [15,16] approximation.
The SOC matrix element between the two charge transfer states was zero at the Franck-Condon point. The
Hyperfine interaction matrix element is known to be small and throughout this work a constant value of 0.2 cm−1,
in constant with typical experimentally recorded values is used [17].

State Symmetry Energy (eV) Character
S1 A” 3.55 HOMO→LUMO
T1 A’ 3.45 HOMO→LUMO+3
T2 A” 3.53 HOMO→LUMO

Table S2: The lowest excited states of PTZ-DBTO2 at the Franck-Condon geometry included in the model
Hamiltonian

During the previous paragraphs, the calculations required to obtained the Linear Spin Vibronic Model Hamil-
tonian are given. In table S3, the full details of the Hamiltonian for which simulation in the main text is given. This
has the general form:

Ĥ =



ω

2

(
∂2

∂Q2
i

+Q2
i

)
+ Erel3LE λQi ESOC

λQi

ω

2

(
∂2

∂Q2
i

+Q2
i

)
+ Erel3CT EHFI

ESOC EHFI
ω

2

(
∂2

∂Q2
i

+Q2
i

)
+ Erel1CT

 (S4)

where Qi is the nuclear degree of freedom and Erel is the excited state energy, relative to the 3LE state. This
means that Erel3LE will be 0, while for Erel3CT and Erel1CT , the energy represents the gap between this state and the
3LE state.

Simulation black green cyan blue red
ω1 13.60 13.60 13.60 13.60 13.60
ω11 173.65 173.65 173.65 173.65 173.65
ω23 422.60 422.60 422.60 422.60 422.60

Erel3LE (eV) 0.00 0.00 0.00 0.00 0.00
Erel3CT (eV) 0.07 0.07 0.035 0.07 0.07
Erel1CT (eV) 0.10 0.10 0.05 0.10 0.10
ESOC 2.00 2.00 2.00 2.00 2.00
EHFI 0.20 0.00 0.20 0.20 0.20
λ1 67.02 67.02 67.02 0.0000 73.73
λ11 91.71 91.71 91.71 0.0000 100.90
λ23 79.04 79.04 79.04 0.0000 86.95

Table S3: Parameters for each MCTDH simulation. The simulation colours in the top row correspond to the
simulations plotted in Figure 3 in the main text. All energies are in cm−1 unless stated otherwise. In green are
highlighted the parameters which are adjusted during each simulation

S2 Quantum Dynamics Simulations

The quantum dynamics addressing the intersystem crossing rate were performed using the Heidelberg Multi
Configuration Time Dependent Hartree (MCTDH) package [18, 19]. In this approach the wavefunction ansatz is
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written as a linear combination of Hartree products:

Ψ(Q1, ..., Qf , t) =

n1∑
j1=1

...

nf∑
jf=1

Aj1...jf (t)

f∏
k=1

ϕ
(k)
jk

(Qk, t) (S5)

where Q1,...,Qf are the nuclear coordinates, Aj1...jf (t) are the time-dependent expansion coefficients and ϕ(k)
jk

are
the time dependent basis functions for each k (degree of freedom), known as single particle functions (SPFs).
The SPFs used in MCTDH have two advantages: (1) fewer are required as they are variationally determined
(2) the functions can be multi-dimensional particles containing more than one degree of freedom thus reducing
the effective number of degrees of freedom. The wavepacket simulation describes the evolution of a certain,
well defined, initial state. However for a system at finite temperature, important in the context of the simulations
addressing the rISC rate, there obviously exists a mixture of different thermally excited states.

To address this we perform simulations within a density operator formalism of MCTDH [20]. Here the single
particle functions are replaced with single-particle density operators. Here we adopt a closed quantum system,
this is to say that no dissipative operators are included and only the core Hamiltonian described above is used.
In this representation the Liouville-von Neumann equation for the system is expressed:

ρ̇(t) = − i
~

[H, ρ(t)] (S6)

For these simulations, the advantage of MCTDH comes into its own. Although the model Hamiltonian used herein
is relatively small, for the density operator simulations the dimensionality of the system formally doubles [21]
significantly increasing the numerical treatment of the simulations.

The full details of both sets of MCTDH simulations are given in Table S4 and ensure convergence for the
population kinetics for the entire simulations

Table S4: Computational details for the MCTDH simulations within both the wavefunction and density operator
formalisms. Ni is the number of primitive harmonic oscillator discrete variable representation (DVR) basis func-
tions used to describe each mode. ni are the number of single-particle functions used to describe the wavepacket
on each state.

Modes Ni nS1 ,nT1 ,nT2
ν1 25 12,12,12

Wavefunction ν11 25 12,12,12
ν23 25 12,12,12

Density Operator ν1,ν11 21 21,61,31
ν23 21 12,12,12

The dynamics were performed using the model Hamiltonian described above. The computational details for
the quantum dynamics simulations are shown in Table S1 and ensured convergence of the population kinetics
shown in the main text.
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S3 Supplementary Results
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Figure S1: Potential energy curves along ν11 (leftandν23 (right) for the low lying excited states (3LE = red, 3CT =
blue and 1CT = black) relative to the 3LE energy minimum and the corresponding fit of the model vibronic coupling
Hamiltonian to these potentials. The nuclear motion corresponding to these modes are shown below.
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Figure S2: (a) Population kinetics of the 3CT state during the rISC dynamics after initial population of the 3LE
state. These simulations are performed within the density operator formalisms with a temperature of 300 K and
correspond to the same simulations as shown in Figure 3b in the main text. (b) Zoom in to the first picosecond of
(a).



7

References

[1] H. Köppel, W. Domcke, and L. S. Cederbaum. Adv. Chem. Phys. 1984 57:59–246.

[2] Y Zhao and D G Truhlar. Theor. Chem. Acc. 2008 120:215–241.

[3] S. Hirata and M Head-Gordon. Chem. Phys. Lett., 1999 314:291–299.

[4] F Weigend and R Ahlrichs. Phys. Chem. Chem. Phys. 2005 7:3297–3305.

[5] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani,
V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Iz-
maylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa,
M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta,
F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Nor-
mand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Mil-
lam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann,
O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski,
G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz,
J. Cioslowski, and D. J. Fox. Gaussian 09 revision a.1. Gaussian Inc. Wallingford CT 2009.

[6] R Li, J Zheng, and D G Truhlar. Phys. Chem. Chem. Phys. 2010 12:12697–12701.

[7] MJG Peach, MJ Williamson, and DJ Tozer. J. Chem. Theory Comput. 2011 7:3578–3585.

[8] JS Ward, RS Nobuyasu, AS Batsanov, P Data, AP Monkman, FB Dias, and MR Bryce. Chem. Commun.,
2016 52:2612-2615.

[9] FB Dias, KN Bourdakos, V Jankus, K C Moss, K T Kamtekar, V Bhalla, J Santos, M R Bryce, and A P
Monkman. Adv. Mater., 2013 25:3707–3714.

[10] PL Santos, JS Ward, P Data, AS Batsanov, MR Bryce, FB Dias, and AP Monkman J. Mater. Chem. C, 2016,
4:3815-3824

[11] F Wang and T Ziegler. J. Chem. Phys. 2005 123:154102.

[12] C Fonseca Guerra, J G Snijders, G Te Velde, and E J Baerends. Theor. Chem. Acc., 1998 99:391–403.

[13] S.J.A. van Gisbergen, J.G. Snijders, and E.J. Baerends. Comput. Phys. Commun., 1999 118:119–138.

[14] ADF2009.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands. Scientifici Com-
putation and Modelling, 2010. http://www.scm.com/.

[15] E. van Lenthe, E. J. Baerends, and J. G. Snijders. J. Chem. Phys., 1993 99:4597–4610.

[16] E. van Lenthe, E. J. Baerends, and J. G. Snijders. J. Chem. Phys., 1994 101:9783–9792.

[17] T Ogiwara, Y Wakikawa, and T Ikoma. J. Phys. Chem. A, 2015 119:3415–3418.

[18] H.-D. Meyer, U. Manthe, and L. S. Cederbaum. Chem. Phys. Lett. 1990 165:73–78.

[19] M. H. Beck, A. Jäckle, G. A. Worth, and H.-D. Meyer. Phys. Rep., 2000 324:1–105.

[20] H-D Meyer and GA Worth. Theor. Chem. Acc., 2003 109:251–267.

[21] Michael Berman, Ronnie Kosloff, and Hillel Tal-Ezer. J. Phys. A, 1992 25:1283.


